
 

  
Abstract—In this paper we evaluate our previously proposed 

security architecture for Personal Networks (PNs). Personal 
Network is a new concept utilizing pervasive and distributed 
computing to meet the needs of the user. We aim to secure 
Personal Networks with lightweight security mechanisms that are 
suitable for resource constrained devices yet robust enough for 
self organization and secure communication. In order to study the 
behavior of our proposed security mechanisms we developed a 
simulation environment in NS-2. The simulations are used to 
evaluate the overhead of our mechanisms and to understand the 
effects of key parameters. The results show that our mechanisms 
have low delay and energy requirements and are feasible for the 
heterogeneous devices we envision in our PN. 
 

Index Terms—Cluster formation, Personal Networks, Secure 
communication, NS-2 simulations 
 

I. INTRODUCTION 
UTURE mobile communication systems are envisioned 

to provide their users access to services anywhere and at 
anytime. Personal Networks (PNs) [1] have similar 
aspirations but take a very user-centric approach to solving the 
challenges. They comprise a core consisting of a PAN 
(Personal Area Network) which, when necessary, can be 
extended to include devices and services both in the vicinity 
and those at remote locations. This extension can be made 
using both infrastructure based networks and wireless networks 
to access the range of services available on and through these 
networks, including those offered by other PANs. PNs are 
composed of heterogeneous devices and are dynamic entities 
due to the mobile nature of their constituents and the 
spontaneous nature of their connectivity with the outside 
world. Figure 1 outlines the network layer abstraction of a PN 
in the QoS for PN@Home project [2]. We see personal devices 
organized in the form of clusters, which are groups of personal 
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devices that can communicate amongst each other without 
using any non-personal devices. Clusters belonging to a user 
interconnect to form his PN.  

As PNs edge closer towards reality, security becomes an 
important concern since any vulnerability in the system will 
limit its practical use. The goal of our security architecture is to 
provide users of PNs with a reliable communication platform 
to access their services. In [3] we gave an overview of a 
centralized architecture for securing personal clusters. We 
defined a new role for a device in the cluster, that of a security 
agent. In this paper we will evaluate the overhead of those 
mechanisms using simulations. Since most of the (energy) 
overhead arises from the transmission of extra data rather than 
computation costs [4], we are particularly interested in the 
transmission overhead of security.  

 
Figure 1: Network layer abstraction of a Personal Network 

 
Due to the heterogeneous nature of devices within the 

Personal Network, our aim is to use secure but lightweight 
mechanisms suitable for resource constrained devices and 
wireless communication. In [3] we proposed pair-wise keys for 
secure cluster formation and group keys (called cluster keys) 
for securing intra-cluster communication. The cluster key is 
periodically refreshed by the security agent and distributed to 
all existing cluster members. It is also given to new members 
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by the security agent after a successful authentication. 
Clustered devices append a MAC (message authentication 
code) calculated using the cluster key to all cluster traffic that 
they generate. As a result, any subsequent clustered device can 
verify that the messages were generated by a trusted device 
and not modified in transit by any un-trusted devices.  

The security agent periodically broadcasts cluster 
advertisements which are used by other devices to discover 
the cluster. In terms of security agent functionality we defined 
two new classifications of devices. Security agent capable 
(SAC) devices have the capabilities to function as security 
agents whereas security agent in-capable (SAI) devices do 
not. SAI devices e.g. sensors are less sophisticated and 
typically only useful in conjunction with other smarter devices, 
when networked together as a cluster.  

The aim of this work is to evaluate secure cluster formation 
as originally proposed in [3]. In Section II of this paper we 
summarize some other work related to securing Personal 
Networks and in Section III we give an overview of the 
clustering process, focusing on issues related to its 
implementation in the simulator. Section IV discusses 
simulation aspects of cluster merging while Section V presents 
our simulation results. In Section VI we state our conclusions 
and sum up remaining future work.  

