
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005 

 Abstract – First we give reasons for choosing a process-
oriented approach for building complex concurrent systems. 
Upon a brief review of dependability attributes of software-
supported systems, means for increasing dependability in 
process-oriented architectures are illustrated. 
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I. INTRODUCTION 
HE more software is implicated in all walks of real 
life, the more its structure has to reflect the nature of 

this real world. One of the characteristics of functioning of 
the physical world is concurrency. Therefore, concurrency 
in software is essential and cannot be ignored. There are 
numerous benefits of approaching software development 
with elicited concurrency [1]. However, it requires a 
proper handling to avoid pathological problems inherent to 
concurrent software (e.g. deadlock and livelock) and 
performance penalties (e.g. starvation and priority 
inversion). But these problems are just a small part in the 
general trouble of building complex software-supported 
systems.  

The end of the 20th century witnessed a pronounced 
misbalance in public demands (in highly developed 
societies) and technological capabilities. On one side, it is 
expected that electronic artificial intelligence gets embed-
ded in almost any domain of everyday physical activities; 
the emergent knowledge society is rooted in the 
ubiquitous proliferation of the computer-based surround-
ings. On the other side, virtually all software-intensive 
“hi-tech” projects experience tremendous delays, budget 
overruns and unreliability – symptoms of the everlasting 
software crisis [2]. Reports on project failures and dis-
asters caused by software are overwhelming [3]. An ob-
vious conclusion is that with proliferation of pervasive 
computing or so-called ambient intelligence, the modern 
society actually gets surrounded by an unreliable, and 
maybe worse, unsafe environment!   
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Research reported in this paper proposes a concurrent 
framework for complex software development not only 
because it is natural, but because it can be trustworthily 
dependable. Seemingly this may sound as a contradiction, 
since concurrent software is considered hard to un-
derstand, to analyze and hence to manage. We advocate 
that it is possible (and yet necessary) to build software in a 
concurrent way and be certain about its dependability 
qualities. This paper presents results of research inspired 
by finding complementarities of different dependability 
mechanisms and techniques for concurrent software 
tailored in a process-oriented fashion. 

We define dependability according to [4]. Dependabi-
lity is the ability to deliver service that can justifiably be 
trusted. It is the system property that integrates several 
vital software quality attributes (Fig. 1). 

 

Fig. 1. Dependability attributes according to [4] 

Focus of the reported research encompasses soft-ware 
development issues of all branches of dependability 
presented in Fig. 1. We do not consider the comp-
lementing concept of security [4] – our research deals with 
all unintended violations of a software system trustworthy-
ness, thus not malicious attacks. It focuses on rectifying 
insufficiencies in development of concurrent software. 
 Our approach to building dependable concurrent 
software is process orientation. In Section II we describe 
what process orientation is and give it a formal 
background in a subset of the process algebra CSP. 
Section III highlights the ways in which software 
dependability in our framework is being increased. 
Concrete mechanisms and patterns are briefly presented in 
Section IV. The tool support (gCSP) and the 
implementation libraries (CT) are subject of Section V. 
Conclusions and the future work on our process-oriented 
framework for concurrent programming, referred to as 
CSP/CT, are summarized in Section VI.  

