
Analysis of Crosscutting across Software Development
Phases based on Traceability

Klaas van den Berg
Software Engineering Group

University of Twente
P.O. Box 217

7500 AE Enschede
the Netherlands
+31 53 4893783

k.g.vandenberg@ewi.utwente.nl

José María Conejero
Quercus SEG

University of Extremadura
Avda. Universidad s/n
C.P. 10071 Cáceres

Spain
+34 927 257268

chemacm@unex.es

Juan Hernández
Quercus SEG

University of Extremadura
Avda. Universidad s/n
C.P. 10071 Cáceres

Spain
+34 927 257204

juanher@unex.es

ABSTRACT
Traceability of requirements and concerns enhances the quality of
software development. We use trace relations to define
crosscutting. As starting point, we set up a dependency matrix to
capture the relationship between elements at two levels, e.g.
concerns and representations of concerns. The definition of
crosscutting is formalized in terms of linear algebra, and
represented with matrices and matrix operations. In this way,
crosscutting can be clearly distinguished from scattering and
tangling. We apply this approach to the identification of
crosscutting across early phases in the software life cycle, based
on the transitivity of trace relations. We describe an illustrative
case study to demonstrate the applicability of the analysis.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements Engineering –
Methodologies.

General Terms
Theory.

Keywords
Aspect-Oriented Software Development, Traceability, Scattering,
Tangling, Crosscutting, Crosscutting Concerns.

1. INTRODUCTION
Traceability is defined as the degree to which a relationship can
be established between two or more products of the development
process, especially products having a predecessor-successor or
master-subordinate relationship to one another [11]. In
requirements engineering, these relationships describe trace
dependencies between different artefacts such as requirements,
stakeholder needs, design, system components, source code, etc.
[17]. The trace dependencies can have different types, such as

usage and abstraction dependencies (e.g. refinement and tracing
[21]). By means of recording such dependencies, developers can
improve software understanding and maintainability. Since a
change in an early phase can be traced through the development
process, traceability assists developers in quick evolving systems
with new requirements or business domains’ changes.
Traceability matrices [9] have been usually used to show such
dependencies especially in early phases, because these matrices
show the relationships between source and target elements both
forward and backward. Adopting terminology from the Model
Driven Architecture [15], we generically call source and target
the two models or domains where trace dependencies are
established. This situation is abstractly depicted in Figure 1,
where there are trace dependencies among source and target
elements. For simplicity, in this figure we only show two
abstraction levels; however, multiple intermediate stages between
source and target domains may exist.
In Aspect-Oriented Software Development (AOSD), crosscutting
is usually described in terms of scattering and tangling. However,
the distinction between these concepts is vague, sometimes
leading to ambiguous statements and confusion, as stated in [12]:
.. the term "crosscutting concerns" is often misused in two ways:
To talk about a single concern, and to talk about concerns rather
than representations of concerns. Consider "synchronization is a
crosscutting concern": we don't know that synchronization is
crosscutting unless we know what it crosscuts. And there may be
representations of the concerns involved that are not crosscutting.
We use these concepts based on our intuition and specific
experience. For example, assume that the source elements of
Figure 1 are concerns and the target elements are architectural
components.

s1 s2

t1 t2

s3

t3 t4

source

target

s1 s2

t1 t2

s3

t3 t4

source

target

Figure 1. Trace relations between source and target elements

Intuitively, we would say that s1 crosscuts s3 for a given relation
between source and target elements. However, vague definitions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EA’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

imply that it is not always possible to decide when a certain
concept applies. Precise definitions are mandatory for the
identification of crosscutting at any phase of the software life
cycle, and to allow traceability of concerns from early phases.
In this paper we propose a definition of crosscutting based on an
extension of traceability matrices, allowing developers both to
identify crosscutting concerns in early phases [5] and to trace
crosscutting concerns from early stages to subsequent phases of
the software life cycle. Although there are other definitions of
crosscutting in the literature, these definitions are usually very
tied to the implementation level, such as [14]. A study of
similarities and differences of such definitions and ours is out of
scope of this paper. An extended description of our definition can
be found in [6][7].
The rest of paper is structured as follows. In section 2, we
introduce our definition of crosscutting. In section 3, we describe
how to represent and visualize crosscutting in a matrix and how to
derive this matrix from the dependency matrix using a scattering
and tangling matrix. Examples of application in early phases and
the transitivity of trace relations are shown in section 4. Then in
section 5, we show a case study where we apply the concepts
introduced in the previous sections. Finally in sections 6 and 7,
we present related work and conclusions of the paper.

