

Abstract—In this paper we evaluate our previously proposed

security architecture for Personal Networks (PNs). Personal
Network is a new concept utilizing pervasive and distributed
computing to meet the needs of the user. We aim to secure
Personal Networks with lightweight security mechanisms that are
suitable for resource constrained devices yet robust enough for
self organization and secure communication. In order to study the
behavior of our proposed security mechanisms we developed a
simulation environment in NS-2. The simulations are used to
evaluate the overhead of our mechanisms and to understand the
effects of key parameters. The results show that our mechanisms
have low delay and energy requirements and are feasible for the
heterogeneous devices we envision in our PN.

Index Terms—Cluster formation, Personal Networks, Secure
communication, NS-2 simulations

I. INTRODUCTION
UTURE mobile communication systems are envisioned

to provide their users access to services anywhere and at
anytime. Personal Networks (PNs) [1] have similar
aspirations but take a very user-centric approach to solving the
challenges. They comprise a core consisting of a PAN
(Personal Area Network) which, when necessary, can be
extended to include devices and services both in the vicinity
and those at remote locations. This extension can be made
using both infrastructure based networks and wireless networks
to access the range of services available on and through these
networks, including those offered by other PANs. PNs are
composed of heterogeneous devices and are dynamic entities
due to the mobile nature of their constituents and the
spontaneous nature of their connectivity with the outside
world. Figure 1 outlines the network layer abstraction of a PN
in the QoS for PN@Home project [2]. We see personal devices
organized in the form of clusters, which are groups of personal

This work was supported by the Dutch Ministry of Economic Affairs under
the Innovation Oriented Research Program (IOP GenCom, QoS for Personal
networks @ Home) and Freeband PNP2008 project. The authors would like to
thank all members of the projects for their discussions and contributions.

devices that can communicate amongst each other without
using any non-personal devices. Clusters belonging to a user
interconnect to form his PN.

As PNs edge closer towards reality, security becomes an
important concern since any vulnerability in the system will
limit its practical use. The goal of our security architecture is to
provide users of PNs with a reliable communication platform
to access their services. In [3] we gave an overview of a
centralized architecture for securing personal clusters. We
defined a new role for a device in the cluster, that of a security
agent. In this paper we will evaluate the overhead of those
mechanisms using simulations. Since most of the (energy)
overhead arises from the transmission of extra data rather than
computation costs [4], we are particularly interested in the
transmission overhead of security.

Figure 1: Network layer abstraction of a Personal Network

Due to the heterogeneous nature of devices within the

Personal Network, our aim is to use secure but lightweight
mechanisms suitable for resource constrained devices and
wireless communication. In [3] we proposed pair-wise keys for
secure cluster formation and group keys (called cluster keys)
for securing intra-cluster communication. The cluster key is
periodically refreshed by the security agent and distributed to
all existing cluster members. It is also given to new members

Evaluating Secure Cluster Formation in
Personal Networks

A. Jehangir
University of Twente

Faculty of Electrical Engineering, Mathematics
and Computer Science

The Netherlands
jehangira@cs.utwente.nl

S. M. Heemstra de Groot
Twente Institute for Wireless and Mobile

Communication, and
Delft University of Technology

 The Netherlands
Sonia.Heemstra.de.Groot@ti-wmc.nl

F

1525-3511/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3136

by the security agent after a successful authentication.
Clustered devices append a MAC (message authentication
code) calculated using the cluster key to all cluster traffic that
they generate. As a result, any subsequent clustered device can
verify that the messages were generated by a trusted device
and not modified in transit by any un-trusted devices.

The security agent periodically broadcasts cluster
advertisements which are used by other devices to discover
the cluster. In terms of security agent functionality we defined
two new classifications of devices. Security agent capable
(SAC) devices have the capabilities to function as security
agents whereas security agent in-capable (SAI) devices do
not. SAI devices e.g. sensors are less sophisticated and
typically only useful in conjunction with other smarter devices,
when networked together as a cluster.

