
Ontology Based Model Transformation Infrastructure

Arda Goknil1, N. Yasemin Topaloglu2

 Department of Computer Engineering, Ege University, Izmir, Turkey,
1goknil@staff.ege.edu.tr

2yasemin@bornova.ege.edu.tr

Abstract. Using MDA in ontology development has been investigated in sev-
eral works recently. The mappings and transformations between the UML con-
structs and the OWL elements to develop ontologies are the main concern of
these research projects. We propose another approach in order to achieve the
collaboration between MDA and ontology technologies. We propose an ontol-
ogy based model transformation infrastructure to transform application models
by using query statements, transformation rules and models defined as ontolo-
gies in OWL. Using this approach in model transformation infrastructure will
enable us to use semantic web and ontology facilities in model driven architec-
ture. This paper will discuss how these two technologies come together to pro-
vide automatization in model transformations.

1 Introduction

Model Driven Architecture (MDA) is a recent approach that has been introduced by
OMG [10]. MDA considers model generation as the core activity of software devel-
opment and specifically, it aims to accomplish software development through
generating Platform Independent Models (PIMs) and mappings these models to Plat-
form Specific Models (PSMs). The main idea behind this is to enable software
developers to work in a higher abstraction layer than the code level. As a conse-
quence, models become the primary artifacts of software development [8]. To define
mappings between models, model transformation, which takes one or more source
models as input and produces one or more models as output, according to a set of
transformation rules is needed.

An ontology is a formal explicit description of concepts in a domain of discourse,
properties of each concept describing various features and attributes of the concept,
and restrictions of slots [9]. Web Ontology Language (OWL) is a technology for
ontology development and knowledge representation in Semantic Web [2]. OWL
defines and instantiates Web ontologies. Recent works discuss that UML [12] could
be a key technology for the ontology development bottleneck [1] [5] [6]. A number of
partial solutions are currently available as a result of these works and Object Model-
ing Group (OMG) initialized a working group to create Ontology Definition Meta-
model (ODM) to define M2 level UML-ontology-OWL transformation [13]. Alterna-
tively to the established views, we propose another approach for the collaboration
between MDA and OWL. While recent works discuss the contributions of MDA to

ontology development, we discuss the possible contributions of ontologies to MDA.
We propose an ontology based model transformation infrastructure to transform ap-
plication models by using query statements, transformation rules and models defined
as ontologies in OWL.

In this paper, we discuss our ontology based model transformation approach and
define the ontologies for model transformations within the context of MDA. We base
our proposal on the idea that the current technologies for model transformations are
not enough for interoperability of the model queries and transformation rules. The
recent popular technologies to identify transformation rules are XMI and XSLT [15].

The paper is organized as follows. In Section 2, we discuss the general characteris-
tics and underlying concepts of the ontology based model transformations. In Section
3, we introduce our approach and define the ontologies for model transformation
infrastructure. Section 4 includes the conclusions.

2 Overview of Ontology Based Model Transformations

2.1 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a technology to provide a standard language for
the representation of ontologies on the web. OWL is a result of the ongoing process
of defining a standard ontology web language. It is an extension of Resource Descrip-
tion Framework (RDF) [17]. OWL provides a rich set of vocabulary to catch all the
relationships between classes and properties. An OWL document can include an
optional ontology header and any number of class, property, and individual descrip-
tions or axioms.

A Class identifier describes a named class in OWL ontology. For instance,
“<owl:Class rdf:ID=”Student”>” defines a class “Student” which is an instance of
“owl:Class”. In the ontology, many individuals can be instantiated from the defined
classes. Individuals are instances of classes, and properties may be used to relate one
individual to another. These properties can be used to state relationships between
individuals or from individuals to data values. For instance, an individual named Olca
may be described as an instance of the class Student and the property hasStudent may
be used to relate the individual Olca to the individual EgeUniversity which is derived
from the class University. There are two kinds of properties defined in OWL: object
property which relates individuals to individuals, and datatype property which relates
individuals to data values. Similar to object-oriented programming, class hierarchies
may be created by using one or more statements which shows that a class is a
subclass of another class [2]. For instance, the class UniversityStudent is the subclass
of the class Student. OWL allows restrictions to be placed on how properties can be
used by instances of a class. This restriction mechanism in OWL provides to define
constraints, which can not be specified in UML or other modeling techniques.