2. CROSSCUTTING FORMALIZATION
Our proposition is that crosscutting can only be defined in terms
of 'one thing' with respect to 'another thing': at least two domains
(or two levels or two phases) are related with each other in some
way. For example:
- A domain refers for example to concerns in a concern model

or to a decomposition of architectural elements.
- A phase refers to any phase in the software development life

cycle (e.g. requirements, design, and so on)
- A level refers for example to models in the Model Driven

Architecture [15] (e.g. CIM, PIM and PSM).
We use here the general terms source and target (as in [15]) to
denote two consecutive domains, phases or levels.
We assume that elements in the source are related to elements in
the target: there is a mapping between source and target elements.
These mappings are captured in trace dependency relationships.
The terms crosscutting, tangling and scattering are defined as
specific cases of these mappings. We define scattering as the case
where a source element is mapped to multiple target elements
(and consequently has more than one trace relations to the target).
We define tangling as the case where a target element is related to
multiple source elements (and consequently has more than one
trace relations to the source). We now define crosscutting as
follows: crosscutting occurs when, in a mapping between source
and target, a source element is scattered over target elements and
where in at least one of these target elements, one or more other
source elements are tangled. In other words, we say that source
element s1 crosscuts source element s2 for a given mapping
between source and target, if s1 is scattered over target elements
and in at least one of these target elements, s1 is tangled with
source element s2. These definitions will be explained in the
following sections.

3. MATRIX REPRESENTATION
In this section we show how crosscutting can be represented and
identified by means of an extension to traceability matrices. Trace
relations are captured in a dependency matrix, representing the
mapping between source and target. As an extension, we derive
the crosscutting matrix from the dependency matrix. We describe
how the crosscutting matrix can be constructed from the
dependency matrix with some auxiliary matrices. This is
illustrated with some examples.

3.1 Tracing from source to target.
Traceability matrices have been usually used to show the
relationships between requirements elicitation and the
representation of these requirements in a particular engineering
approach (such as use cases [21] or viewpoints [10]).
In terms of linear algebra, traceability matrices show the mappings
between source and target. We show these mappings in a special
kind of traceability matrix that we called dependency matrix. A
dependency matrix (source x target) represents the dependency
relation between source elements and target elements (inter-level
relationship). In the rows, we have the source elements, and in the
columns, we have the target elements. In this matrix, a cell with 1
denotes that the source element (in the row) is mapped to the
target element (in the column). Reciprocally this means that the
target element depends on the source element. Scattering and
tangling can easily be visualized in this matrix (see the examples
below).
We define a new auxiliary concept crosscutpoint used in the
context of dependency diagrams, to denote a matrix cell involved
in both tangling and scattering. If there are one or more
crosscutpoints then we say we have crosscutting.
Crosscutting between source elements for a given mapping to
target elements, as shown in a dependency matrix, can be
represented in a crosscutting matrix. A crosscutting matrix (source
x source) represents the crosscutting relation between source
elements, for a given source to target mapping (represented in a
dependency matrix). In the crosscutting matrix, a cell with 1
denotes that the source element in the row is crosscutting the
source element in the column. In section 3.2 we explain how this
crosscutting matrix can be derived from the dependency matrix.
A crosscutting matrix should not be confused with a coupling
matrix. A coupling matrix shows coupling relations between
elements at the same level (intra-level dependencies). In some
sense, the coupling matrix is related to the design structure matrix
[3]. On the other hand, a crosscutting matrix shows crosscutting
relations between elements at one level with respect to a mapping
onto elements at some other level (inter-level dependencies).
We now give an example and use the dependency matrix and
crosscutting matrix to visualize the definitions (S denotes a
scattered source element - a grey row; NS denotes a non-scattered
source element; T denotes a tangled target element - a grey
column; NT denotes a non-tangled target element). The example
is shown in Table 1.
In this example, we have one scattered source element s[1] and
one tangled target element t[3]. We apply our definition of
crosscutting and arrive to the crosscutting matrix. Source element
s[1] is crosscutting s[3] (because s[1] is scattered over [t[1], t[3],