II. WHY PROCESS ORIENTATION AND HOW 
 A common concurrency model is multithreading, which 
is the ability to have more than one task occurring in a 
program at the same time. Techniques for programming 
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multithreading within the object-oriented paradigm rely on 
various constructs for synchronization scattered over 
objects and communication among objects. On single 
processor machines, only one thread can be executed at 
the time. The control flow goes from one object to another 
and as such is not object-oriented. Therefore, the bare use 
of multithreading increases complexity (i.e. hinders under-
standing) of concurrent programs. 
 The term process orientation pertains to a variant of the 
dataflow-driven software architecture paradigm. “A 
process-based architecture abstracts away from objects. 
Objects structure data and code while processes structure 
behaviour. Unlike objects, processes embrace observable 
properties of a concurrent program, such as reactivity, 
timeliness, responsiveness, priorities, and performance” 
[1]. Under process-oriented architectures we assume that 
the data processing algorithms of a program are confined 
within processes that exchange data via channels. 
 The vocabulary of processes and channels is the basis 
of the Communicating Sequential Processes (CSP) process 
algebra proposed in 1978 by Hoare [5] to address the most 
cumbersome problems of concurrent programming, as 
synchronisation primitives, nondeterminism etc. When 
based on CSP, channels (communication relationships) 
are synchronous, following the rendezvous principle; 
execution compositions among processes are ruled by CSP 
constructs, possibly represented as compositional 
relationships (see IV-A). On the practical side, Ada’s 
synchronous concurrency model is CSP-based, while the 
transputer [6] has been programmed by the pure CSP 
implementation language occam [7].  
 Therefore, the process-oriented software development 
paradigm proposed in this research has a formal back-
ground in CSP. It is now a well thought theory of concur-
rent systems, applied by a few big software companies (as 
IBM [8], QinetiQ [9]) and supported by a sophisticated 
model checker, FDR [10]. 
 After the transputer disappearance in mid 1990s, a few 
universities took the initiative to provide an occam-like 
approach to programming concurrency in the form of 
libraries for mainstream languages. Versions from the 
University of Twente, developed at the Control 
Engineering department, are called Communicating 
Threads (CT) – see Subsection V-A.  

III. DEPENDABILITY POTENTIALS OF CSP/CT 
 When looking at interaction among software 
components in object-oriented designs, notably there is a 
rather liberal flow of information through and among 
objects. This is not a favourable property for high- 
integrity systems, where possible error propagation should 
be strictly confined. Process orientation intrinsically 
favours restricted “channelled” communication among 
software functional entities (processes), assuming arbitrary 
concurrency among them. Furthermore, the formal back-
ground of our process-oriented approach inherently offers 
a power of minimizing presence of certain architectural 
development errors through formal verification (FV) of 
properties as deadlock- and livelock-freedom. 
 However, run-time transient errors and environmental 
failures cannot be checked in advance. For covering anti-

cipated errors in a robust application and its environment, 
exception handling mechanisms (EHM) are regarded the 
most important fault tolerance tools. Hospitality of the 
CSP/CT environment to dynamic concurrent exception 
handling is highlighted in Subsection IV-D. 
 For fighting unanticipated permanent development 
errors, static redundancy means are adequate. This paper 
presents a small set of selected industry-recognized static 
redundancy instruments in form of design patterns (DP) 
particularly suitable for the CSP/CT environment. 
Furthermore, for low-level implementation issues, 
trustworthiness of the elaborated design trajectory relies 
on automatic code generation (ACG), which is rooted in 
the supporting tools: code generation engines of the gCSP 
tool producing code compliant with the API of the CT 
libraries. 
 For a diagrammatic classification of different kinds of 
errors threatening dependability attributes of a software 
system and different means for the coverage see Fig. 2.  
 

 

Fig. 2. Approaches to increase dependability:  
FV – Formal verification;  
EHM– Exception handling mechanism;  
ACG – Automatic code generation; 
DP – Design patterns 

This classification of errors is far from exhaustive (for a 
more complete treatment see [4], [11]), though in the 
scope of this research it is useful for illustrating the 
approach to complementary means of increasing 
dependability of process-oriented architectures.  

IV. DEPENDABILITY PATTERNS AND MECHANISMS FOR 
CSP/CT 

 The concepts worked out in this research are briefly 
illustrated in this section. For an extensive elaboration the 
reader is referred to the corresponding chapters in [11]. 

A. Graphical modelling 
 A first quality aspect of a software design paradigm is 
the ability of modelling the designs. The modelling para-
digm for the CSP-based concurrent software in form of a 
graphical language is elaborated in [1] as CSP diagrams. 
This research further extends the graphical language 
towards practical applications in control software. The 
language is formally underpinned by machine-readable 
form of CSP – CSPm [12], [11]. 
 Fig. 3 shows basic CSP vocabulary expressed in the 
graphical language: processes connected by 



 

communication relationships (channels) – arrow headed 
lines. 
 

