
EFFICIENT HEURISTICS FOR SIMULATING

POPULATION OVERFLOW IN FEED-FORWARD

NETWORKS

Victor F. Nicola

Tatiana S. Zaburnenko

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, P.O. Box 217

7500 AE Enschede, THE NETHERLANDS

In this paper we propose a state-dependent importance sampling heuristic to estimate the prob-
ability of population overflow in feed-forward networks. This heuristic attempts to approximate
the “optimal” state-dependent change of measure without the need for difficult analysis or costly
optimization involved in other recently proposed adaptive importance sampling algorithms. Prelim-
inary simulation experiments with a 4-node feed-forward network yield asymptotically efficient esti-
mates, with relative error increasing at most linearly in the overflow level, where state-independent
importance sampling is demonstrably ineffective.

1 INTRODUCTION

Importance sampling is a very effective methodologry for the efficient simulation of queueing sys-
tems and networks involving rare events (see, e.g., Parekh and Walrand 1989, Asmussen and Ru-
binstein (1995) Heidelberger 1995, Juneja and Nicola 2005). Until recently, only state-independent
importance sampling heuristics were developed and considered for analysis. In these heuristics, the
change of measure is “static” and independent of the network state (i.e., the number of customers
at each node in a Jackson network). A relatively simple (and well known) heuristic change of
measure for simulations of population overflow in queueing networks is that proposed in Parekh
and Walrand (1989). However, even for the simplest Jackson queueing network (e.g., 2-nodes in
series or in parallel), the effectiveness of this heuristic is limited to only some region of the (arrival
and service) parameters space (see Glasserman and Kou 1995, de Boer 2004). (We use the term
“effectiveness” interchangeably with “asymptotic efficiency,” see, e.g., Heidelberger (1995) for a
precise definition.)

Recent theoretical and empirical studies (see, e.g., Kroese and Nicola 2002, de Boer and Nicola
2002) reveal that state-dependent change of measures are generally more effective, also where no
effective state-independent change of measure exists. In de Boer and Nicola (2002) an adaptive
optimization technique based on the method of cross-entropy (Rubinstein 2002) is used to approx-
imate the “optimal” state-dependent change of measure. A drawback of this approach, however,
is the excessive computational and storage demands for large state-space models associated with
large networks. In Nicola and Zaburnenko (2005a) and Nicola and Zaburnenko (2005b), heuristics
are proposed to approximate the “optimal” state-dependent change of measure without the need
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for a costly optimization. The key observation is that the “optimal” change of measure depends
on the network state only along and close to the boundaries (when one or more nodes are empty),
and tends to become state-independent in the interior of the state-space. Therefore, if we can de-
termine the change of measure along the boundaries and at the interior of the state-space, then we
may be able to combine them appropriately to construct a state-dependent change of measure that
approximates the “optimal” one in the entire state-space. The proposed methodology is dubbed
“state-dependent heuristic” or SDH in short. The proposed heuristics are effective, easy to imple-
ment and could be more efficient than those based on adaptive importance sampling methodologies
(e.g., de Boer and Nicola 2002), particularly for large networks. Experimental results for tandem
and parallel networks with multiple nodes yield asymptotically efficient estimates, mostly with a
bounded relative error (see Nicola and Zaburnenko 2005a, Nicola and Zaburnenko 2006a). In Nicola
and Zaburnenko (2005b), a heuristic was also proposed for a feed-forward network; the resulting
estimates were correct but not convincingly robust (the relative errors were somewhat high and the
effectiveness varied with network parameters).

In this paper we develop a robust state-dependent change of measure for the efficient simulation
of rare events in feed-forward networks. The heuristic builds on recently developed and demonstra-
bly effective heuristics for tandem and parallel networks (see Nicola and Zaburnenko 2005a, Nicola
and Zaburnenko 2006a).

In Section 2 we introduce the model and notation. In Section 3 we motivate and outline the
SDH for feed-forward networks. In Section 4 we present experimental results for the estimation
of the probability of network population overflow. Comparisons with the well-known heuristic in
Parekh and Walrand (1989) and with the adaptive importance sampling methodology in de Boer
and Nicola (2002) are also presented. We conclude in Section refsec:con.