The aim of this work is to evaluate secure cluster formation
as originally proposed in [3]. In Section II of this paper we
summarize some other work related to securing Personal
Networks and in Section III we give an overview of the
clustering process, focusing on issues related to its
implementation in the simulator. Section IV discusses
simulation aspects of cluster merging while Section V presents
our simulation results. In Section VI we state our conclusions
and sum up remaining future work.

II. RELATED WORK
The security architecture proposed for Personal Networks in

the MAGNET project [5] provides an interesting basis for
comparison with our work. Unlike our centralized approach to
cluster formation, MAGNET devices wishing to join a cluster
require a security association with at least one neighboring
clustered device. Since communication between neighboring
devices is done using pair-wise keys, they then use the
transitivity of trust to establish individual security associations
with any neighbors with whom they do not have an existing
security association. This results in a significant overhead,
especially during device mobility. Furthermore using pair-wise
keys to secure both unicast and broadcast communication
between neighbors increases the processing overhead due to
the hop-by-hop encryption and decryption necessary for
messages traveling multiple hops. Our approach of using a
group key avoids this problem and also reduces the overhead
of key management significantly. Finally, the centralized
nature of our security architecture can be an asset since it
provides the user with a higher degree of control.

TinySec [6] is a lightweight link layer security architecture
designed for sensor networks. It aims to provide reasonable
security for devices with extreme resource constraints. It bears
similarities to our proposed mechanisms in that both use group
keys to provide message integrity, authentication and
(optionally) confidentiality. The TinySec protocol has been
well designed with respect to its energy usage, however its
applicability in Personal Networks is limited since it is not a

complete security framework e.g. it does not formulate any
mechanisms for key management.

III. CLUSTERING
Devices that are within each others transmission range, and

belong to the same PN organize themselves in the form of
clusters. The first cluster is always created when a SAC device
starts functioning as a security agent. This cluster (consisting
of just the one device) is then extended by incorporating other
devices or even other clusters.

Our PN simulation scenario is composed of SAI and SAC
devices which are derived from, and extend the functionality of
NS-2 [7] mobile nodes. SAI devices initialize into the orphan
state while SAC devices start out functioning as security agents
in a cluster that only contains them. Since SAC devices start
out as security agent they are fully initialized with a cluster
key, PN id, cluster id etc. The PN and cluster ids [3] are
needed to distinguish between traffic belonging to different
PNs and/or clusters. The PN id is configured for all PN devices
during device imprinting. During this imprinting phase the
core node, a personal device that plays the role of the
“mother” [8] creates the necessary long term security
association with all new devices. Devices in the orphan state
do not belong to any cluster and thus do not have a cluster key
or cluster id etc.

Devices in the orphan state attempt to authenticate with the
first cluster of their PN whose advertisement (i.e. with a
matching PN id) they receive. After a successful authentication
they join that cluster and their state changes to clustered. At
this point, they have received the new cluster key (and its
validity period), cluster id and cluster policy from the security
agent. The cluster policy contains information that devices
need to know in order to act appropriately.

A. Cluster Advertisements
Security agents advertise themselves periodically by

broadcasting cluster advertisements which are used by other
devices to discover the cluster. Other cluster members
rebroadcast non-duplicate advertisements, in effect
propagating them to the edges of the cluster. Figure 2
illustrates the packet format for a cluster advertisement without
any extension headers. The sequence number field is
incremented for each new cluster advertisement; it is used by
receiving devices to determine, and drop duplicates. As in IPv6
each extension header (Figures 3-5) adds optional information
to a cluster advertisement and is identified by a distinct next
header value. A cluster advertisement may carry zero, one, or
more extension headers, each identified by the next header
field of the preceding header. Cluster advertisements also
include the address of the sending security agent; it is used by
devices to authenticate with the cluster. The purposes of the
remaining fields of Figure 2 are described in Section C.