t[4]] and s[3] is in the tangled one of these elements, namely t[3]).
The reverse is not true: the crosscutting relation is not symmetric.

Table 1. Example dependency and crosscutting matrix with
tangling, scattering and one crosscutting

dependency matrix
 target
 t[1] t[2] t[3] t[4]

s[1] 1 0 1 1 S
s[2] 0 1 0 0 NS

so
ur

ce

s[3] 0 0 1 0 NS
 NT NT T NT

crosscutting matrix
 source

 s[1] s[2] s[3]
s[1] 0 0 1
s[2] 0 0 0

so
ur

ce

s[3] 0 0 0

3.2 Constructing crosscutting matrices
In this section, we describe how to derive the crosscutting matrix
from the dependency matrix. We use a more extended example
than the previous ones. We now show an example with more than
one crosscutpoint, in this example 8 points (see Table 2; the dark
grey cells).

Table 2. Example dependency matrix with tangling, scattering
and several crosscuttings

dependency matrix
 target
 t[1] t[2] t[3] t[4] t[5] t[6]

s[1] 1 0 0 1 0 0 S
s[2] 1 0 1 0 1 1 S
s[3] 1 0 0 0 0 0 NS
s[4] 0 1 1 0 0 0 S so

ur
ce

s[5] 0 0 0 1 1 0 S
 T NT T T T NT

 crosscutting matrix

 source

 s[1] s[2] s[3] s[4] s[5]

s[1] 0 1 1 0 1
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 0 0 so

ur
ce

s[5] 1 1 0 0 0

Based on the dependency matrix, we define some auxiliary
matrices: the scattering matrix (source x target), and the tangling
matrix (target x source).
These two matrices are defined as follows:
- In the scattering matrix a row contains only dependency
relations from source to target elements if the source element in
this row is scattered (mapped onto multiple target elements);
otherwise the row contains just zero's (no scattering).
- In the tangling matrix a row contains only dependency relations
from target to source elements if the target element in this row is
tangled (mapped onto multiple source elements); otherwise the
row contains just zero's (no tangling).
For our example in Table 2, these matrices are shown in Table 3.
We now define the crosscutting product matrix, showing the
frequency of crosscutting relations. A crosscutting product matrix
(source x source) represents the frequency of crosscutting

relations between source elements, for a given source to target
mapping. The crosscutting product matrix is not necessarily
symmetric. The crosscutting product matrix ccpm can be obtained
through the matrix multiplication of the scattering matrix sm and
the tangling matrix tm: ccpm = sm . tm where ccpmik = smij tmjk

Table 3. Scattering and tangling matrices for dependency
matrix in Table 2

scattering matrix
 target
 t[1] t[2] t[3] t[4] t[5] t[6]

s[1] 1 0 0 1 0 0
s[2] 1 0 1 0 1 1
s[3] 0 0 0 0 0 0
s[4] 0 1 1 0 0 0 so

ur
ce

s[5] 0 0 0 1 1 0
 tangling matrix
 source
 s[1] s[2] s[3] s[4] s[5]

t[1] 1 1 1 0 0
t[2] 0 0 0 0 0
t[3] 0 1 0 1 0
t[4] 1 0 0 0 1
t[5] 0 1 0 0 1

ta
rg

et

t[6] 0 0 0 0 0

In this crosscutting product matrix, the cells denote the frequency
of crosscutting. This can be used for quantification of crosscutting
(crosscutting metrics). The frequency of crosscutting in this
matrix should be seen as an upper bound. In actual situations, the
frequency can be less than the frequency from this matrix analysis,
because in the matrix we abstract from scattering and tangling
specifics. In the crosscutting matrix, a matrix cell denotes the
occurrence of crosscutting; it abstracts from the frequency of
crosscutting.
The crosscutting matrix ccm can be derived from the crosscutting
product matrix ccpm using a simple conversion: ccmik = if (ccpmik
> 0) /\ (i ≠ j) then 1 else 0.
The crosscutting product matrix for the example is given in Table
4. From this crosscutting product matrix we derive the
crosscutting matrix that we show in Table 2.