2 MODEL AND NOTATION

Consider a Jackson network consisting of n nodes (queues), each having its own buffer of infinite
size. Customers arrive at node i (i = 1, . . . , n) according to a Poisson process with rate λi. The
service time of a customer at node i is exponentially distributed with rate µi (i = 1, . . . , n).
Customers that leave node i join node j with probability pij (i = 1, . . . , n; j = 1, . . . , n) or leave the
network with probability pie (i = 1, . . . , n). We also assume that the queueing network is stable,
i.e., γi < µi for all i = 1, . . . , n, where γi is the total arrival rate at node i, as determined from the
traffic equations γi = λi +

∑

∀j γj pji.
Let Xi,t (i = 1, . . . , n) denote the number of customers at node i at time t > 0 (including those

in service). Then the vector Xt = (X1,t,X2,t, ...,Xn,t) is a Markov process representing the state
of the network at time t. Denote by St the total number of customers in the network (network
population) at time t, i.e., St =

∑n
i=1

Xi,t.
Assuming that the initial network state is X0 (usually, X0 = (0, 0, ..., 0) corresponding to an

empty network), we are interested in the probability that the network population reaches some
high level L ∈ N before becoming empty. We denote this probability by γ(L) and refer to it as
the population overflow probability, starting from the initial state X0. Since the associated event
is typically rare, importance sampling may be used to efficiently estimate this probability (for a
review see, e.g., Heidelberger 1995).

Starting from X0, define τ as the first time St hits level L or level 0, then

γ(L) = E I{Sτ=L} = Ẽ Wτ I{Sτ=L} , (1)

where Wτ is the likelihood ratio over the interval [0, τ ]; E and Ẽ are the expectations under the
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original and the new change of measures, respectively. The relative error is the ratio of the standard
deviation of the estimator over its expectation, i.e.,

√

Ẽ Wτ
2 I{Sτ=L}

γ(L)2
− 1 . (2)

The estimator ẼWτ I{Sτ=L} is said to be asymptotically efficient if its relative error grows at
sub-exponential (e.g., polynomial) rate as L → ∞ (i.e., as γ(L) → 0). The estimator is said to
have bounded relative error if its relative error is bounded in L as γ(L) → 0. It is important to note
that a change of measure may, in general, depend on the state of the system, even if the original
underlying distributions do not depend on the system state.

3 STATE-DEPENDENT HEURISTIC FOR A FEED-FORWARD

NETWORK

Recent theoretical and empirical studies (e.g., Kroese and Nicola 2002, de Boer and Nicola 2002)
indicate that the “optimal” change of measure depends on the network state, i.e., the number
of customers at each network node. Furthermore, this crucial dependence is strong along the
boundaries of the state-space (i.e., when one or more buffers are empty) and diminishes in the
interior of the state-space (i.e., when contents of all buffers are sufficiently large). This observation
suggests that if we know the “optimal” change of measure along the boundaries and in the interior
of the state-space, then we might be able to construct a change of measure that approximates the
“optimal” one over the entire state-space. Recently, heuristics based on combining known large
deviations results and time-reversal arguments are used to construct such a change of measure for
tandem networks (Nicola and Zaburnenko 2005a) and for parallel networks (Nicola and Zaburnenko
2006a). Empirical results show that these heuristics produce asymptotically efficient estimates,
mostly with a bounded relative error. These heuristics also form the ingredients for a state-
dependent change of measure to efficiently simulate feed-forward networks that is presented next.

µ2
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µ3

µ4
λ

p

1−p

Figure 1: 4-Node Feed-forward Network

To describe our state-dependent heuristic for feed-forward Jackson networks, we use the specific
example depicted in Figure 1. Without loss of generality we assume that λ +

∑

4

i=1
µi = 1. The

traffic intensity at Node i is ρi = γi/µi, where γi is the total arrival rate at Node i (i = 1, 2, 3, 4).

We also assume that ρ1 6 ρ2 6 ρ3 6 ρ4. Let ΘT = [λ, µ1, µ2, µ3, µ4, p] be a vector with the
arrival rate, the service rates at Nodes 1, 2, 3, 4, and the routing probability, respectively. Now
consider splitting the parameter vector Θ into two vectors ΘT 2 and ΘT 3, corresponding to its two
input-output paths, T 2 and T 3 (see Figure 2). Parameters shared between the two paths (namely,
the arrival rate λ, the service rates µ1 and µ4, and the routing probability p) are allocated to T 2
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Figure 2: Splitting of the Feed-forward Network into Two Tandem Networks T 2 and T 3

and T 3 proportional to p and (1 − p), respectively. Specifically,

ΘT 2 =
[

λp, µ1p, µ2, 0, µ4p, p2
]

is allocated to Path T 2 (through Nodes 1, 2 and 4), with the entry corresponding to Node 3 set to
zero. Similarly,

ΘT 3 = [λ(1 − p), µ1(1 − p), 0, µ3, µ4(1 − p), p(1 − p)]

is allocated to Path T 3 (through Nodes 1, 3 and 4), with the entry corresponding to Node 2 set to
zero. (Note that ΘT 2 + ΘT 3 = Θ.)