The re-key extension header (Figure 3) is used to update the
existing cluster key when it is about to expire. During cluster

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3137

merging the merge extension header (Figure 4) is used together
with the re-key extension header. This is because re-keying is a
subset of cluster merging. After the new key has been
transmitted, the security agent uses the hash disclosure
extension header (Figure 5) to disclose the hash chain value
used to calculate MAC-H on the re-key and merge extension
headers. The fields in Figures 3-5 are described in Section D.
Note that like every Layer 2 frame transmitted by clustered
devices, the Layer 2 frame containing the cluster advertisement
(with the extension headers) is also protected with a MAC
generated using the cluster key.

B. Authentication
Un-clustered devices belonging to the same PN as the

cluster whose advertisement (without any extension headers)
they receive, cache it and attempt to authenticate with the
advertising security agent. If the authentication fails the cached
cluster advertisement is discarded. On the other hand if the
authentication is successful, the cached cluster advertisement is
re-broadcasted.

Un-clustered devices ignore cluster advertisements
containing extension headers because such cluster
advertisements are an indication that the cluster key is being
updated. Device will wait for the re-key phase to complete
before authenticating with the security agent otherwise they
may receive the old cluster key. For this reason security agents

entering the re-key phase cancel ongoing authentications and
reject new authentication attempts till the re-key phase
completes.

Finally, caching the cluster advertisement during
authentication and retransmitting it afterwards reduces the total
clustering delay since all cluster-able devices can be
incorporated into the cluster after only one CA, instead of
incorporating the first hop device after the first cluster
advertisement and the second hop devices after the second CA,
etc. As a result the cluster formation overhead is much lower
than presented previously [3].

Since we would like clusters to extend with devices that are
outside the range of the security agent but within the range of
peripheral cluster members, cluster members enable IEEE
802.1X based port authentication. Therefore, clustered devices
accept authentication requests from other devices (i.e. without
a valid MAC) which are forwarded/tunneled to their security
agent for verification. These authentication requests are
typically in response to cluster advertisements previously
transmitted by the clustered devices. Since these authentication
requests cannot be authenticated before being forwarded,
clustered devices will need to limit the amount of
authentication requests that they forward in any given period in
order to guard against DoS attacks.

During authentication the security agent transfers required
cluster parameters to successful authenticators. We can not
specify the exact format of an authentication packet because
that is dependent on the EAP mechanism [10] used. Finally, all
authentications must complete within auth-timeout (Table 1)
and each EAP message (transmitted over UDP) must get a
reply within rtn-timeout (Table 1) or it is retransmitted.

C. Reducing Path Discovery Overhead
When a security agent (SA) transmits a cluster

advertisement its AODV module populates the hop count,
RREQ id and originator sequence number fields of Figure 2.
These fields have the same functionality as their namesakes in
an AODV RREQ packet and are used by forwarding devices to
create temporary routing table entries to store reverse paths
towards the SA.

When a device receives a cluster advertisement from its
security agent that has not been processed before, it updates the
hop count value and searches for a reverse route to the security
agent in its routing table. Depending on the result, the route is
either created or updated using standard AODV behavior e.g.
the lifetime of the reverse route entry is set using default
parameters. The cluster advertisement is then processed by the
device and re-broadcasted. Consequently, when the ensuing
authentication requests need to be forwarded to the SA, the
complete path to the security agent already exists and does not
need to be discovered. The forward path to the authenticator is
created when its first authentication packet travels to the SA.

The authenticator adds the following three fields to the first
authentication packet that it sends to the security agent; hop
count, destination sequence number and path lifetime. As

Figure 3: Re-Key extension header.

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Addr Security Agent

Sequence Number Next Header Hop Count1
2
3
4 RREQ ID

Originator Sequence Number

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Disclosed Hash Chain Value

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

New Security Agent

New Sequence Number Next Header Length

MAC-H

Figure 2: Cluster Advertisement header.

Figure 4: Merge extension header.

Figure 5: Hash disclosure extension header.

