
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

 Abstract – First we give reasons for choosing a process-
oriented approach for building complex concurrent systems.
Upon a brief review of dependability attributes of software-
supported systems, means for increasing dependability in
process-oriented architectures are illustrated.

Keywords — CSP, concurrent exception handling,
dependability, design patterns and tools, formal analysis.

I. INTRODUCTION
HE more software is implicated in all walks of real
life, the more its structure has to reflect the nature of

this real world. One of the characteristics of functioning of
the physical world is concurrency. Therefore, concurrency
in software is essential and cannot be ignored. There are
numerous benefits of approaching software development
with elicited concurrency [1]. However, it requires a
proper handling to avoid pathological problems inherent to
concurrent software (e.g. deadlock and livelock) and
performance penalties (e.g. starvation and priority
inversion). But these problems are just a small part in the
general trouble of building complex software-supported
systems.

The end of the 20th century witnessed a pronounced
misbalance in public demands (in highly developed
societies) and technological capabilities. On one side, it is
expected that electronic artificial intelligence gets embed-
ded in almost any domain of everyday physical activities;
the emergent knowledge society is rooted in the
ubiquitous proliferation of the computer-based surround-
ings. On the other side, virtually all software-intensive
“hi-tech” projects experience tremendous delays, budget
overruns and unreliability – symptoms of the everlasting
software crisis [2]. Reports on project failures and dis-
asters caused by software are overwhelming [3]. An ob-
vious conclusion is that with proliferation of pervasive
computing or so-called ambient intelligence, the modern
society actually gets surrounded by an unreliable, and
maybe worse, unsafe environment!

This research is supported by PROGRESS, the embedded system

research program of the Dutch organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the Technology Foundation
STW.

dipl. ing. D. S. Jovanovic is with the dept. of Control Engineering,
University of Twente, Netherlands (phone: 31-6-47830273; fax:
31-53-4892223; e-mail: djov@consultant.com).

dr. ir. J. F. Broenink is with the dept. of Control Engineering,
University of Twente, Netherlands (phone: 31-53-4892793; fax:
31-53-4892223; e-mail: j.f.broenink@utwente.nl).

Research reported in this paper proposes a concurrent
framework for complex software development not only
because it is natural, but because it can be trustworthily
dependable. Seemingly this may sound as a contradiction,
since concurrent software is considered hard to un-
derstand, to analyze and hence to manage. We advocate
that it is possible (and yet necessary) to build software in a
concurrent way and be certain about its dependability
qualities. This paper presents results of research inspired
by finding complementarities of different dependability
mechanisms and techniques for concurrent software
tailored in a process-oriented fashion.

We define dependability according to [4]. Dependabi-
lity is the ability to deliver service that can justifiably be
trusted. It is the system property that integrates several
vital software quality attributes (Fig. 1).

Fig. 1. Dependability attributes according to [4]

Focus of the reported research encompasses soft-ware
development issues of all branches of dependability
presented in Fig. 1. We do not consider the comp-
lementing concept of security [4] – our research deals with
all unintended violations of a software system trustworthy-
ness, thus not malicious attacks. It focuses on rectifying
insufficiencies in development of concurrent software.
 Our approach to building dependable concurrent
software is process orientation. In Section II we describe
what process orientation is and give it a formal
background in a subset of the process algebra CSP.
Section III highlights the ways in which software
dependability in our framework is being increased.
Concrete mechanisms and patterns are briefly presented in
Section IV. The tool support (gCSP) and the
implementation libraries (CT) are subject of Section V.
Conclusions and the future work on our process-oriented
framework for concurrent programming, referred to as
CSP/CT, are summarized in Section VI.

II. WHY PROCESS ORIENTATION AND HOW
 A common concurrency model is multithreading, which
is the ability to have more than one task occurring in a
program at the same time. Techniques for programming