2.2 General Concepts of the Model Transformation Ontology

Model transformation is the core activity in MDA to generate new models or to
change the existing models. A model transformation takes one or more source models
as input and produces one or more models as output according to a set of transforma-
tion rules. The metamodeling technique is used to define these models and transfor-
mation rules [14]. A metamodel describes models by defining the meta entities and
the relationships among these entities together with the semantics of these relation-
ships. The meta class instances of the metamodel define the models and transforma-
tion rules generated from the metamodel. Extensible languages like XML Metadata
Interchange (XMI) and Extensible Stylesheet Language Transformations (XSLT) can
be used to encode models and transformation rules with meta class instances [3][15]
[16].

XMI allows us encoding models in sets of XML tags to make them tool independ-
ent and interoperable. XSLT is another technology that enables to work on XML
documents for model transformations. Though XMI and XSLT have reached wide
usage, the interoperability and extendibility they provide are not sufficient. XMI is
designed for interoperability among different case tools and it provides mechanisms
for the exchange of UML models but it is not suitable for more structural interopera-
bility.

The three main components of MOF 2.0 Query/Views/Transformations RFP [11]
should be considered in the definition of model transformation ontology. The QVT
RFP is issued by the Object Management Group (OMG) and seeks a standard solu-
tion for model manipulation. The three main subjects of model transformation defined
by QVT [11]:

• Queries take a model as input, and selects specific elements from that model.
• Views are models that are derived from other models.
• Transformations take a model as input and update it or create a new model.

In our work, these three parts are defined as ontological. Defining queries and
transformation in an ontology format will enable us to specify the structure of how
meta entities and the relations between them are kept. Also queries defined in differ-
ent transformation architectures will understand each other with the help of ontologi-
cal approaches. To define instances from classes in XMI, you must define the meta
classes in the same document. But in OWL, all instance queries reference a shared
query ontology for the definitions of meta classes to define instances. The ontologies
of these parts are defined as OWL documents. The definition in the OWL document
provides a meta model for model transformations. For every instance transformation,
instance ontologies can be derived from the meta ontologies.

3 Modeling the Transformation Components As Ontologies

As mentioned in QVT [11], the transformation infrastructure is constituted of three
main structures as query, view and transformation. In our approach, we propose to
model the meta entities and instances of these structures as ontologies.

3.1 Querying Application Models With Ontological Structures

Queries take a model as input, and select specific elements from that model. The aim
is to detect the specific source and target patterns in application models. For that
reason, different query languages have the same meta structures like selection and
condition. These main structures are the basis of the query ontology.

Two different ontology documents are needed to query an application model. The
first ontology document includes the meta classes of the query meta model. This meta
model defines the main entities and the possible associations of these entities. The
second document contains the instance query. The instance query selects the specific
elements in the application document, and it is derived from the meta entities which
are defined in the first query ontology. Figure-1 shows the relationship between the
instance query ontology, meta query ontology, application model and the engine that
process the query on the application model. Query.rdf includes the meta classes
which constitute the meta model of model queries. These meta classes are the main
selection elements like Select, Where, And, Or, Not. They associate the model ele-
ments to constitute the source and target patterns. InstanceQuery.rdf includes the
instances of the classes in Query.rdf to define an executable query for an application
model. Query.rdf is a kind of schema for query instances and defines the possible
queries with its constructs.

Query.rdfInstanceQuery.rdf

transforms

imports

input

Engine Application
Figure-1. Deriving Query Instances from Query.rdf.

We propose a simple query language whose meta-model is shown in Figure-21.

The elements of this meta model constitute the structures in Query.rdf. The Query
class in Figure-2 defines the query which is composed of two parts as Where and
Select. The Select class associates with model elements which are derived after query

1 Instead of showing the OWL document, we model our ontology definition by using UML

class diagrams because of the space limitation in this paper.

processing. The Where class defines the condition in the query and is composed of
the Boolean terms (And, Or, Not), model elements and query references.