 

II. RELATED WORK 
The security architecture proposed for Personal Networks in 

the MAGNET project [5] provides an interesting basis for 
comparison with our work. Unlike our centralized approach to 
cluster formation, MAGNET devices wishing to join a cluster 
require a security association with at least one neighboring 
clustered device. Since communication between neighboring 
devices is done using pair-wise keys, they then use the 
transitivity of trust to establish individual security associations 
with any neighbors with whom they do not have an existing 
security association. This results in a significant overhead, 
especially during device mobility. Furthermore using pair-wise 
keys to secure both unicast and broadcast communication 
between neighbors increases the processing overhead due to 
the hop-by-hop encryption and decryption necessary for 
messages traveling multiple hops. Our approach of using a 
group key avoids this problem and also reduces the overhead 
of key management significantly. Finally, the centralized 
nature of our security architecture can be an asset since it 
provides the user with a higher degree of control. 

TinySec [6] is a lightweight link layer security architecture 
designed for sensor networks. It aims to provide reasonable 
security for devices with extreme resource constraints. It bears 
similarities to our proposed mechanisms in that both use group 
keys to provide message integrity, authentication and 
(optionally) confidentiality. The TinySec protocol has been 
well designed with respect to its energy usage, however its 
applicability in Personal Networks is limited since it is not a 

complete security framework e.g. it does not formulate any 
mechanisms for key management. 

III. CLUSTERING 
Devices that are within each others transmission range, and 

belong to the same PN organize themselves in the form of 
clusters. The first cluster is always created when a SAC device 
starts functioning as a security agent. This cluster (consisting 
of just the one device) is then extended by incorporating other 
devices or even other clusters. 

Our PN simulation scenario is composed of SAI and SAC 
devices which are derived from, and extend the functionality of 
NS-2 [7] mobile nodes. SAI devices initialize into the orphan 
state while SAC devices start out functioning as security agents 
in a cluster that only contains them. Since SAC devices start 
out as security agent they are fully initialized with a cluster 
key, PN id, cluster id etc. The PN and cluster ids [3] are 
needed to distinguish between traffic belonging to different 
PNs and/or clusters. The PN id is configured for all PN devices 
during device imprinting. During this imprinting phase the 
core node, a personal device that plays the role of the 
“mother” [8] creates the necessary long term security 
association with all new devices. Devices in the orphan state 
do not belong to any cluster and thus do not have a cluster key 
or cluster id etc.  

Devices in the orphan state attempt to authenticate with the 
first cluster of their PN whose advertisement (i.e. with a 
matching PN id) they receive. After a successful authentication 
they join that cluster and their state changes to clustered. At 
this point, they have received the new cluster key (and its 
validity period), cluster id and cluster policy from the security 
agent. The cluster policy contains information that devices 
need to know in order to act appropriately. 

A. Cluster Advertisements 
Security agents advertise themselves periodically by 

broadcasting cluster advertisements which are used by other 
devices to discover the cluster. Other cluster members 
rebroadcast non-duplicate advertisements, in effect 
propagating them to the edges of the cluster. Figure 2 
illustrates the packet format for a cluster advertisement without 
any extension headers. The sequence number field is 
incremented for each new cluster advertisement; it is used by 
receiving devices to determine, and drop duplicates. As in IPv6 
each extension header (Figures 3-5) adds optional information 
to a cluster advertisement and is identified by a distinct next 
header value. A cluster advertisement may carry zero, one, or 
more extension headers, each identified by the next header 
field of the preceding header. Cluster advertisements also 
include the address of the sending security agent; it is used by 
devices to authenticate with the cluster. The purposes of the 
remaining fields of Figure 2 are described in Section C. 