Table 4. Crosscutting product matrix for dependency matrix
in Table 2

crosscutting product matrix
 source
 s[1] s[2] s[3] s[4] s[5]

s[1] 2 1 1 0 1
s[2] 1 3 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 1 0 so

ur
ce

s[5] 1 1 0 0 2

In this example, there are no cells in the crosscutting product
matrix larger than 1, except on the diagonal where it denotes a
crosscutting relation with itself, which we disregard here. In the
crosscutting matrix, we put the diagonal cells to 0. Obviously, this
is because we interpret a source element can’t crosscut itself.
As we can see in crosscutting matrix in Table 4, there are now 10
crosscutting relations between the source elements. The
crosscutting matrix shows again that the crosscutting relation is
not symmetric. For example, s[1] is crosscutting s[3], but s[3] is
not crosscutting s[1] because s[3] is not scattered (scattering and
tangling are necessary but not sufficient condition for
crosscutting).

For convenience, these formulas can be calculated automatically
by means of very simple mathematic tools. By filling in the cells
of the dependency matrix, the other matrices are calculated
automatically.

4. TRACEABILITY OF CROSSCUTTING
In this section, we apply our approach to the identification of
crosscutting in the early phases of software development.
Moreover, we consider properties of crosscutting across
consecutive phases of the software lifecycle, based on transitivity
of traceability relations.

4.1 Traceability in early phases
The extension to traceability matrices with a crosscutting matrix
presented in this paper can be applied to any consecutive phases
of the development process. In this section we show the
application of our approach to early phases as a means to identify
crosscutting in such phases.
Our approach abstracts from specific phases, such as concern
modelling, requirements elicitation, architectural design and so
on. The only proposition is that we define crosscutting for two
phases (or levels), which we called source and target. This
approach can be applied to early phases in software development,
e.g. concerns and requirements, but also to other phases near
implementation, e.g. a UML design and Java code. In each case,
we have to define the trace relations between the respective source
elements and target elements.
In Table 5, we show a table with examples of source and target
elements. The result of the crosscutting analysis depends on the
source and target. In section 5, we apply the approach in a case
study.

Table 5. Crosscutting cases in Early Phases
 Source Target Result

Case 1 Concerns Requirements Crosscutting Concerns with
respect to Requirements

Case 2 Requirem
ents

Use Cases Crosscutting Requirements with
respect to Use Cases

Case 3 Concerns Use Cases Crosscutting Concerns with
respect to Use Cases

Case 4 Requirem
ents

Design
Modules

Crosscutting Requirements with
respect to Design Modules

Case 5 Concerns Design
Modules

Crosscutting Concerns with
respect to Design Modules

4.2 Transitivity of trace relations
Usually we encounter a number of consecutive levels or phases in
software development. From the perspective of software life cycle
phases, we usually distinguish Domain Analysis, Concern
Modelling, Requirement Analysis, Architectural Design, Detailed
Design, and Implementation.
We consider here the cascading of two consecutive mappings: the
target of the first mapping serves as source for the second one. For
convenience, we call the first target our intermediate level, and
second target just target (see Figure 2).
Each of these refinements can be described with a dependency
matrix. We describe how to combine two consecutive dependency

matrices, in an operation we call cascading. Cascading is an
operation on two dependency matrices resulting in a new
dependency matrix, which represents the dependency relation
between source elements of the first matrix and target elements of
the second matrix.