Query

+ name

Where

Select

ModelElement

QueryRef

+ name

BooleanTerm

And Or Not

1

1

0..1

1

0..1

0..1

0..1

0..1

1..*

1

1..*

1
1..*

1

0..*

0..1

0..20..2

0..1

0..*

0..1

0..2

0..2
0..1

Figure-2. The Meta Classes in Query.rdf.

The QueryRef denotes other queries that are referenced in the Where term of the

query. This enables us to use queries as recursive functions. The main difference
between the QueryRef and the Query classes is that the QueryRef class is only a refer-
ence and does not contain the selection and the condition terms in the ontology where
it is used. It defines the parameters which the Query it references uses in its own
ontology. The Boolean terms include the model definitions as the conditions on the
application model. The Where class may have these three classes in different combi-
nations. The query ontology can limit the possible combinations that can be obtained
from the meta model. The restrictions in the aggregation mechanism of the Where
class and its collaborators can be defined in OWL as shown below:

<owl:Restriction>
 <owl:onProperty rdf:resource=”#hasDefiniton”>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf>
 <owl:Class rdf:about=”#QueryRef”>
 <owl:Class rdf:about=”#BooleanTerm”>
 <owl:Class rdf:about=”#ModelElement”>
 </owl:unionOf>
 </owl:Class>

 </owl:allValuesFrom>
 </owl:onProperty>
</owl:Restriction>

<owl:Restriction>
 <owl:onProperty rdf:resource="#hasDefinition"/>
 <owl:cardinality
rdf:datatype=”http://www.w3.org/2001/XMLSchema#nonNegativeInt

eger”>1</owl:cardinality>
</owl:Restriction>

The property named hasDefinition defines the aggregation between the Where

class and its collaborators, the BooleanTerm class, the ModelElement class and the
QueryRef class. The first restriction defines that the Where class may have the Que-
ryRef, the BooleanTerm and the ModelElement classes but with the second restriction
it may have only one of them at once. The restriction mechanism in OWL provides to
define constraints, which can not be specified in UML or other modeling techniques,
for meta classes of our query model.

In Figure-2, we show the main classes that the query ontology must have. We can
extend this ontology with additional structures for more complex model queries. For
instance, there may be a set of same elements after the query processing. The query
result set may have a model including a class associated with a set of same elements.
To handle the set of model elements with iterations, there may be a container class to
keep model elements as a set. A query which selects a class with a public attribute
may return more than one public attribute of the class. We can handle the set of pub-
lic attributes in the class in a set structure. Without a set structure, the query only
matches the class with one public attribute at once. This set structure enables us to
match one class with the set of its public attributes all at once.

 Defining query models as ontologies allows us to extend this query meta model.
The InstanceQuery ontologies are derived from Query.rdf for every model query like
in Figure-1. In our work, InstanceQuery.rdf provides a query definition matching
UML classes and their attributes, both owned by the class, and all of its superclasses.
The query [4] shown below is an example of this.

QUERY hasAttr(C, A)
SELECT Class C, Attribute A, Class C2
WHERE A.owner=C OR (C.super=C2 AND hasAttr(C2, A))

It is possible for ontologies to be treated as reusable modules and imported into

different documents. An OWL document may contain an individual of class defined
in another ontology, which contains meta-data about that document itself. In our
example, the InstanceQuery defining the hasAttr query imports Query.rdf to create
individuals from the meta classes as shown below:

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="Query.rdf"/>
</owl:Ontology>

Every individual created in the QueryInstance references the class defined in the
Query ontology. In our case, the Where individual has an Or individual. This Or
individual has two properties named the left-hand side and the right-hand side. The
left-hand side has a clause which defines (A.owner=C) and the right-hand side has an
And individual. The And individual has (C.super=C2) clause in the left-hand side and
a QueryRef referencing the hasAttr query with the parameters as Class C2, and At-
tribute A. Figure-3 shows this condition structure. In the ontology, we define
(A.owner=C) clause with Class C which has Attribute A. Every model element used
in the query is defined and is aggregated by the Query individual. We use their refer-
ences while defining the clauses in the conditions. It means that the reference of the
Class C has the reference of the Attribute A. The reference mechanism allows us to
define conditions on model elements by using temporary clauses. The model elements
defined inside the query are accessed through their references while the conditions
are defined.