The re-key extension header (Figure 3) is used to update the 
existing cluster key when it is about to expire. During cluster 
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merging the merge extension header (Figure 4) is used together 
with the re-key extension header. This is because re-keying is a 
subset of cluster merging. After the new key has been 
transmitted, the security agent uses the hash disclosure 
extension header (Figure 5) to disclose the hash chain value 
used to calculate MAC-H on the re-key and merge extension 
headers. The fields in Figures 3-5 are described in Section D. 
Note that like every Layer 2 frame transmitted by clustered 
devices, the Layer 2 frame containing the cluster advertisement 
(with the extension headers) is also protected with a MAC 
generated using the cluster key.  
 

 
B. Authentication 
Un-clustered devices belonging to the same PN as the 

cluster whose advertisement (without any extension headers) 
they receive, cache it and attempt to authenticate with the 
advertising security agent. If the authentication fails the cached 
cluster advertisement is discarded. On the other hand if the 
authentication is successful, the cached cluster advertisement is 
re-broadcasted.   

Un-clustered devices ignore cluster advertisements 
containing extension headers because such cluster 
advertisements are an indication that the cluster key is being 
updated. Device will wait for the re-key phase to complete 
before authenticating with the security agent otherwise they 
may receive the old cluster key. For this reason security agents 

entering the re-key phase cancel ongoing authentications and 
reject new authentication attempts till the re-key phase 
completes. 

Finally, caching the cluster advertisement during 
authentication and retransmitting it afterwards reduces the total 
clustering delay since all cluster-able devices can be 
incorporated into the cluster after only one CA, instead of 
incorporating the first hop device after the first cluster 
advertisement and the second hop devices after the second CA, 
etc. As a result the cluster formation overhead is much lower 
than presented previously [3].  

Since we would like clusters to extend with devices that are 
outside the range of the security agent but within the range of 
peripheral cluster members, cluster members enable IEEE 
802.1X based port authentication. Therefore, clustered devices 
accept authentication requests from other devices (i.e. without 
a valid MAC) which are forwarded/tunneled to their security 
agent for verification. These authentication requests are 
typically in response to cluster advertisements previously 
transmitted by the clustered devices. Since these authentication 
requests cannot be authenticated before being forwarded, 
clustered devices will need to limit the amount of 
authentication requests that they forward in any given period in 
order to guard against DoS attacks.  

During authentication the security agent transfers required 
cluster parameters to successful authenticators. We can not 
specify the exact format of an authentication packet because 
that is dependent on the EAP mechanism [10] used. Finally, all 
authentications must complete within auth-timeout (Table 1) 
and each EAP message (transmitted over UDP) must get a 
reply within rtn-timeout (Table 1) or it is retransmitted. 

C. Reducing Path Discovery Overhead 
When a security agent (SA) transmits a cluster 

advertisement its AODV module populates the hop count, 
RREQ id and originator sequence number fields of Figure 2. 
These fields have the same functionality as their namesakes in 
an AODV RREQ packet and are used by forwarding devices to 
create temporary routing table entries to store reverse paths 
towards the SA.  

When a device receives a cluster advertisement from its 
security agent that has not been processed before, it updates the 
hop count value and searches for a reverse route to the security 
agent in its routing table. Depending on the result, the route is 
either created or updated using standard AODV behavior e.g. 
the lifetime of the reverse route entry is set using default 
parameters. The cluster advertisement is then processed by the 
device and re-broadcasted. Consequently, when the ensuing 
authentication requests need to be forwarded to the SA, the 
complete path to the security agent already exists and does not 
need to be discovered. The forward path to the authenticator is 
created when its first authentication packet travels to the SA.  

The authenticator adds the following three fields to the first 
authentication packet that it sends to the security agent; hop 
count, destination sequence number and path lifetime. As 

Figure 3: Re-Key extension header. 

  00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Addr Security Agent 

Sequence Number Next Header Hop Count1 
2 
3 
4 RREQ ID 

Originator Sequence Number 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Disclosed Hash Chain Value 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

New Security Agent 

New Sequence Number Next Header Length

MAC-H 

Figure 2: Cluster Advertisement header. 