Tools and Patterns for Dependable
Concurrent Software

Dusko S. Jovanovic, Student member, IEEE, Jan F. Broenink, Member, IEEE

T

multithreading within the object-oriented paradigm rely on
various constructs for synchronization scattered over
objects and communication among objects. On single
processor machines, only one thread can be executed at
the time. The control flow goes from one object to another
and as such is not object-oriented. Therefore, the bare use
of multithreading increases complexity (i.e. hinders under-
standing) of concurrent programs.
 The term process orientation pertains to a variant of the
dataflow-driven software architecture paradigm. “A
process-based architecture abstracts away from objects.
Objects structure data and code while processes structure
behaviour. Unlike objects, processes embrace observable
properties of a concurrent program, such as reactivity,
timeliness, responsiveness, priorities, and performance”
[1]. Under process-oriented architectures we assume that
the data processing algorithms of a program are confined
within processes that exchange data via channels.
 The vocabulary of processes and channels is the basis
of the Communicating Sequential Processes (CSP) process
algebra proposed in 1978 by Hoare [5] to address the most
cumbersome problems of concurrent programming, as
synchronisation primitives, nondeterminism etc. When
based on CSP, channels (communication relationships)
are synchronous, following the rendezvous principle;
execution compositions among processes are ruled by CSP
constructs, possibly represented as compositional
relationships (see IV-A). On the practical side, Ada’s
synchronous concurrency model is CSP-based, while the
transputer [6] has been programmed by the pure CSP
implementation language occam [7].
 Therefore, the process-oriented software development
paradigm proposed in this research has a formal back-
ground in CSP. It is now a well thought theory of concur-
rent systems, applied by a few big software companies (as
IBM [8], QinetiQ [9]) and supported by a sophisticated
model checker, FDR [10].
 After the transputer disappearance in mid 1990s, a few
universities took the initiative to provide an occam-like
approach to programming concurrency in the form of
libraries for mainstream languages. Versions from the
University of Twente, developed at the Control
Engineering department, are called Communicating
Threads (CT) – see Subsection V-A.

III. DEPENDABILITY POTENTIALS OF CSP/CT
 When looking at interaction among software
components in object-oriented designs, notably there is a
rather liberal flow of information through and among
objects. This is not a favourable property for high-
integrity systems, where possible error propagation should
be strictly confined. Process orientation intrinsically
favours restricted “channelled” communication among
software functional entities (processes), assuming arbitrary
concurrency among them. Furthermore, the formal back-
ground of our process-oriented approach inherently offers
a power of minimizing presence of certain architectural
development errors through formal verification (FV) of
properties as deadlock- and livelock-freedom.
 However, run-time transient errors and environmental
failures cannot be checked in advance. For covering anti-

cipated errors in a robust application and its environment,
exception handling mechanisms (EHM) are regarded the
most important fault tolerance tools. Hospitality of the
CSP/CT environment to dynamic concurrent exception
handling is highlighted in Subsection IV-D.
 For fighting unanticipated permanent development
errors, static redundancy means are adequate. This paper
presents a small set of selected industry-recognized static
redundancy instruments in form of design patterns (DP)
particularly suitable for the CSP/CT environment.
Furthermore, for low-level implementation issues,
trustworthiness of the elaborated design trajectory relies
on automatic code generation (ACG), which is rooted in
the supporting tools: code generation engines of the gCSP
tool producing code compliant with the API of the CT
libraries.
 For a diagrammatic classification of different kinds of
errors threatening dependability attributes of a software
system and different means for the coverage see Fig. 2.

Fig. 2. Approaches to increase dependability:
FV – Formal verification;
EHM– Exception handling mechanism;
ACG – Automatic code generation;
DP – Design patterns

This classification of errors is far from exhaustive (for a
more complete treatment see [4], [11]), though in the
scope of this research it is useful for illustrating the
approach to complementary means of increasing
dependability of process-oriented architectures.

IV. DEPENDABILITY PATTERNS AND MECHANISMS FOR
CSP/CT

 The concepts worked out in this research are briefly
illustrated in this section. For an extensive elaboration the
reader is referred to the corresponding chapters in [11].

A. Graphical modelling
 A first quality aspect of a software design paradigm is
the ability of modelling the designs. The modelling para-
digm for the CSP-based concurrent software in form of a
graphical language is elaborated in [1] as CSP diagrams.
This research further extends the graphical language
towards practical applications in control software. The
language is formally underpinned by machine-readable
form of CSP – CSPm [12], [11].
 Fig. 3 shows basic CSP vocabulary expressed in the
graphical language: processes connected by

communication relationships (channels) – arrow headed
lines.

Fig. 3. Communicating parallel composed processes

Execution concurrency among processes is specified by
compositions, ruled by CSP operators, in the CSP
diagrams represented as compositional relationships; these
lines are distinguished from channels as being undirected
and adorned by an extended set of the CSP operators’
symbols (Table 1).

TABLE 1. COMPOSITIONAL CONSTRUCTS IN CSP/CT

sequential exception

parallel priparallel

alternative prialternative

B. Automatic code generation (ACG)
 There are two principal reasons for making a software
modelling tool capable of generating source code out of
(graphical) software models:

1. Elimination of manual transformation from modelled
behaviour to the low-level code. The manual coding
of abstract models is proven to be lengthy (i.e.
expensive) and error-prone.

2. Although it is claimed that “software does not
deteriorate with use”, it is also true that the structure
of the software actually degenerates with mainte-
nance (“software aging”, [13]). A carefully designed
code generation engine generates well structured
programs regardless how complex the software
systems grow.