(Variable Length)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

New Cluster Key
(Variable Length)

Update Sequence Number Next Header Length

Key Validity
MAC-H

New Cluster Policy
(Variable Length)

Reserved Next Header Length

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3138

intermediate devices forward the returning authentication
packets to the security agent, they use the information existing
in the packet to create/update the forward route to the
authenticator. The processing of the fields is the same as that
of an AODV RREP packet. We can think of cluster
advertisements like AODV RREQ packets that are
disseminated in the entire network, and the resulting
authentication packets as the AODV RREP packets that are
unicasted back to the SA.

For this optimization, we only use a subset of AODV
features that allow intermediate devices to create the
freshest/shortest route to the SA. Since the cluster
advertisement is not meant for any specific device it does not
use all the fields of a typical AODV RREQ packet, such as the
destination address and destination sequence number etc.
Also, further features of the AODV implementation such as the
expanding ring and exponential back off etc. are not necessary
since we need network-wise dissemination of cluster
advertisements and because the security agent does not wait for
any reply to its advertisement. Lastly, since these optimizations
are derived from the AODV implementation in NS-2 they
require using AODV as the ad-hoc routing algorithm for the
simulations.

D. Updating the Cluster Key
Updating the cluster key (or re-keying) is necessary when

the current cluster key is about to expire, or when one cluster
has to update its key to that of another cluster during cluster
merging. Cluster merging is the process whereby two clusters
of the same PN (within each others transmission range) merge
to form one cluster. Our re-key mechanism has two goals. The
first goal is to ensure a reliable distribution of re-key messages
to all cluster members. The second goal is to enable cluster
members to verify the source of these messages. Figure 6
illustrates our proposed re-key mechanism where re-keying
starts with the cluster advertisement (including the re-key
extension header) of sequence number x.

Figure 6: Re-key mechanism.

In order to ensure the reliable delivery of re-key information
it is sent within i consecutive cluster advertisements, where
the redundancy factor i is defined as the number of sequential
cluster advertisements that are missed by a device before it
believes it has lost connectivity with the security agent. A
larger redundancy factor increases the reliability of message
dissemination, but conversely costs more in terms of
transmission overhead and delay. In Section V we will use our

simulation results to justify a value for i.
The re-key extension header (Figure 3) sent in the re-key

phase holds the new cluster key encrypted using the existing
cluster key, the key validity period of the new key and the
update sequence number. The update sequence number field of
the re-key message holds the value of the sequence number of
the cluster advertisement (illustrated in Figure 6) which signals
the switch over to the new key. Additionally, the fields of
Figure 4 contain information that merging devices need to
know in order to become part of the new cluster.

The re-key extension header is protected using MAC-H
generated using a secret key (hash chain value) which will be
disclosed by the security agent during the hash disclosure
phase. Therefore device buffer re-key messages till hash chain
value corresponding to that round of re-keying is released.
Using the property of a hash chain, the disclosed hash chain
value (Figure 5) is then authenticated by verifying it against
the hash chain value used in the last round of re-keying (also
given to new cluster members by the security agent when they
join the cluster).

For a device to re-key successfully it should receive at least
one copy of the re-key message and one copy of the hash
disclosure message. Thus, as per our earlier definition of i, any
device that is a member of the cluster should be able to re-key
successfully. If an SAI device fails to re-key, it will eventually
go back to the orphan state, while an SAC device will re-
initialize to form a new cluster.

IV. CLUSTER MERGING
PN devices forward all authenticated traffic from fellow

cluster members, and drop all un-authenticated traffic from
external devices except authentication requests and cluster
advertisements. In Section III.B we explained that
authentication requests are forwarded by cluster members to
their security agents for verification. Similarly, cluster
advertisements belonging to another cluster of the same PN i.e.
with a similar PN id but different cluster ids, are also
forwarded to the security agent of the cluster. The security
agent will then attempt to authenticate with its advertising
counter part, in order to merge the two clusters. Such a
mechanism is necessary for clusters to be able to merge when
their periphery overlaps and not only when the transmission
range of the two security agents overlaps. Since clusters
belonging to different PNs can not merge, clustered devices
drop advertisements of other PNs.