Figure 4: Merge extension header. 

Figure 5: Hash disclosure extension header. 

(Variable Length) 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

New Cluster Key  
(Variable Length) 

Update Sequence Number Next Header Length

Key Validity 
MAC-H 

New Cluster Policy 
(Variable Length)

Reserved Next Header Length
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intermediate devices forward the returning authentication 
packets to the security agent, they use the information existing 
in the packet to create/update the forward route to the 
authenticator. The processing of the fields is the same as that 
of an AODV RREP packet. We can think of cluster 
advertisements like AODV RREQ packets that are 
disseminated in the entire network, and the resulting 
authentication packets as the AODV RREP packets that are 
unicasted back to the SA. 

For this optimization, we only use a subset of AODV 
features that allow intermediate devices to create the 
freshest/shortest route to the SA. Since the cluster 
advertisement is not meant for any specific device it does not 
use all the fields of a typical AODV RREQ packet, such as the 
destination address and destination sequence number etc. 
Also, further features of the AODV implementation such as the 
expanding ring and exponential back off etc. are not necessary 
since we need network-wise dissemination of cluster 
advertisements and because the security agent does not wait for 
any reply to its advertisement. Lastly, since these optimizations 
are derived from the AODV implementation in NS-2 they 
require using AODV as the ad-hoc routing algorithm for the 
simulations. 

D. Updating the Cluster Key 
Updating the cluster key (or re-keying) is necessary when 

the current cluster key is about to expire, or when one cluster 
has to update its key to that of another cluster during cluster 
merging. Cluster merging is the process whereby two clusters 
of the same PN (within each others transmission range) merge 
to form one cluster. Our re-key mechanism has two goals. The 
first goal is to ensure a reliable distribution of re-key messages 
to all cluster members. The second goal is to enable cluster 
members to verify the source of these messages. Figure 6 
illustrates our proposed re-key mechanism where re-keying 
starts with the cluster advertisement (including the re-key 
extension header) of sequence number x.  

 
Figure 6: Re-key mechanism. 

In order to ensure the reliable delivery of re-key information 
it is sent within i consecutive cluster advertisements, where 
the redundancy factor i is defined as the number of sequential 
cluster advertisements that are missed by a device before it 
believes it has lost connectivity with the security agent. A 
larger redundancy factor increases the reliability of message 
dissemination, but conversely costs more in terms of 
transmission overhead and delay. In Section V we will use our 

simulation results to justify a value for i. 
The re-key extension header (Figure 3) sent in the re-key 

phase holds the new cluster key encrypted using the existing 
cluster key, the key validity period of the new key and the 
update sequence number. The update sequence number field of 
the re-key message holds the value of the sequence number of 
the cluster advertisement (illustrated in Figure 6) which signals 
the switch over to the new key. Additionally, the fields of 
Figure 4 contain information that merging devices need to 
know in order to become part of the new cluster. 

The re-key extension header is protected using MAC-H 
generated using a secret key (hash chain value) which will be 
disclosed by the security agent during the hash disclosure 
phase. Therefore device buffer re-key messages till hash chain 
value corresponding to that round of re-keying is released. 
Using the property of a hash chain, the disclosed hash chain 
value (Figure 5) is then authenticated by verifying it against 
the hash chain value used in the last round of re-keying (also 
given to new cluster members by the security agent when they 
join the cluster).  

For a device to re-key successfully it should receive at least 
one copy of the re-key message and one copy of the hash 
disclosure message. Thus, as per our earlier definition of i, any 
device that is a member of the cluster should be able to re-key 
successfully. If an SAI device fails to re-key, it will eventually 
go back to the orphan state, while an SAC device will re-
initialize to form a new cluster.  