 Where

Or

has

And(A.owner=C)

left hand-side right hand-side

left hand-side right hand-side

(C.super=C2) hasAttr(C2,A)
Figure-3. The Structure of the Condition Statement in the Instance Ontology.

3.2 Transforming Application Models With Ontological Structures

Transformations take a model as input and update it or create a new model. The sub-
mission for MOF 2.0 QVT RFP [11] split queries, views and transformations into two
distinct groups. Queries and transformations may possibly create views, but views
themselves are passive [11]. In our work, we consider that a transformation includes
both queries and transformation operations. While queries select specific elements
from the application model, transformation operations are applied to these selected
model elements to transform the application model. The meta transformation ontol-
ogy includes both the meta classes of transformation operations and queries. It can be
considered that the transformation ontology is an extended query ontology to support
the transformation operations.

The relationship between transformation ontology and transformations is similar to
the relationship between meta ontology and instance ontology of queries that are
discussed in Section 3.1. Transformation.rdf includes the meta classes which consti-

tute the meta model of transformations and the instances in instance transformations
are derived from these meta classes. Transformation.rdf is a kind of schema for trans-
formation instances and defines the possible transformations with its constructs. Fig-
ure-4 shows the structures in our transformation ontology as a UML diagram.

Transformation

+ name

Where

Select

ModelElement

QueryRef

+ name

BooleanTerm

And Or Not

1

1

0..1

1

0..1

0..1

0..1

0..1

1..*

1

1..*

1
1..*

1

0..*

0..1

0..20..20..1

0..*

0..1

TOperation

Add Update Delete

*

1

1

1

TransformationRef

+ name
- Extends

- Superceeds

*1

0..2

0..2
0..1

Figure-4. The Meta Classes in Transformation.rdf.

The Transformation class in Figure-4 defines the transformation itself. It has the

Select and the Where classes like the Query class in Query.rdf because the transfor-
mation includes both model queries and transformation operations inside. The Where
class is associated with the QueryRef class because a query instance can be referenced
in the query condition of the transformation ontology. The query structures in Trans-
formation.rdf and Query.rdf are the same. Transformations may be related to other
transformations. [4] defines two ways for this relation: Extends and Supersedes. The
associations between the Transformation and the TransformationRef classes in our
ontology denote this relationship. Here, we have the OWL extensibility facilities to
support other possible transformation relations in our ontology. Other possible rela-
tions between transformations can also be added to the transformation ontology in
different approaches. The TOperation class and its sub-classes encapsulate the trans-
formation operations on application models. The sub-classes of the TOperation class
in our ontology are the Add, the Update and the Delete classes. We use them in our
ontology to define the simplest operations. They are also the atomic operations and
operate on meta class instances. In different and more complicated transformation

approaches, more abstract and high-level classes may be used to define transforma-
tion operations.

Below, we give an example for a transformation definition which converts a public
attribute from a given class to private and also creates the getter operation:

Transformation makingAttributePrivate(C, A)
SELECT Class C, Attribute A
WHERE (A.owner=C) AND (A.visibility=”Private”)
MAKE A.visibility=”Private”
 Define getMet = new Operation()
 getMet.name=”getAttr”
 getMet.owner=C

The Make part after model query in the transformation defines the transformation

operations on the application model. The first operation is making the visibility of
Attribute A private. It is an update operation denoted by the individual derived from
the Update class in the ontology. The second step in the transformation is creating a
get method in Class C. An individual derived from the Add class does the creation of
the get method named getAttr in Class C.

The third component of model transformations is views. Views are models that are
derived from other models. Application models can also be defined in OWL instead
of XMI where Case tools export and import the application models.