A. Forwarding Un-authenticated Cluster Advertisements
As cluster advertisements from one cluster can not be

authenticated by forwarding devices of another cluster, it is
conceivable that an attacker would generate false cluster
advertisements with the same cluster id in order to launch a
DoS attack. Devices can limit the effect of such an attack by
controlling the rate at which they forward unauthenticated

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3139

advertisements. Furthermore, intermediate devices do not
forward multiple copies of the same cluster advertisement
(received from multiple sources) to their security agent.

B. Authentication between Security Agents
Security agents are able to authenticate with multiple SAI

devices at the same time, but only with one other security
agent at a time. This is because authenticating with another
security agent may result in cluster merging. After a successful
authentication the security agent with the lower weight (a
dynamic value representing the feasibility of a device to be a
security agent) will yield to the other. However the security
agent with the lower weight will only yield if the cluster key of
the other cluster is valid for more than 6 * i * cluster
advertisement period. This is because one re-key process
always takes less than 3 * i * cluster advertisement period
(Figure 6) and the new cluster key should be valid long enough
for the merging security agent to update its own cluster key
and for the newly merged devices to be able to receive any re-
key packets of their new cluster. Predictably, security agents in
the merging state reject any authentication attempts.

V. SIMULATIONS
The objective of our simulations is to (a) understand the

effects of certain parameters on system performance and (b)
get quantifiable values for the overhead of our proposals. For
(a) we carry out simulations to study the effect of the
redundancy factor i on the behavior of our system. For (b)
will look at the cost of the following mechanisms: cluster
formation with one or more SAC devices, control traffic for
cluster maintenance, cluster key updates and cluster merging.

The NS-2 simulation script is used to create PN devices and
initialize their parameters such as the device type, initial
position, movement scenario and the PN id. Only devices with
the same PN id can organize themselves to form a cluster. SAC
devices must also be assigned a static weight, which is used
during cluster merging.

We simulate a CSMA/CD (802.11b) wireless ad-hoc
network with the wireless mobility extensions of NS-2.29. The
network size is 50m x 50m and the transmission range of each
device is 10m. For each simulation we use graphs with 5, 20
and 50 devices in order to cover a wider range of possible
scenarios. For each of the three scenarios we generate 30
connected graphs with random device positions. Additionally,
the simulation for each of the 30 graphs is performed 3 times
using a random seed, for a total of 90 simulation runs per
scenario. The overhead of our proposed mechanisms in each
simulation is judged by the average time and total
transmissions at Layer 2 required to organize the cluster. This
gives a quantitative idea of the cost, in terms of delay and
energy consumption.

A. Background Traffic
Our background traffic is audio and video streaming,

something which we believe is typical for a PNs. Since the
amount of background traffic has a significant effect on the
optimal value of the redundancy factor, we simulate three
types of background traffic: low, medium and high. Low
background traffic corresponds to 128kbps, 44.1MHz MP3
audio streaming. We assume that each payload contains 3 MP3
packets of 417 bytes each, for a total of 1251 bytes. We use a
CBR (Constant Bit Rate) traffic generator with a packet
interval of 80ms. Medium traffic corresponds to low traffic
plus an MPEG2 video stream of 256 kbps. The payload size is
1024 bytes and the CBR traffic generator has a packet interval
of 32ms. High traffic corresponds to low traffic plus an
MPEG2 video stream of 512 kbps. Besides packet loss due to
collisions we can also have packet loss due to interference.
Therefore devices in the system are assigned a packet error rate
of 2% for all incoming traffic.

All background traffic is generated by foreign devices.
Foreign devices do not belong to the PN so their traffic only
competes with clustered traffic for contention of the
transmission medium. Using clustered devices to generate
background traffic is not ideal because they can only
communicate after the cluster has formed, so the effect of
background traffic on cluster (re)formation is limited. Foreign
devices are placed equally spaced in a grid, the sender for each
stream of the background traffic is chosen randomly from the
bottom row and receiver from the top, thus ensuring that the
background traffic traverses the network.