Having these qualities in mind, it is clear that automatic
code generation mechanisms are effective means in
covering a class of implementation development errors.

C. Formal verification (FV)
 Benefits from formal analysis of models of (concurrent)
systems are well known; while the testing procedures –
doesn’t matter how carefully designed – intentionally
target only expected sources of malfunctioning (and only
accidentally reveal other design insufficiencies), an
exhaustive checking is possible only by deployment of
formal verification.
 Formal verification for CSP/CT is also achieved
through automatic code generation – the graphical designs
are transformed into the CSPm formal specifications. In
[14] checks against deadlock conditions as a form of
architectural permanent development errors are elaborated
and demonstrated. However, on basis of the same CSPm
specifications, checks on properties of livelock freedom,
safety and determinism are straightforward.

D. Exception handling mechanism (EHM)
 Exception handling is a dynamic redundancy
mechanism that allows system architects to distribute
dedicated corrective or alternative code components at
appropriate places within the software structure to
maximize effectiveness of error recovery. Therefore, it
successfully covers a broad class of anticipated transient
errors and effects of environmental failures within a
software system. The most important feature expected
from an EHM is separation of ordinary execution code
and part of the code for treating exceptional situations.
The other eleven relevant properties that an EHM should
fulfil are quoted in [15].
 In the CSP/CT framework a concurrent EHM benefits
from separation of software components’ concerns in
well-defined processes; the important aspect of exception
propagation is excellently captured by the CSP (occam)
hierarchical structure.

E. Design patterns (DP)
 For covering unanticipated development errors in a
software design one has to reach for static redundancy –
redundant components that remain in use whether or not
any errors occur. In this research a few selected design
patterns are tailored for process-oriented applicability.
Suitability for the process orientation was one selection
criterion; the other two were non-obtrusiveness to the
original (error-unaware) design and wide recognition in
industrial practice.
 N-version software replicas bring in redundant
algorithms derived from the same functional specification
and developed by different tools and/or teams. Having an
odd number (N) of replicas allows for majority voting
policy if there is a disagreement in outcomes from
different software component versions. In CSP networks a
critical process is being replaced by an error-tolerant one
that contains multiple processes with the same
functionality as the original and coordination processes. In
that way the original structure stays unchanged. Moreover,
issues of synchronisation among different versions are
elegantly addressed by the CSP/CT constructs.
 Logging and optionally monitoring traffic on the CSP
channels is another way to increase confidence in a proper
functioning. Since a CSP process’ behaviour is defined
only through its interaction via interconnecting channels,
having a comprehensive overview about the software
functioning is possible without changing the functionality
of the processes, but just by using “monitoring-aware”
(probe) channels. Monitoring can be active, which means
that corrective actions can be taken, for instance using the
exception handling mechanism.
 Watchdogs take care about major disturbances of a CT
network activity on basis of temporal behaviour disrup-
tions. Also, it is possible to monitor slack CPU time and
remaining unallocated memory in order to give early
warnings on suspicious trends in run-time.

V. TOOLS

A. CT libraries
 Three versions of the CT libraries – for Java, C and
C++ [1], [16] – represent a process-oriented implement-

ation layer for CSP/CT concepts in practical applications.
The API of the libraries offers the CSP/occam-like
vocabulary: processes, compositional constructs and chan-
nels. The set of the operators from CSP is extended with
prioritized versions for parallel and alternative constructs
(following the occam extension for priorities, reflected by
the prioritised constructs in Table 1); the concept of
exception handling has yielded the exception construct.
 Recent extensions to the CT libraries are pre-
programmed design patterns (DP) facilities as probe
channels for logging and monitoring, watchdog compo-
nents at several levels (from scheduler- to user-level
processes) and the EHM facilities.

B. gCSP CASE tool
 In order to allow modelling CSP/CT designs by CSP
diagrams, automatically generate code out of them, so
prove the concept of formal verification and facilitate
applications of dependability design patterns, at the
Control Engineering a CASE tool named graphical CSP
(gCSP) is developed [17].
 Besides editing hybrid CSP diagrams (with com-
munication and composition relationships like in Fig. 3),
separating communication and composition views is
possible as well. The other crucial functionality of the tool
is code generation. The major problem to overcome in
automatic code generation is the conceptual distance
between highly abstract graphical models and the target
programming language; spanning distant system specifi-
cations is often done by multiple transformations through
gradual refinement stages [18]. As an interdomain towards
the generated code, the tool presents the CSP/CT
architectural hierarchies by a compositional tree, called the
C-tree (Fig. 4). The tree view is also particularly useful for
navigation through complex designs, since it ideally
reflects the CSP/occam hierarchical network structure.