 

IV. CLUSTER MERGING 
PN devices forward all authenticated traffic from fellow 

cluster members, and drop all un-authenticated traffic from 
external devices except authentication requests and cluster 
advertisements. In Section III.B we explained that 
authentication requests are forwarded by cluster members to 
their security agents for verification. Similarly, cluster 
advertisements belonging to another cluster of the same PN i.e. 
with a similar PN id but different cluster ids, are also 
forwarded to the security agent of the cluster. The security 
agent will then attempt to authenticate with its advertising 
counter part, in order to merge the two clusters. Such a 
mechanism is necessary for clusters to be able to merge when 
their periphery overlaps and not only when the transmission 
range of the two security agents overlaps. Since clusters 
belonging to different PNs can not merge, clustered devices 
drop advertisements of other PNs.  

A. Forwarding Un-authenticated Cluster Advertisements 
As cluster advertisements from one cluster can not be 

authenticated by forwarding devices of another cluster, it is 
conceivable that an attacker would generate false cluster 
advertisements with the same cluster id in order to launch a 
DoS attack. Devices can limit the effect of such an attack by 
controlling the rate at which they forward unauthenticated 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

3139



 

advertisements. Furthermore, intermediate devices do not 
forward multiple copies of the same cluster advertisement 
(received from multiple sources) to their security agent. 

B. Authentication between Security Agents 
Security agents are able to authenticate with multiple SAI 

devices at the same time, but only with one other security 
agent at a time. This is because authenticating with another 
security agent may result in cluster merging. After a successful 
authentication the security agent with the lower weight (a 
dynamic value representing the feasibility of a device to be a 
security agent) will yield to the other. However the security 
agent with the lower weight will only yield if the cluster key of 
the other cluster is valid for more than 6 * i * cluster 
advertisement period. This is because one re-key process 
always takes less than 3 * i * cluster advertisement period 
(Figure 6) and the new cluster key should be valid long enough 
for the merging security agent to update its own cluster key 
and for the newly merged devices to be able to receive any re-
key packets of their new cluster. Predictably, security agents in 
the merging state reject any authentication attempts.  

 

V. SIMULATIONS 
The objective of our simulations is to (a) understand the 

effects of certain parameters on system performance and (b) 
get quantifiable values for the overhead of our proposals. For 
(a) we carry out simulations to study the effect of the 
redundancy factor i on the behavior of our system.  For (b) 
will look at the cost of the following mechanisms: cluster 
formation with one or more SAC devices, control traffic for 
cluster maintenance, cluster key updates and cluster merging.  

The NS-2 simulation script is used to create PN devices and 
initialize their parameters such as the device type, initial 
position, movement scenario and the PN id. Only devices with 
the same PN id can organize themselves to form a cluster. SAC 
devices must also be assigned a static weight, which is used 
during cluster merging.  

We simulate a CSMA/CD (802.11b) wireless ad-hoc 
network with the wireless mobility extensions of NS-2.29. The 
network size is 50m x 50m and the transmission range of each 
device is 10m. For each simulation we use graphs with 5, 20 
and 50 devices in order to cover a wider range of possible 
scenarios. For each of the three scenarios we generate 30 
connected graphs with random device positions. Additionally, 
the simulation for each of the 30 graphs is performed 3 times 
using a random seed, for a total of 90 simulation runs per 
scenario. The overhead of our proposed mechanisms in each 
simulation is judged by the average time and total 
transmissions at Layer 2 required to organize the cluster. This 
gives a quantitative idea of the cost, in terms of delay and 
energy consumption. 

A. Background Traffic 
Our background traffic is audio and video streaming, 

something which we believe is typical for a PNs. Since the 
amount of background traffic has a significant effect on the 
optimal value of the redundancy factor, we simulate three 
types of background traffic: low, medium and high. Low 
background traffic corresponds to 128kbps, 44.1MHz MP3 
audio streaming. We assume that each payload contains 3 MP3 
packets of 417 bytes each, for a total of 1251 bytes. We use a 
CBR (Constant Bit Rate) traffic generator with a packet 
interval of 80ms. Medium traffic corresponds to low traffic 
plus an MPEG2 video stream of 256 kbps. The payload size is 
1024 bytes and the CBR traffic generator has a packet interval 
of 32ms. High traffic corresponds to low traffic plus an 
MPEG2 video stream of 512 kbps. Besides packet loss due to 
collisions we can also have packet loss due to interference. 
Therefore devices in the system are assigned a packet error rate 
of 2% for all incoming traffic. 