B. Choosing the right redundancy factor
Table 1 shows the values of the parameters used in the

simulations. Authentication between devices is simulated by
successfully exchanging four authentication packets in each
direction, within the auth-timeout period. The parameter which
has the largest effect on performance is the value of the
redundancy factor i. As explained earlier we use redundant
transmissions to ensure a reliable distribution of broadcasted
cluster advertisements and re-key messages.

TABLE 1: DEFAULT VALUES OF SIMULATION PARAMETERS

Parameter Value Parameter Value
cluster advert

pkt size
40 bytes cluster

advert period
5s

Re-key ext. hdr 28 bytes i 4
Merge ext. hdr 28 bytes Key timeout 600s
Hash ext. hdr 20 bytes auth-timeout 15s
Auth pkt size 534 bytes rtn-timeout 3s

For simulations with one re-keying phase, Tables 2 through 4
show the average number of devices that are unable to re-key
successfully due to lost re-key messages. Next to each value in
the table (in brackets) is its standard deviation.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3140

TABLE 2: LOST RE-KEY MESSAGES WITH LIGHT BACKGROUND TRAFFIC

of Devices i = 1 i = 2 i = 3 i = 4
5 0.19 (0.71) 0 (0) 0 (0) 0 (0)

20 1.09 (3.19) 0.1 (0.94) 0 (0) 0 (0)
50 0.93 (2.61) 0 (0) 0 (0) 0 (0)

TABLE 3: LOST RE-KEY MESSAGES WITH MEDIUM BACKGROUND TRAFFIC

of Devices i = 1 i = 2 i = 3 i = 4
5 0.57 (1.16) 0.04 (0.29) 0 (0) 0 (0)

20 3.72 (5.64) 0.34 (1.54) 0.27 (1.55) 0 (0)
50 4.54 (10.4) 0.99 (4.61) 0.06 (0.52) 0 (0)

TABLE 4: LOST RE-KEY MESSAGES WITH HEAVY BACKGROUND TRAFFIC

of Devices i = 1 i = 2 i = 3 i = 4
5 0.88 (1.48) 0.14 (0.55) 0 (0) 0 (0)

20 6.73 (6.85) 3.19 (5.11) 0.89 (2.66) 0 (0)
50 8.24 (13.5) 3.00 (9.06) 1.11 (4.11) 0 (0)

As expected, with low background traffic there is less
contention for the transmission medium and a lower
redundancy factor is sufficient to ensure reliable delivery.
However, there are opposing effects as the devices in the
system increase. On the one hand there is more contention in
the system but on the other a higher device density means more
redundancy. It is interesting too see that with light background
traffic a cluster with 20 devices actually has slightly more re-
key failures than that with 50 devices. This can be explained
by the fact that with 20 devices spread over the same area as
50, there are fewer duplicate paths between a device and its
security agent. So if one device fails to re-key it affects other
devices that can only be reached through it. The relatively
high standard deviation in the results of Tables 2-4 is because
although most simulations have zero or one re-key failures,
others in which a group of devices has connectivity through
one device, have significantly more. To conclude, since we
would like re-key failures to be probabilistically insignificant
while keeping the overhead as low as possible, we choose i =
4 as the value of the redundancy factor for all further
simulations. Furthermore, since the amount of background
traffic has a smaller effect on our remaining simulations, we
only use medium traffic for the remainder of the simulations.

C. Cluster formation overhead
We simulate cluster formation with one and with potentially

five SAC devices. Table 5 shows the average cluster formation
overhead with 95% confidence interval for a cluster with 5
devices. The overhead field measures the average sum of
Layer 2 transmission by all PN devices to create the cluster.