4 Conclusion

In this paper, we proposed an ontology based model transformation infrastructure.
Ontologies provide a shared and common understanding of a domain. We consider
the domain as model transformation in the context of model transformation languages
and model the main constructs of model transformations. It enables us to extend our
ontologies for future constructs of model transformations and allows communication
of rules across applications. We used OWL in the definition of our ontologies be-
cause it is executable and is supported by tools. The restriction mechanism in OWL
allows defining constraints about the instance models derived from meta models.
OWL which provides to define assertions for UML has a precise semantics and is
compared with Object Constraint Language (OCL) [18]. Some programmatic envi-
ronments [7] include OWL APIs. These environments provide persistent storage,
reading and writing OWL documents. Using OWL in model transformation infra-
structure allows us to use the current semantic technologies to constitute the trans-
formation engines. Loading and compiling the parts of model transformation are
processed by the help of current ontology APIs.

 Our aim is to investigate the possible contributions of ontologies to MDA and an
ontology based model transformation infrastructure. We think that ontologies will
play an important role in the development of MDA. In our future work, we will ex-
tend our transformation ontology with the constructs that support new transformation
domains.

References

1. Backlawski, K. et al: Extending the Unified Modeling Language for Ontology De-
velopment. Int. J. Software and Systems Modeling, Vol.1, No.2 (2002) 142-156

2. Dean, M., Schreiber, G. (eds): OWL Web Ontology Language Reference W3C Rec-
ommendation, Feb 10, 2004, http://www.w3.org/TR/owl-ref/

3. Demuth, B., Obermaier, S.: Experiements with XMI Based Transformations of Soft-
ware Models. WITUML’01, Genova Italy, April (2001)

4. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model Transformation:
A declarative, reusable patterns approach. In Proceedings EDOC 2003, pp 174-185

5. Falkovych, K., Sabou, M., Stuckenschmidth, H.: UML for The Semantic Web:
Transformation-Based Approaches. In Knowledge Transformation in Semantic Web,
IOS Press, Vol.95 (2003), pp 92-106

6. Gasevic, D., Djuric, D., Devedzic, V., Damjanovic, V.: Approaching OWL to MDA
Through Technological Spaces. WISME@UML’2004, Lisbon Portugal, 2004

7. Jena: A Semantic Web Framework For Java. http://jena.sourceforge.net/
8. Judson, S., France, R., Carver, D.: Specifying Model Transformations at the Meta-

model Level. WISME@UML’2003, San Francisco USA, October (2003)
9. Noy, N., McGuinnes, D.: Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-
05, March (2001).

10. OMG: MDA Guide Version 1.0.1. The Object Management Group, Document Num-
ber: omg/2003-06-01 (2003)

11. OMG: Submissions for MOF 2.0 Query/Views/Transformations Request for Pro-
posal. The Object Management Group (2003)

12. OMG: OMG Unified Modeling Specification. Version 1.4. (2001)
13. OMG: Ontology Definition Meta-Model, http://www.omg.org/cgi-bin/doc?ad/03-08-

06 (Current Apr 3, 2004)
14. Sendall, S., Kozaczynski, W.: Model Transformation – the Heart and Soul of Model-

Driven Software Development. IEEE Software Sep/Oct. (2003), pp. 42-45
15. Staron, M., Kuzniarz, L.: Implementing UML model transformations for MDA.

NWPER’2004, Turku Finland, August (2004)
16. Wagner, A.: A pragmatical approach to rule-based transformations within UML us-

ing XMI.difference. WITUML 2002, Malaga Spain, June (2002)
17. W3C Resource Description Framework. http://www.w3.org/RDF/
18. Zhao, Y., Assman, U., Sandahl, K.: OWL and OCL for Semantic Integration. Tech-

nical Report, Programming Environmental Lab (PELAB), Department of Computer
and Information Science, Linköping University, Sweden.

mailto:WISME@UML'2003
http://www.omg.org/cgi-bin/doc?ad/03-08-06
http://www.omg.org/cgi-bin/doc?ad/03-08-06
http://www.w3.org/RDF/

	Figure-1. Deriving Query Instances from Query.rdf.
	Figure-2. The Meta Classes in Query.rdf.
	Figure-3. The Structure of the Condition Statement in the In
	Figure-4. The Meta Classes in Transformation.rdf.