All background traffic is generated by foreign devices. 
Foreign devices do not belong to the PN so their traffic only 
competes with clustered traffic for contention of the 
transmission medium. Using clustered devices to generate 
background traffic is not ideal because they can only 
communicate after the cluster has formed, so the effect of 
background traffic on cluster (re)formation is limited. Foreign 
devices are placed equally spaced in a grid, the sender for each 
stream of the background traffic is chosen randomly from the 
bottom row and receiver from the top, thus ensuring that the 
background traffic traverses the network. 

B. Choosing the right redundancy factor 
Table 1 shows the values of the parameters used in the 

simulations. Authentication between devices is simulated by 
successfully exchanging four authentication packets in each 
direction, within the auth-timeout period. The parameter which 
has the largest effect on performance is the value of the 
redundancy factor i. As explained earlier we use redundant 
transmissions to ensure a reliable distribution of broadcasted 
cluster advertisements and re-key messages. 

TABLE 1: DEFAULT VALUES OF SIMULATION PARAMETERS 

Parameter Value Parameter Value 
cluster advert 

pkt size 
40 bytes cluster 

advert period 
5s 

Re-key ext. hdr 28 bytes i 4 
Merge ext. hdr 28 bytes Key timeout 600s 
Hash ext. hdr 20 bytes auth-timeout 15s 
Auth pkt size 534 bytes rtn-timeout 3s 

For simulations with one re-keying phase, Tables 2 through 4 
show the average number of devices that are unable to re-key 
successfully due to lost re-key messages. Next to each value in 
the table (in brackets) is its standard deviation.  
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TABLE 2: LOST RE-KEY MESSAGES WITH LIGHT BACKGROUND TRAFFIC 

# of Devices i = 1 i = 2 i = 3 i = 4 
5 0.19 (0.71) 0 (0) 0 (0) 0 (0) 

20 1.09 (3.19) 0.1 (0.94) 0 (0) 0 (0) 
50 0.93 (2.61) 0 (0) 0 (0) 0 (0) 

TABLE 3: LOST RE-KEY MESSAGES WITH MEDIUM BACKGROUND TRAFFIC 

# of  Devices i = 1 i = 2 i = 3 i = 4 
5 0.57 (1.16) 0.04 (0.29) 0 (0) 0 (0) 

20 3.72 (5.64) 0.34 (1.54) 0.27 (1.55) 0 (0) 
50 4.54 (10.4) 0.99 (4.61) 0.06 (0.52) 0 (0) 

TABLE 4: LOST RE-KEY MESSAGES WITH HEAVY BACKGROUND TRAFFIC 

# of Devices i = 1 i = 2 i = 3 i = 4 
5 0.88 (1.48) 0.14 (0.55) 0 (0) 0 (0) 

20 6.73 (6.85) 3.19 (5.11) 0.89 (2.66) 0 (0) 
50 8.24 (13.5) 3.00 (9.06) 1.11 (4.11) 0 (0) 