We denote the state-independent change of measure to overflow Node i (i = 1, 2, 3, 4) in the
feed-forward network by Θ̃i (as determined in Juneja and Nicola (2005)). The vector Θ̃i is also split
into two vectors Θ̃T 2

i and Θ̃T 3
i , corresponding to the input-output paths, T 2 and T 3, respectively.

Specifically, since µ4p 6 µ2 6 µ1p (from ρ4 > ρ2 > ρ1), Θ̃T 2
i simply interchanges λp with the

service rate allocated to Path T 2 at Node i (i = 1, 2, 4), with the entry corresponding to Node
3 set to zero. Similarly, since µ4(1 − p) 6 µ3 6 µ1(1 − p) (from ρ4 > ρ3 > ρ1), Θ̃T 3

i simply
interchanges λ(1 − p) with the service rate allocated to Path T 3 at Node i (i = 1, 3, 4). with the
entry corresponding to Node 2 set to zero. It follows that the vector Θ̃1 = [µ1, λ, µ2, µ3, µ4, p] and
is split into:

Θ̃T 2
1 =

[

µ1p, λp, µ2, 0, µ4p, p2
]

,

Θ̃T 3
1 = [µ1(1 − p), λ(1 − p), 0, µ3, µ4(1 − p), p(1 − p)] .

The vector Θ̃2 = [µ2 + λ(1 − p), µ1, λp, µ3, µ4, µ2/(µ2 + λ(1 − p))] and is split into:

Θ̃T 2
2 = [µ2, µ1p, λp, 0, µ4p, (µ2/(µ2 + λ(1 − p)))p] ,

Θ̃T 3
2 = [λ(1 − p), µ1(1 − p), 0, µ3, µ4(1 − p), (µ2/(µ2 + λ(1 − p)))(1 − p)] .

The vector Θ̃3 = [µ3 + λp, µ1, µ2, λ(1 − p), µ4, λp/(λp + µ3)] and is split into:

Θ̃T 2
3 = [λp, µ1p, µ2, 0, µ4p, (λp/(λp + µ3))p] ,

Θ̃T 3
3 = [µ3, µ1(1 − p), 0, λ(1 − p), µ4(1 − p), (λp/(λp + µ3))(1 − p)] .

The vector Θ̃4 = [µ4, µ1, µ2, µ3, λ, p] and is split into:

Θ̃T 2
4 =

[

µ4p, µ1p, µ2, 0, λp, p2
]

,

Θ̃T 3
4 = [µ4(1 − p), µ1(1 − p), 0, µ3, λ(1 − p), p(1 − p)] .
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The state-independent change of measure to simultaneously overflow Nodes 2 and 3 in the feed-
forward network is denoted by Θ̃23 (as determined in Nicola and Zaburnenko (2006b)). It follows
that Θ̃23 = [µ2 + µ3 + µ1, λp, λ(1 − p), µ4, µ2/(µ2 + µ3)]. It is also split into two vectors Θ̃T 2

23 and
Θ̃T 3

23 , corresponding to the input-output paths, T 2 and T 3, respectively, as follows:

Θ̃T 2
23 = [µ2, µ1p, λp, 0, µ4p, (µ2/(µ2 + µ3))p] ,

Θ̃T 3
23 = [µ3, µ1(1 − p), 0, λ(1 − p), µ4(1 − p), (µ2/(µ2 + µ3))(1 − p)] .

With the preceding definitions, the heuristic state-dependent change of measure for the feed-
forward network in Figure 1 can now be given in the following proposition.