TABLE 5: CLUSTER FORMATION OVERHEAD FOR 5 DEVICES

 1 SAC, 4 SAI devices 5 SAC devices
Duration (s) 2.1 ± 0.5 51.4 ± 3.9

Overhead (KB) 42.9 ± 2.3 50.2 ± 2.7

When there is only one SAC device in the system, the cluster
is formed rather quickly. After the security agent advertises
itself, all devices within the first hop range authenticate (in

parallel). As soon as they have authenticated, they retransmit
the cached cluster advertisement allowing devices which are
two hops away from the security agent to authenticate, and so
on. With 5 SAC devices, each device starts out being a security
agent. Therefore each authentication can potentially result in
cluster merging depending on if the security agent that is
stepping down after merging has any clustered devices. If the
security agent that is stepping down has not authenticated any
devices to be part of its cluster, then it skips the cluster re-key
process and the merge is instantaneous. The slight increase in
the overhead between the two scenarios is the result of rejected
authentication attempts, which need to be repeated. Some
authentication attempts are initially rejected because a security
agent can only authenticate with one security agent at a time.
Table 6 shows the average cluster formation overhead with
95% confidence interval for a cluster with 20 devices.

TABLE 6: CLUSTER FORMATION OVERHEAD FOR 20 DEVICES

 1 SAC, 19 SAI devices 5 SAC, 15 SAI devices
Duration (s) 6.5 ± 0.8 81.8 ± 5.0

Overhead (KB) 450.1 ± 21.7 367.4 ± 20.2

As expected, with 1 SAC device the time taken for 19
devices to authenticate is more than that for 4 devices (Table
5). This is because a larger number of devices increase the
probability of having a device more hops away. Generally
devices within the first hop will authenticate first (then
retransmit the cached cluster advertisement), next the devices
within the second hop and so on. Similarly with the increase in
the number of authentications and the more hops they need to
traverse to get to the security agent, the total number of bytes
transmitted increases non-linearly.

From Table 6 we can see that although the time taken for
cluster formation with multiple SAC devices is larger due
delay resulting from cluster merging, the transmission
overhead is actually lower. This is because although the total
number of authentications in the system remains the same, the
number of hops between the authenticating device and the
security agent it is authenticating with is actually reduced.
Devices authenticate with the first security agents whose
advertisement they receive, often this is the closest one in
terms of the number of hops. As clusters grow, they overlap
and merge after the two security agents authenticate each
other. In this way instead of multiple devices authenticating
with the security agents over several hops, there is only one
aggregated authentication. This effect is more pronounced
here when compared with simulations of 5 devices because of
the increased number of hops in the system. Table 7 shows the
average cluster formation overhead with 95% confidence
interval for a cluster with 50 devices.

 TABLE 7: CLUSTER FORMATION OVERHEAD FOR 50 DEVICES

 1 SAC, 49 SAI devices 5 SAC, 45 SAI devices
Duration (s) 11.1 ± 1.0 82.1 ± 4.0

Overhead (KB) 1440 ± 83 1099 ± 64

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3141

With simulations of 20 and 50 devices, the time needed to
complete cluster formation with multiple SAC devices is larger
than the simulation of 5 devices. This is because in the later
simulation as there are no SAI devices, each cluster merge
does not require a cluster key update by the security agent that
is stepping down. Furthermore, with 50 devices in the system
the average number of hops between two random devices is
greater, therefore the benefit of aggregated authentication due
to cluster merging is more pronounced (24% in Table 7
compared to 18% in Table 6).

D. Cluster maintenance overhead
Due to the centralized nature of our proposed security

mechanisms the system needs to synchronize periodically. We
proposed using periodic cluster advertisements to announce the
presence of the security agent. Our simulations confirm that
the security agent transmits one cluster advertisement (without
any extension headers) of 103 bytes at Layer 2, per cluster
advertisement period of 5 seconds. This cluster advertisement
is then re-broadcasted once by each cluster member.