As expected, with low background traffic there is less 
contention for the transmission medium and a lower 
redundancy factor is sufficient to ensure reliable delivery. 
However, there are opposing effects as the devices in the 
system increase. On the one hand there is more contention in 
the system but on the other a higher device density means more 
redundancy. It is interesting too see that with light background 
traffic a cluster with 20 devices actually has slightly more re-
key failures than that with 50 devices. This can be explained 
by the fact that with 20 devices spread over the same area as 
50, there are fewer duplicate paths between a device and its 
security agent. So if one device fails to re-key it affects other 
devices that can only be reached through it.  The relatively 
high standard deviation in the results of Tables 2-4 is because 
although most simulations have zero or one re-key failures, 
others in which a group of devices has connectivity through 
one device, have significantly more. To conclude, since we 
would like re-key failures to be probabilistically insignificant 
while keeping the overhead as low as possible, we choose i = 
4 as the value of the redundancy factor for all further 
simulations. Furthermore, since the amount of background 
traffic has a smaller effect on our remaining simulations, we 
only use medium traffic for the remainder of the simulations.  

C. Cluster formation overhead 
We simulate cluster formation with one and with potentially 

five SAC devices. Table 5 shows the average cluster formation 
overhead with 95% confidence interval for a cluster with 5 
devices. The overhead field measures the average sum of 
Layer 2 transmission by all PN devices to create the cluster.  

TABLE 5: CLUSTER FORMATION OVERHEAD FOR 5 DEVICES 

 1 SAC, 4 SAI devices 5 SAC devices 
Duration (s) 2.1 ± 0.5 51.4 ± 3.9 

Overhead (KB) 42.9 ± 2.3 50.2 ± 2.7  

When there is only one SAC device in the system, the cluster 
is formed rather quickly. After the security agent advertises 
itself, all devices within the first hop range authenticate (in 

parallel). As soon as they have authenticated, they retransmit 
the cached cluster advertisement allowing devices which are 
two hops away from the security agent to authenticate, and so 
on. With 5 SAC devices, each device starts out being a security 
agent. Therefore each authentication can potentially result in 
cluster merging depending on if the security agent that is 
stepping down after merging has any clustered devices. If the 
security agent that is stepping down has not authenticated any 
devices to be part of its cluster, then it skips the cluster re-key 
process and the merge is instantaneous. The slight increase in 
the overhead between the two scenarios is the result of rejected 
authentication attempts, which need to be repeated. Some 
authentication attempts are initially rejected because a security 
agent can only authenticate with one security agent at a time. 
Table 6 shows the average cluster formation overhead with 
95% confidence interval for a cluster with 20 devices. 

TABLE 6: CLUSTER FORMATION OVERHEAD FOR 20 DEVICES 

 1 SAC, 19 SAI devices 5 SAC, 15 SAI devices 
Duration (s) 6.5 ± 0.8 81.8 ± 5.0 

Overhead (KB) 450.1 ± 21.7 367.4 ± 20.2  

As expected, with 1 SAC device the time taken for 19 
devices to authenticate is more than that for 4 devices (Table 
5). This is because a larger number of devices increase the 
probability of having a device more hops away. Generally 
devices within the first hop will authenticate first (then 
retransmit the cached cluster advertisement), next the devices 
within the second hop and so on. Similarly with the increase in 
the number of authentications and the more hops they need to 
traverse to get to the security agent, the total number of bytes 
transmitted increases non-linearly.  

From Table 6 we can see that although the time taken for 
cluster formation with multiple SAC devices is larger due 
delay resulting from cluster merging, the transmission 
overhead is actually lower. This is because although the total 
number of authentications in the system remains the same, the 
number of hops between the authenticating device and the 
security agent it is authenticating with is actually reduced. 
Devices authenticate with the first security agents whose 
advertisement they receive, often this is the closest one in 
terms of the number of hops.  As clusters grow, they overlap 
and merge after the two security agents authenticate each 
other. In this way instead of multiple devices authenticating 
with the security agents over several hops, there is only one 
aggregated authentication.  This effect is more pronounced 
here when compared with simulations of 5 devices because of 
the increased number of hops in the system. Table 7 shows the 
average cluster formation overhead with 95% confidence 
interval for a cluster with 50 devices. 