Proposition 1 (SDH for a Feed-forward Network)

Let Θ̃T(x) =
[

λ̃, µ̃1, µ̃2, µ̃3, µ̃4, p̃
]

be a vector with the corresponding state-dependent arrival

and service rates at the respective nodes as well as the routing probability under the new change
of measure to simulate network population overflow. Then

Θ̃(x) =

[

x4

b4

]1

Θ̃T 2
4 +

[

b4 − x4

b4

]+

×

{

[

x2

b2

]1
{

[

x3

b3

]1

Θ̃T 2
23 +

[

b3 − x3

b3

]+

Θ̃T 2
2

}

+

[

b2 − x2

b2

]+

×

{

[

x3

b3

]1

Θ̃T 2
3 +

[

b3 − x3

b3

]+

×

[

x1

b1

]1

Θ̃T 2
1 +

[

b1 − x1

b1

]+

ΘT 2 } } }

+

[

x4

b4

]1

Θ̃T 3
4 +

[

b4 − x4

b4

]+

×

{

[

x3

b3

]1
{

[

x2

b2

]1

Θ̃T 3
23 +

[

b2 − x2

b2

]+

Θ̃T 3
3

}

+

[

b3 − x3

b3

]+

×

{

[

x2

b2

]1

Θ̃T 3
2 +

[

b2 − x2

b2

]+

×

[

x1

b1

]1

Θ̃T 3
1 +

[

b1 − x1

b1

]+

ΘT 3 } } } .

(3)

Note that all vectors on the r.h.s. of Equation 3 are state-independent. However, the new
parameters to simulate the network under importance sampling (λ̃(x), µ̃i(x), i = 1, 2, 3, 4, and
p̃(x)) are state-dependent. Moreover, the equality

∑n
i=1

(λ̃i(x) + µ̃i(x)) = 1 still holds under the
above change of measure.

According to the above change of measure, the two tandem networks T 2 and T 3 are overloaded
simultaneously, depending on the buffer contents at their respective nodes. Similar to a 3-node
tandem network (see Nicola and Zaburnenko 2005a), the state-independent change of measure
Θ̃T 2

i (resp. Θ̃T 3
i ) is nested in the same order of Node i’s utilization in T 2 (resp. T 3). Since

ρ1 6 ρ2 6 ρ3 6 ρ4, dependence on x4 supersedes dependence on x3 and x2 which supersedes
dependence on x1. The above change of measure implies that, upon arrival to an empty network,
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Node 1 is gradually overloaded according to [x1/b1]
1 Θ̃1 (i.e., gradually interchange λ and µ1

depending on x1). As x2 (resp. x3) increases, Node 1 is gradually downloaded while Node 2 (resp.
Node 3) is gradually overloaded according to [x2/b2]

1 Θ̃T 2
2 (resp. [x3/b3]

1 Θ̃T 3
3 ). As x4 increases,

Node 2 (resp. Node 3) is gradually downloaded while Node 4 is gradually overloaded according to
[x4/b4]

1 Θ̃4. The choice of the variables bi (the dependence range at Node i, i = 1, . . . , n) is crucial
for the effectiveness of the heuristic.

4 EXPERIMENTAL RESULTS

Importance sampling to estimate the probability of population overflow (γ(L)) involves generating,
say, N , independent and identically distributed (i.i.d.) busy cycles (i.e., starting with an arrival to
an empty network). Starting a cycle at time 0, define τL as the instant when the network population
reaches level L for the first time. Similarly, define τ0 as the instant when the network population
returns to 0 for the first time. The indicator function Ii(τL < τ0) takes the value 1 if the population
overflow (level L) is reached in cycle i, otherwise it takes the value 0.

In each cycle, the change of measure is applied until either the population overflow event is
reached or the network population returns to 0. Let Wi be the likelihood ratio associated with cycle
i, then an unbiased estimator γ̃ of γ(L) is given by γ̃ = (1/N)

∑i=N
i=1

Ii Wi . The second moment of

IW is estimated by γ̃2 = (1/N)
∑i=N

i=1
IiWi

2 . The variance and the relative error of the importance

sampling estimator γ̃ are given by VAR(γ̃) = (γ̃2 − (γ̃)2) / (N − 1) and RE(γ̃) =
√

VAR(γ̃) / γ̃,
respectively. Another useful measure for comparing the efficiency of different estimators is the
“relative time variance” (RTV) product, which is defined as the simulation time (in seconds)
multiplied by the squared relative error of the estimator. As the estimate becomes more stable,
its RTV tends to a constant value, which is smaller for a more efficient estimator. For example,
if RTV2 (for Estimator 2) is larger than RTV1 (for Estimator 1), then it will take Estimator 2 a
longer simulation time to reach the same accuracy. For efficiency comparisons we use the variance
reduction ratio, VRR = RTV2 /RTV1, which represents the efficiency gain when using Estimator
1 relative to that when using Estimator 2.