Figure 2. Cascading of consecutive levels

For cascading, it is essential to define the transitivity of
dependency relations. Transitivity is defined as follows. Assume
we have a source, an intermediate level, and a target as is shown
in Figure 2. There is a dependency relation between an element in
the source and an element in the target if there is some element at
the intermediate level that has a dependence relation with this
source element and a dependency relation with this target element.
In other words, the transitivity dependency relation R for source s,
intermediate level u and target t, and #u is the number of elements
in u:

∃ k ∊ (1..#u): (s[i] R u[k]) ∧ (u[k] R t[m]) ⇒ (s[i] R t[m])
We can also formalize this relation in terms of the dependency
matrices. Assume we have three dependency matrices m1 :: s x u
and m2 :: u x t and m3 :: s x t, where s is the source, u is some
intermediate level, #u is the cardinality of u, and t is the target.
The cascaded dependency matrix m3 = m1 cascade m2
Then, transitivity of the dependency relation is defined as follows:

∃ j ∊ (1..#u): m1[i,j] ∧ m2[j,k] ⇒ m3[i,k]
In terms of linear algebra, the dependency matrix is a relationship
between two given domains, source and target (see section 3.1).
Accordingly, the cascading operation can be generalized as a
composition of relationships as follows. Let DomK, k = 1..n, be n
domains, and let fi be the relationship between domains Domi and
Domi+1, 1≤i<n, denoted as 1+⎯→⎯ i

if
i DomDom . Let Source and

Target be the domains Dom1 and Domn, respectively.
Consequently, we have the following relationship between the
domains:

argetTDomDomDom ourceS nf
n

fff ⎯⎯ →⎯⎯⎯→⎯⎯⎯→⎯⎯→⎯ −
−

1
1

3
3

2
2

1 K
As a result, the dependency relationship between the Source and
the Target is defined as 121 fffDM nn oKoo −−≡ . In this way, the
dependence matrix between a source and target is obtained
through matrix multiplication of the dependency matrices that
represents each fi, 1≤i<n.

Table 6. Two dependency matrices that will be cascaded
dependency matrix 1

 requirement
concern r[1] r[2] r[3] r[4]

c[1] 1 0 0 1
c[2] 0 1 0 0
c[3] 0 0 1 1

dependency matrix 2
 module

requirement m[1] m[2] m[3] m[4] m[5]
r[1] 1 0 0 0 1
r[2] 0 1 0 0 0
r[3] 0 1 1 0 0
r[4] 0 0 0 1 1

As an example, we explain the cascading of two dependency
matrices: one for concerns x requirements and one for
requirements x modules. The two dependency matrices are shown
in Table 6.
The first dependency matrix relates concerns with requirements.
The second dependency matrix relates requirements with
modules. The resulting dependency matrix relates concerns with
modules (see Table 7). This matrix can be used to derive the
crosscutting matrix for concern x concern with respect to
modules.
The crosscutting matrix in Table 7 is not symmetric. Based on this
matrix we conclude, for the given dependency relations between
concerns and modules, that: concern c[1] is crosscutting concern
c[3]; concern c[2] does not crosscut any other concern; concern
c[3] is crosscutting concerns c[1] and c[2].

Table 7. The resulting dependency matrix and crosscutting
matrix based on cascading of the matrices in Table 6

resulting dependency matrix
 module

concern m[1] m[2] m[3] m[4] m[5]
c[1] 1 0 0 1 2
c[2] 0 1 0 0 0
c[3] 0 1 1 1 1

crosscutting matrix
 concern

concern c[1] c[2] c[3]
c[1] 0 0 1
c[2] 0 0 0
c[3] 1 1 0

From this description, it is clear that cascading can be used for
traceability analysis across multiple levels, e.g. from concerns to
implementation elements, via requirements, architecture and
design (c.f. [20]). We can trace concerns throughout the complete
development process applying the crosscutting analysis in each
level. Once the crosscutting concerns have been identified in a
particular level, we can compare the results with the obtained in
previous or subsequent levels. We can observe how crosscutting
concerns can be identified in particular phases.