 TABLE 7: CLUSTER FORMATION OVERHEAD FOR 50 DEVICES 

 1 SAC, 49 SAI devices 5 SAC, 45 SAI devices 
Duration (s) 11.1 ± 1.0 82.1 ± 4.0 

Overhead (KB) 1440 ±  83 1099 ± 64 
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With simulations of 20 and 50 devices, the time needed to 
complete cluster formation with multiple SAC devices is larger 
than the simulation of 5 devices. This is because in the later 
simulation as there are no SAI devices, each cluster merge 
does not require a cluster key update by the security agent that 
is stepping down. Furthermore, with 50 devices in the system 
the average number of hops between two random devices is 
greater, therefore the benefit of aggregated authentication due 
to cluster merging is more pronounced (24% in Table 7 
compared to 18% in Table 6). 

D. Cluster maintenance overhead 
Due to the centralized nature of our proposed security 

mechanisms the system needs to synchronize periodically. We 
proposed using periodic cluster advertisements to announce the 
presence of the security agent. Our simulations confirm that 
the security agent transmits one cluster advertisement (without 
any extension headers) of 103 bytes at Layer 2, per cluster 
advertisement period of 5 seconds. This cluster advertisement 
is then re-broadcasted once by each cluster member. 

E. Re-keying overhead 
During the re-key phase security agents transmit 4 cluster 

advertisements with the re-key extension header (131 bytes) 
followed by 4 cluster advertisements disclosing the hash chain 
value (123 bytes) used to protect the re-key messages. This 
comes out to be 1016 bytes per security agent and each 
clustered device; since they retransmit every cluster 
advertisement they receive. With the cluster advertisement 
period of 5 seconds, re-keying takes exactly 35 seconds to 
complete. Table 8 summarizes the transmission overhead of 
updating the cluster key with 95% confidence interval.  

 TABLE 8: RE-KEY OVERHEAD 

 5 devices 20 devices 50 devices 
Overhead (KB) 4.9 ± 0.1 18.5 ± 0.3 49.7 ± 0.6 

As expected the growth is linear, since each device merely 
re-broadcasts the cluster advertisements it receives. The results 
are not exact factors of 1016 due to lost cluster advertisements 
resulting from interference and collisions. 

F. Cluster merging overhead 
This simulation is carried out by creating two identical but 

unconnected graphs, one of which then moves within the 
transmission range of the other. Three sets of results were 
obtained, for cluster merging between two clusters with 5, 20 
and 50 devices each. The results are shown below. 

TABLE 9: CLUSTER MERGING OVERHEAD 

 5 devices 20 devices 50 devices 
Duration (s) 35.9 ± 0.3 36.4 ± 0.3 37.1 ± 0.5 

Overhead (KB) 28.9 ± 2.0 99.0 ± 4.1   220.6 ± 42.5 

Once the two clusters come within transmission range the 
time taken for them to complete merging is dependant on the 
re-key period of 35s (Section E.). However, as the number of 
devices in the cluster increase, the number of hops between the 
two security agents (as well as the probability of packet loss 
over this longer path) increases. That is why as the size of the 
cluster increases we see an increase in the time needed for 
cluster merging. Furthermore, the overhead of cluster merging 
increases linearly as the devices in the cluster increase, again 
correspond to the results of Section E. 
 

VI. CONCLUSION AND FUTURE WORK 
In this paper we have validated our previously proposed 

proposals for securing Personal Network clusters. Since our 
mechanisms are based on fast symmetric cryptography they are 
applicable to the heterogeneous devices we envision in our PN. 
Moreover since most of the (energy) overhead arises from the 
transmission of extra data rather than computation costs we 
show that our design minimizes the transmission overhead of 
adding security by reducing the number of messages that need 
to be exchanged.  

For future work we plan to investigate lightweight 
mechanisms for securing communication between different 
clusters of a Personal Network. Additionally, we would like to 
explore methods to access non-personal services in a secure 
manner and to create groups of Personal Networks that can 
cooperate. 
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