In this section we present experimental results on the feed-forward network depicted in Figure 1.
These results are obtained using the following somewhat simpler and less refined version of the
heuristic given in Section 3 (here the r.h.s. does not include Θ̃T 2

23 and Θ̃T 3
23 , which constitute a

change of measure that simultaneously overload Nodes 2 and 3):

Θ̃(x) =

[

x4

b4

]1

Θ̃T 2
4 +

[

b4 − x4

b4

]+

×

{

[

x2

b2

]1

Θ̃T 2
2 +

[

b2 − x2

b2

]+

×

{

[

x1

b1

]1

Θ̃T 2
1 +

[

b1 − x1

b1

]+

ΘT 2 } }

+

[

x4

b4

]1

Θ̃T 3
4 +

[

b4 − x4

b4

]+

×

{

[

x3

b3

]1

Θ̃T 3
3 +

[

b3 − x3

b3

]+

×

{

[

x1

b1

]1

Θ̃T 3
1 +

[

b1 − x1

b1

]+

ΘT 3 } } .

(4)
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We consider Four sets of network parameters for which the well-known heuristic in Parekh and
Walrand (1989)is shown to be ineffective (this is verified empirically by showing that PW yields
wrong or unstable estimates). In each experiment (for a given set of network parameters), the
above variant of the heuristic (termed SDH) is used to obtain estimates of the population overflow
probability γ(L) for different overflow levels. For the purpose of comparison and/or verification, we
include estimates obtained using the adaptive importance sampling methodology in de Boer and
Nicola (2002) (termed SDA) as well as the known heuristic in Parekh and Walrand (1989) (termed
PW), although the latter (PW) estimates are not necessarily accurate or stable. Each estimate
is obtained from one simulation run of 106 replications (same for all heuristics and all parameter
points). These estimates and the associated relative errors (in percentage) are displayed in tables;
one table for each experiment. For the SDH estimates, we also include the ratio VRR (relative
to SDA); hence, VRR > 1 implies efficiency gain of SDH over SDA. In general, numerical results
are difficult to obtain for larger and/or higher overflow levels (i.e., for larger sate-space). In the
absence of numerical results (as marked by “∗” in the corresponding table entry), agreement of the
SDH and SDA estimators may be an indication of correctness.

Both SDH and SDA assume state-dependence only over a (small) number of boundary layers
(say, bi along the state variable xi, i = 1, . . . , n) which must be properly determined to ensure the
effectiveness and efficiency of these methods. Unless stated otherwise, all bis along the different
boundaries are set equal to some b. All results presented in this section are obtained using the
corresponding “optimal” b, which may differ for SDH and SDA estimates. For consistency with the
assumption made in Section 3, we also choose the network parameters such that ρ1 6 ρ2 6 ρ3 6 ρ4.
In the first set, λ = 0.0455, µ1 = 0.7272, µ2 = 0.0455, µ3 = µ4 = 0.0909, p = 0.1. The corresponding
node utilizations are ρ1 = 0.06, ρ2 = 0.1, ρ3 = 0.45, ρ4 = 0.5.
In the second set, λ = 0.064, µ1 = 0.564, µ2 = 0.039, µ3 = 0.192, µ4 = 0.141, p = 0.1. The
corresponding node utilizations are ρ1 = 0.11, ρ2 = 0.16, ρ3 = 0.3, ρ4 = 0.45.
In the third set, λ = 0.069, µ1 = 0.571, µ2 = 0.022, µ3 = 0.198, µ4 = 0.14, p = 0.1. The correspond-
ing node utilizations are ρ1 = 0.12, ρ2 = ρ3 = 0.31, ρ4 = 0.49 (the two parallel nodes have equal
utilizations).
In the fourth set, λ = 0.074, µ1 = 0.617, µ2 = 0.024, µ3 = 0.135, µ4 = 0.15, p = 0.1. The corre-
sponding node utilizations are ρ1 = 0.12, ρ2 = 0.31, ρ3 = ρ4 = 0.49 (Nodes 3 and 4 have equal
utilizations).