 

Fig. 3. Communicating parallel composed processes 

Execution concurrency among processes is specified by 
compositions, ruled by CSP operators, in the CSP 
diagrams represented as compositional relationships; these 
lines are distinguished from channels as being undirected 
and adorned by an extended set of the CSP operators’ 
symbols (Table 1). 

 

TABLE 1. COMPOSITIONAL CONSTRUCTS IN CSP/CT 

  
sequential exception 

  
parallel priparallel 

  
alternative prialternative 

 

B. Automatic code generation (ACG) 
 There are two principal reasons for making a software 
modelling tool capable of generating source code out of 
(graphical) software models: 
 

1. Elimination of manual transformation from modelled 
behaviour to the low-level code. The manual coding 
of abstract models is proven to be lengthy (i.e. 
expensive) and error-prone. 

2. Although it is claimed that “software does not 
deteriorate with use”, it is also true that the structure 
of the software actually degenerates with mainte-
nance (“software aging”, [13]). A carefully designed 
code generation engine generates well structured 
programs regardless how complex the software 
systems grow. 

 

Having these qualities in mind, it is clear that automatic 
code generation mechanisms are effective means in 
covering a class of implementation development errors. 

C. Formal verification (FV) 
 Benefits from formal analysis of models of (concurrent) 
systems are well known; while the testing procedures –  
doesn’t matter how carefully designed – intentionally 
target only expected sources of malfunctioning (and only 
accidentally reveal other design insufficiencies), an 
exhaustive checking is possible only by deployment of 
formal verification. 
 Formal verification for CSP/CT is also achieved 
through automatic code generation – the graphical designs 
are transformed into the CSPm formal specifications. In 
[14] checks against deadlock conditions as a form of  
architectural permanent development errors are elaborated 
and demonstrated. However, on basis of the same CSPm 
specifications, checks on properties of livelock freedom, 
safety and determinism are straightforward.  

D. Exception handling mechanism (EHM) 
 Exception handling is a dynamic redundancy 
mechanism that allows system architects to distribute 
dedicated corrective or alternative code components at 
appropriate places within the software structure to 
maximize effectiveness of error recovery. Therefore, it 
successfully covers a broad class of anticipated transient 
errors and effects of environmental failures within a 
software system. The most important feature expected 
from an EHM is separation of ordinary execution code 
and part of the code for treating exceptional situations. 
The other eleven relevant properties that an EHM should 
fulfil are quoted in [15]. 
 In the CSP/CT framework a concurrent EHM benefits 
from separation of software components’ concerns in 
well-defined processes; the important aspect of exception 
propagation is excellently captured by the CSP (occam) 
hierarchical structure. 

E. Design patterns (DP) 
 For covering unanticipated development errors in a 
software design one has to reach for static redundancy – 
redundant components that remain in use whether or not 
any errors occur. In this research a few selected design 
patterns are tailored for process-oriented applicability. 
Suitability for the process orientation was one selection 
criterion; the other two were non-obtrusiveness to the 
original (error-unaware) design and wide recognition in 
industrial practice. 
 N-version software replicas bring in redundant 
algorithms derived from the same functional specification 
and developed by different tools and/or teams. Having an 
odd number (N) of replicas allows for majority voting 
policy if there is a disagreement in outcomes from 
different software component versions. In CSP networks a 
critical process is being replaced by an error-tolerant one 
that contains multiple processes with the same 
functionality as the original and coordination processes. In 
that way the original structure stays unchanged. Moreover, 
issues of synchronisation among different versions are 
elegantly addressed by the CSP/CT constructs. 
 Logging and optionally monitoring traffic on the CSP 
channels is another way to increase confidence in a proper 
functioning. Since a CSP process’ behaviour is defined 
only through its interaction via interconnecting channels, 
having a comprehensive overview about the software 
functioning is possible without changing the functionality 
of the processes, but just by using “monitoring-aware” 
(probe) channels. Monitoring can be active, which means 
that corrective actions can be taken, for instance using the 
exception handling mechanism. 
 Watchdogs take care about major disturbances of a CT 
network activity on basis of temporal behaviour disrup-
tions. Also, it is possible to monitor slack CPU time and 
remaining unallocated memory in order to give early 
warnings on suspicious trends in run-time. 