5. CASE STUDY
In this section, we show the application of our approach in a case
study. This case has been used for some workshops, e.g. [22]. The
case study implements a Conference Review System (CRS) [8].
For space reasons, we have used a simplification of this system.
The general purpose of the system is to assist a conference’s
program committee to perform the review of papers and
registration of participants of such conference.
There are four different user types in the system: PcChair,
PcMembers, Authors and Participants. A PcChair is the main
responsible of the review process. He has access to every paper
and every review in the system. A PcMember takes over the
reviews of the papers. A PcMember can see information of the
papers but not reviews by other PcMembers. An Author can
submit papers to the system. An Author can see only information
about his own submission. A Participant must register in order to
attend the conference. The register process is completely
separated from the login process. However, once a user has
registered he will need log whenever he accesses the system. This
login process checks the role of the user in the system.

The use case model of the conference review system is shown in
Figure 3. The complete requirements’ analysis can be seen in [8].

Figure 3. Use case model of the Conference Review System

We identified the following eight concerns: Papers Submission
(PS), Papers Queries (PQ), Registration (Reg), Conference (C),
Review (R), Information Retrieval/Supply (IRS), Login (L) and
User Types (UT). Furthermore, we take the elements in the use
case model (each package) shown in Figure 3 and the set of actors
which take part in system as decomposition of requirements. We
apply our approach to identify crosscutting in these domains. In
Table 8a we show the dependency matrix with trace dependencies
between concerns and requirements and in Table 8b the
crosscutting matrix obtained from the former. Other
decompositions of both concerns and requirements would be
possible and the results obtained would be different.

Table 8. (a) Dependency matrix concerns x reqs and (b)
crosscutting matrix for the Conference Review System

(a) dependency matrix (concerns x requirements)
 requirements
 Register

Process
Info

Papers
Load

Papers
Review
Process

Conf.
Manag.

Login&
Roles

Actor
s

PS 0 0 1 0 0 0 0 NS
PQ 0 1 0 0 0 0 0 NS
Reg 1 0 0 0 0 0 0 NS
C 0 0 0 0 1 0 0 NS
R 0 0 0 1 0 0 0 NS

IRS 1 1 1 1 1 0 0 S
L 0 1 1 1 1 1 0 S

co
nc

er
ns

UT 0 0 0 0 0 0 1 NS
 T T T T T NT NT

(b) crosscutting matrix (concerns x concerns) at requirements
 concerns
 PS PQ Reg C R IRS L UT

PS 0 0 0 0 0 0 0 0
PQ 0 0 0 0 0 0 0 0
Reg 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0

IRS 1 1 1 1 1 0 1 0
L 1 1 0 1 1 1 0 0

co
nc

er
ns

UT 0 0 0 0 0 0 0 0

As we can see in Table 8b, the Login concern crosscuts every
concern where the user must authenticate and system must check
the role of such user. Similarly, the Information Retrieval/Supply
concern crosscuts the concerns which need an access to the
correspondence information to perform their actions.

Once we have identified the crosscutting concerns with respect to
the requirements domain, we can observe how the concerns are
related to the design of the system. We show in Figure 4 a simple
UML class diagram representing the static structure of the design.

Figure 4. Structure diagram of Conference Review System

Now, we take the requirements as represented in the use case
model as source elements, and the classes in the class diagram of
the design as target elements. We can build the dependency matrix
shown in Table 9 to show the trace dependencies between
requirements and design elements.

Table 9. Dependency matrix requirements x design
 classes
 Paper Revie

w
Confer
ence

Pc
Chair

Pc
Member

Author Partic
ipant

Logge
r

Regis
try

Register
Process 0 0 0 0 0 0 1 0 1 S

Info
Papers 1 0 0 0 0 0 0 0 0 NS

Load
Papers 1 0 0 0 0 0 0 0 0 NS

Review
Process 0 1 0 0 0 0 0 0 0 NS

Conf.
Manag 0 0 1 0 0 0 0 0 0 NS

Login&
Roles 0 0 0 0 0 0 1 1 0 S

R
eq

ui
re

m
en

ts

Actors
 0 0 0 1 1 1 1 0 0 S

 T NT NT NT NT NT T NT NT

As we can see in Table 9, the trace dependencies between
Requirements and classes are direct mappings except for Register
Process and Login&Roles because of information added in the
Participant class for such register and login purposes respectively
(infoRegister and login, passwd attributes of Participant class).
These requirements are tangled in such class with the own
functionality of Participant class (User Type).
We apply the cascading operation (as defined in section 4.2)
between the dependency matrix concerns x requirements (Table
8a) and the dependency matrix requirements x design (Table 9) to
obtain trace dependencies between concerns and design elements.