Fig. 4. C-tree corresponding to Fig. 3

 The mechanism of code generation in gCSP is used to
address the aforementioned FV and ACG error coverage
aspects. These goals are supported by code generators for
the CSPm formal descriptions and the implementation
code for C++ version of the CT library. Producing one or
the other machine-readable presentation does not require
any change in a gCSP model. The two transformations are
produced from the single model, by choosing different
code generator engines of gCSP. A generated CSPm
formal specification of a graphical design is directly liable
to model checking with the high-end model checker FDR.
Implementation code is generated ready for compilation
and deployment. Bespoke algorithms, hardware drivers
manipulation as well as some debugging facilities are also
defined within the model. This means that manual inter-
ventions upon implementation deliverables are eliminated.
 gCSP proves useful to support adding EHM and DP
protective measures in form of layers on the graphical
designs. Both mechanisms are superimposed on an exist-
ing CSP/CT network modelled in the tool.

VI. CONCLUSIONS
 We claim covering the most pronounced sources of
errors in concurrent software through combination of
various complementary dependability means. Since the
research is carried out in the Control Engineering group,
the pilot application domain are concurrent realizations of
embedded control software systems [1], [11].
 Currently the extensions of the framework advance in a
few directions. One of them is a simulation support at the
level of the CTC++ library that would allow predictions of
temporal behaviour of a CSP/CT design. Other two
promising avenues to similar goals are timing analysis
based on the operational CSP semantics combined with
theory of timed automata and executable specifications
(design animations) within the gCSP tool. Lastly, Table 1
tends to be extended with at least one more compositional
operator, namely for modelling the watchdog protective
layer. Compositional extendibility surely does belong to
this software design paradigm.

REFERENCES
[1] G. H. Hilderink, "Managing Complexity of Control Software

through Concurrency," PhD thesis, University of Twente, NL,
2005.

[2] W. W. Gibbs, "Software's Chronic Crisis," Scientific American,
1994.

[3] N. G. Leveson, Safeware: System Safety and Computers, Addison-
Wesley, 1995.

[4] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic
Concepts and Taxonomy of Dependable and Secure Computing,"
IEEE Trans. on Dependable and Secure Computing, vol. 1, pp. 11-
33, 2004.

[5] C. A. R. Hoare, "Communicating Sequential Processes,"
Communications of the ACM, vol. 21, pp. 666-677, 1978.

[6] R. Ivimey-Cook, "Legacy of the Transputer," presented at
WoTUG22: Architectures, Languages and Techniques for
Concurrent Programming, University of Keele, UK, 1999.

[7] INMOS, occam 2 Reference Manual, Prentice Hall, 1988.
[8] J. Lawrence, "Practical Application of CSP and FDR to Software

Design," in LNCS 3525, Springer-Verlag, pp. 151-174, 2005.
[9] S. Creese, "Industrial-Strenght CSP: Opportunities and Challenges

in Model-Checking," in LNCS 3525, Springer-Verlag, p. 292, 2005.
[10] FormalSystems, "FDR2 Refinement checker for CSP models,"

2004.
[11] D. S. Jovanovic, "Designing dependable process-oriented software,

a CSP approach," PhD thesis, University of Twente, NL, to appear
in 2005.

[12] J. B. Scattergood, "Tools for CSP and Timed CSP," D.Phil thesis,
Oxford University, UK, 1997.

[13] D. L. Parnas, "Software aging," presented at International
Conference on Software Engineering, Sorrento, Italy, 1994.

[14] D. S. Jovanovic, G. K. Liet, and J. F. Broenink, "A CSP-based
trajectory for designing formally verified embedded control
software," presented at 49th conference ETRAN, Budva, Monte-
negro, 2005.

[15] D. S. Jovanovic, B. Orlic, and J. F. Broenink, "On issues of
constructing an exception handling mechanism for CSP-based
process-oriented concurrent software," presented at Communicating
Process Architectures CPA 2005, Eindhoven, NL, 2005.

[16] B. Orlic and J. F. Broenink, "Real-time and fault tolerance in
distributed control software," presented at Communicating Process
Architectures CPA 2003, Enschede, NL, 2003.

[17] D. S. Jovanovic, B. Orlic, G. K. Liet, and J. F. Broenink, "gCSP: A
Graphical Tool for Designing CSP Systems," presented at
Communicating Process Architectures CPA 2004, Oxford, UK,
2004.

[18] D. Milićev, (in Serbian) "Automatic transformation of models in
software tools for modelling," PhD thesis, University of Belgrade,
Serbia, 2001.