V. TOOLS 

A. CT libraries 
 Three versions of the CT libraries – for Java, C and 
C++ [1], [16] – represent a process-oriented implement-



 

ation layer for CSP/CT concepts in practical applications. 
The API of the libraries offers the CSP/occam-like 
vocabulary: processes, compositional constructs and chan-
nels. The set of the operators from CSP is extended with 
prioritized versions for parallel and alternative constructs 
(following the occam extension for priorities, reflected by 
the prioritised constructs in Table 1); the concept of 
exception handling has yielded the exception construct. 
 Recent extensions to the CT libraries are pre-
programmed design patterns (DP) facilities as probe 
channels for logging and monitoring, watchdog compo-
nents at several levels (from scheduler- to user-level 
processes) and the EHM facilities. 

B. gCSP CASE tool 
 In order to allow modelling CSP/CT designs by CSP 
diagrams, automatically generate code out of them, so 
prove the concept of formal verification and facilitate 
applications of dependability design patterns, at the 
Control Engineering a CASE tool named graphical CSP 
(gCSP) is developed [17]. 
 Besides editing hybrid CSP diagrams (with com-
munication and composition relationships like in Fig. 3), 
separating communication and composition views is 
possible as well. The other crucial functionality of the tool 
is code generation. The major problem to overcome in 
automatic code generation is the conceptual distance 
between highly abstract graphical models and the target 
programming language; spanning distant system specifi-
cations is often done by multiple transformations through 
gradual refinement stages [18]. As an interdomain towards 
the generated code, the tool presents the CSP/CT 
architectural hierarchies by a compositional tree, called the 
C-tree (Fig. 4). The tree view is also particularly useful for 
navigation through complex designs, since it ideally 
reflects the CSP/occam hierarchical network structure. 
 
 

 
Fig. 4. C-tree corresponding to Fig. 3 

 The mechanism of code generation in gCSP is used to 
address the aforementioned FV and ACG error coverage 
aspects. These goals are supported by code generators for 
the CSPm formal descriptions and the implementation 
code for C++ version of the CT library. Producing one or 
the other machine-readable presentation does not require 
any change in a gCSP model. The two transformations are 
produced from the single model, by choosing different 
code generator engines of gCSP. A generated CSPm 
formal specification of a graphical design is directly liable 
to model checking with the high-end model checker FDR. 
Implementation code is generated ready for compilation 
and deployment. Bespoke algorithms, hardware drivers 
manipulation as well as some debugging facilities are also 
defined within the model. This means that manual inter-
ventions upon implementation deliverables are eliminated. 
 gCSP proves useful to support adding EHM and DP 
protective measures in form of layers on the graphical 
designs. Both mechanisms are superimposed on an exist-
ing CSP/CT network modelled in the tool.  

VI. CONCLUSIONS 
 We claim covering the most pronounced sources of 
errors in concurrent software through combination of 
various complementary dependability means. Since the 
research is carried out in the Control Engineering group, 
the pilot application domain are concurrent realizations of 
embedded control software systems [1], [11]. 
 Currently the extensions of the framework advance in a 
few directions. One of them is a simulation support at the 
level of the CTC++ library that would allow predictions of 
temporal behaviour of a CSP/CT design. Other two 
promising avenues to similar goals are timing analysis 
based on the operational CSP semantics combined with 
theory of timed automata and executable specifications 
(design animations) within the gCSP tool. Lastly, Table 1 
tends to be extended with at least one more compositional 
operator, namely for modelling the watchdog protective 
layer. Compositional extendibility surely does belong to 
this software design paradigm. 
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