This derived dependency matrix concerns x design is shown in
Table 10.

Table 10. Cascaded dependency matrix concerns x design
 classes

 Paper Revie
w

Confere
nce

Pc
Chair

Pc
Member Author Partici

pant
Logge

r
Regis

try

PS 1 0 0 0 0 0 0 0 0 NS
PQ 1 0 0 0 0 0 0 0 0 NS
Reg 0 0 0 0 0 0 1 0 1 S
C 0 0 1 0 0 0 0 0 0 NS
R 0 1 0 0 0 0 0 0 0 NS

IRS 2 1 1 0 0 0 1 0 1 S
L 2 1 1 0 0 0 1 1 0 S

co
nc

er
ns

UT 0 0 0 1 1 1 1 0 0 S
 T T T NT NT NT T NT T

Finally, applying our definition of crosscutting to last derived
dependency matrix, we obtain the crosscutting matrix shown in
Table 11.

Table 11. Crosscutting matrix based on cascaded dependency
matrix in Table 10

 concerns
 PS PQ Reg C R IRS L UT

PS 0 0 0 0 0 0 0 0
PQ 0 0 0 0 0 0 0 0
Reg 0 0 0 0 0 1 1 1
C 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0

IRS 1 1 1 1 1 0 1 1
L 1 1 1 1 1 1 0 1

co
nc

er
ns

UT 0 0 1 0 0 1 1 0

From this matrix we can observe that - with respect to the design -
we have obtained some new crosscutting concerns. The Reg
concern crosscuts the IRS, L and UT. Similarly, the UT crosscuts
the IRS, L and UT. As we showed in dependency matrix obtained
by means of the cascading operation (see Table 10), all these
concerns are scattered in several design modules and in at least
one of these modules other concern is tangled.
Obviously, this conclusion about crosscutting very much depends
on the decomposition at each level and the dependencies between
elements at these levels. There are many alternatives, which could
aim at avoiding crosscutting by using another modularization (e.g.
aspect-oriented techniques such as [4]). Here, we showed how to
analyse crosscutting across several phases in the software life
cycle.

6. RELATED WORK
Several authors use matrices (design structure matrices, DSM) to
analyze modularity in software design [3]. Lopes and Bajracharya
[13] describe a method with clustering and partitioning of the
design structure matrix for improving modularity of object-
oriented designs. However, the design structure matrices represent
intra-level dependencies (as coupling matrices in section 3.1) and
not the inter-level dependencies as in the dependency matrices
used for our analysis of crosscutting. In [18], a relationship matrix
(concern x requirement) is described very similar to our
dependency matrix, and used to identify crosscutting concerns.
However, there is no formalized definition of crosscutting.
The approach presented in [2] allows the requirements engineer to
identify crosscutting concerns. However, the identification of
crosscutting functional concerns is not yet clear and it lacks
explicit support (e.g. guidelines) to identify non-functional
crosscutting concerns. In [19] the authors have improved this

approach by means of a mechanism based on a natural language
processor to identify functional and non-functional crosscutting
concerns from requirements documents. However this approach is
focused only on requirements phases while our approach can be
applied throughout the software life cycle.
The papers described above lack the application of their definition
of crosscutting to consecutive levels. We used our formalization
to trace crosscutting concerns across levels of a software
development process, as shown by the cascading operation.
A definition of crosscutting similar to ours can be found in [14]
and [16]. Our definition is less restrictive as explained in [6].
Moreover, our definition can be applied to consecutive levels of
abstractions in software development, such as requirements,
design and implementation. This can be achieved through the
cascading of dependency matrices as shown in section 4.