Experimental results in Tables 1, 2, 3 and 4 show that SDH (using the above less refined variant
of the heuristic proposed in Section 3) works very well and yields stable estimates with small (and
seemingly bounded) relative errors. (The results using the more refined heuristic in Section 3 were
not completed at the time of writing this paper.) Exact values of the true probabilities (being
estimated) are not feasible with the numerical algorithms available to us. However, correctness
is verified by agreement of the SDH and SDA estimates, both are typically accurate with small
relative errors. VRR ratios are mostly higher (or much higher) than one, indicating that SDH could
be more efficient than SDA. Estimates using PW do not always agree with those using SDH and
SDA. In fact, for an increasing number of replications (beyond 106 used in all simulation runs),
PW estimates eventually exhibit unstable behaviour symptomatic of infinite variance.

Generally, the key to any effective heuristic is its ability to induce a sample path behaviour
sufficiently close to those most likely to hit the rare event - the closer the better! The heuristic in
this paper seems to do just that for the relatively simple feed-forward network in Figure 1. Also, it
seems to be robust despite the convenient choice of equal dependence range (b) at different nodes.
Other heuristics may be developed that could also prove effective for this and other feed-forward
networks of various topologies.
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5 CONCLUSIONS

In this paper we have proposed and experimented with a heuristic state-dependent change of
measure to estimate (via importance sampling) the probability of population overflow in feed-
forward networks. Preliminary experimental results indicate that the heuristic yields asymptotically
efficient estimates, with relative error growing at most (sub-)linearly with the overflow level. The
efficiency of the obtained changes of measure compares well with those determined using adaptive
importance sampling methodologies. Yet, our approach does not require costly pre-computation
and avoids complicated (and often intractable) mathematical analyses. Moreover, its effectiveness
is not diminished for larger networks. The applicability of the methodology to other networks of
more complex topologies awaits further testing.
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γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 3.9476e-07 ± 2.05 3 4.0064e-07 ± 0.07 6 4.0027e-07 ± 0.27 2.80

50 * 1.2825e-14 ± 3.44 4 1.3298e-14 ± 0.05 6 1.3291e-14 ± 0.25 4.56

100 * 1.1920e-29 ± 3.50 4 1.2568e-29 ± 0.06 6 1.2540e-29 ± 0.26 2.13

Table 2: 4-Node Feed-forward Network (λ = 0.064, µ1 = 0.564, µ2 = 0.039, µ3 = 0.192, µ4 =
0.141, p = 0.1) (ρ1 = 0.11, ρ2 = 0.16, ρ3 = 0.3, ρ4 = 0.45)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 2.0830e-08 ± 5.89 3 1.9674e-08 ± 0.03 6 1.9602e-08 ± 0.25 1.23

50 * 5.2291e-17 ± 0.73 4 5.2223e-17 ± 0.02 6 5.2090e-17 ± 0.26 0.82

100 * 3.6552e-34 ± 0.67 4 3.6807e-34 ± 0.02 6 3.6921e-34 ± 0.18 0.43

Table 3: 4-Node Feed-forward Network (λ = 0.069, µ1 = 0.571, µ2 = 0.022, µ3 = 0.198, µ4 =
0.14, p = 0.1) (ρ1 = 0.12, ρ2 = ρ3 = 0.31, ρ4 = 0.49)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 1.9267e-07 ± 3.75 5 2.1408e-07 ± 0.04 11 2.1278e-07 ± 0.54 1.88

50 * 3.9177e-15 ± 2.82 4 4.4567e-15 ± 0.07 11 4.4220e-15 ± 0.56 1.80

100 * 1.9168e-30 ± 12.0 4 1.9285e-30 ± 0.10 10 1.9101e-30 ± 0.61 0.74

Table 4: 4-Node Feed-forward Network (λ = 0.074, µ1 = 0.617, µ2 = 0.024, µ3 = 0.135, µ4 =
0.15, p = 0.1) (ρ1 = 0.12, ρ2 = 0.31, ρ3 = ρ4 = 0.49)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 1.6065e-06 ± 8.08 4 1.6963e-06 ± 0.11 9 1.7018e-06 ± 0.47 9.27

50 * 5.7736e-14 ± 31.6 4 7.7208e-14 ± 0.40 8 7.6820e-14 ± 0.48 116.

100 * 2.2486e-29 ± 14.9 4 7.2017e-29 ± 0.56 10 7.0982e-29 ± 0.50 127.