E. Re-keying overhead
During the re-key phase security agents transmit 4 cluster

advertisements with the re-key extension header (131 bytes)
followed by 4 cluster advertisements disclosing the hash chain
value (123 bytes) used to protect the re-key messages. This
comes out to be 1016 bytes per security agent and each
clustered device; since they retransmit every cluster
advertisement they receive. With the cluster advertisement
period of 5 seconds, re-keying takes exactly 35 seconds to
complete. Table 8 summarizes the transmission overhead of
updating the cluster key with 95% confidence interval.

 TABLE 8: RE-KEY OVERHEAD

 5 devices 20 devices 50 devices
Overhead (KB) 4.9 ± 0.1 18.5 ± 0.3 49.7 ± 0.6

As expected the growth is linear, since each device merely
re-broadcasts the cluster advertisements it receives. The results
are not exact factors of 1016 due to lost cluster advertisements
resulting from interference and collisions.

F. Cluster merging overhead
This simulation is carried out by creating two identical but

unconnected graphs, one of which then moves within the
transmission range of the other. Three sets of results were
obtained, for cluster merging between two clusters with 5, 20
and 50 devices each. The results are shown below.

TABLE 9: CLUSTER MERGING OVERHEAD

 5 devices 20 devices 50 devices
Duration (s) 35.9 ± 0.3 36.4 ± 0.3 37.1 ± 0.5

Overhead (KB) 28.9 ± 2.0 99.0 ± 4.1 220.6 ± 42.5

Once the two clusters come within transmission range the
time taken for them to complete merging is dependant on the
re-key period of 35s (Section E.). However, as the number of
devices in the cluster increase, the number of hops between the
two security agents (as well as the probability of packet loss
over this longer path) increases. That is why as the size of the
cluster increases we see an increase in the time needed for
cluster merging. Furthermore, the overhead of cluster merging
increases linearly as the devices in the cluster increase, again
correspond to the results of Section E.

VI. CONCLUSION AND FUTURE WORK
In this paper we have validated our previously proposed

proposals for securing Personal Network clusters. Since our
mechanisms are based on fast symmetric cryptography they are
applicable to the heterogeneous devices we envision in our PN.
Moreover since most of the (energy) overhead arises from the
transmission of extra data rather than computation costs we
show that our design minimizes the transmission overhead of
adding security by reducing the number of messages that need
to be exchanged.

For future work we plan to investigate lightweight
mechanisms for securing communication between different
clusters of a Personal Network. Additionally, we would like to
explore methods to access non-personal services in a secure
manner and to create groups of Personal Networks that can
cooperate.

REFERENCES
[1] I. G. Niemegeers and S. M. Heemstra de Groot, “Research issues in ad-

hoc distributed personal networking”, Wireless Personal
Communications, vol. 26, no. 2-3, pp. 149–167, August 2003.

[2] QoS for Personal Networks at Home, http://qos4pn.irctr.tudelft.nl/
[3] A. Jehangir, S. M. Heemstra de Groot, "A Security Architecture for

Personal Networks", First International Workshop on Personalized
Networks (PerNets 2006), San Jose, California, USA, July, 2006.

[4] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar. “SPINS:
Security protocols for sensor networks”, The Seventh Annual
International Conference on Mobile Computing and Networking
(MobiCom 2001), Rome, Italy, July 2001.

[5] MAGNET, http://www.telecom.ntua.gr/magnet/objectives.html
[6] C. Karlof, N. Sastry and D. Wagner, “TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks”, The Second ACM
Conference on Embedded Networked Sensor Systems (SenSys 2004),
Baltimore, Maryland, USA, November 2004.

[7] Network Simulator: NS-2, http://www.isi.edu/nsnam/ns
[8] F. Stajano and R. Anderson, "The resurrecting duckling: Security issues

for ad-hoc wireless networks", 7th International Workshop on Security
Protocols, April 1999.

[9] A. Jehangir, S. M. Heemstra de Groot, "Securing Personal Network
Clusters", In submission.

[10] Extensible Authentication Protocol, http://www.ietf.org/rfc/rfc3748.txt

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings.

3142