7. CONCLUSION
We proposed a definition of crosscutting based on an extension to
traceability matrices. In a dependency matrix we show the
mappings between source and target. As an extension, we used
this matrix to derive the crosscutting matrix and to identify
crosscutting. This can be applied to any phases in a software
development process, also in early phases. The approach can be
applied in systems where well known crosscutting concerns exist
but also in systems where new crosscutting concerns are
identified.
An interesting application is the cascading of crosscutting, which
can be used to model crosscutting relations across several levels,
for example from concern modelling, to requirements,
architectural design to detailed design and implementation. As
such, it provides an approach for traceability analysis. We showed
the application of the approach in a case study to identify
crosscutting. The operationalization of crosscutting with matrices
constitutes a helpful means to analyse crosscutting in different
scenarios or domains. Further research should show the scalability
of this approach and provide support for different types of trace
relations.

ACKNOWLEDGEMENT
This work has been carried out in conjunction with the AOSD-
Europe Project IST-2-004349-NoE (see [1]) and also partially
supported by CICYT under contract TIN2005-09405-C02-02.

REFERENCES
[1] AOSD-Europe (2005). AOSD Ontology 1.0 - Public Ontology

of Aspect-Orientation. Retrieved May, 2005, from
http://www.aosd-europe.net/documents/d9Ont.pdf.

[2] Araujo, J., Moreira, A., Brito, I. & Rashid, A. (2002), Aspect-
Oriented Requirements with UML, In Workshop on Aspect-
Oriented Modelling with UML at International Conference on
Unified Modelling Language. Dresden, Germany.

[3] Baldwin, C.Y. & Clark, K.B. (2000). Design Rules vol I, The
Power of Modularity. MIT Press.

[4] Baniassad, E. & Clarke, S. (2004). Theme : An Approach for
Aspect-Oriented Analysis and Design. In 26th International
Conference on Software Engineering, Edinburgh, Scotland.

[5] Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid,
A.& Tekinerdogan, B. (2006). Discovering Early Aspects. In
IEEE Software, vol. 23, nº 1, pp. 61-70.

[6] Berg, K. van den, & Conejero, J. M. (2005), A Conceptual
Formalization of Crosscutting in AOSD. In Iberian Workshop
on Aspect Oriented Software Development, TR-24/05
University of Extremadura (pp. 46-52). Granada, Spain.

[7] Berg, K. van den, & Conejero, J. M. (2005b). Disentangling
crosscutting in AOSD: A conceptual framework. Paper
presented at the EIWAS2005, Brussels

[8] Cachero. C., Gómez, J., Párraga, A. & Pastor, O. (2001).
Conference Review System: A Case of Study. In [22].

[9] Davis, A. (1993). Software Requirements: Objects, Functions
and States. Prentice–Hall, Second Edition.

[10] Finkelstein, A. & Sommerville, I. (1996). The Viewpoints
FAQ. BCS/IEE Software Engineering Journal, 11(1)

[11] Institute of Electrical and Electronics Engineers (1990) IEEE
Standard Computer Dictionary. New York.

[12] Kiczales, G. Crosscutting. AOSD.NET Glossary 2005. At
http://aosd.net/wiki/index.php?title=Crosscutting.

[13] Lopes, C.V. & Bajracharya, S.K. (2005). An analysis of
modularity in aspect oriented design. In 4th International
Conference on Aspect-Oriented Software Development.
Chicago, Illinois.

[14] Masuhara, H. & Kiczales, G. (2003). Modeling Crosscutting in
Aspect-Oriented Mechanisms. In 17th European Conference on
Object Oriented Programming. Darmstadt.

[15] MDA (2003). MDA Guide Version 1.0.1, document number
omg/2003-06-01.

[16] Mezini, M. & Ostermann, K. (2003). Modules for Crosscutting
Models. In 8th International Conference on Reliable Software
Technologies. LNCS 2655. Toulouse, France.

[17] Ramesh, B. & Jarke, M. (2001). Toward reference models for
requirements traceability. IEEE Transactions on Software
Engineering, 27(4):58–93.

[18] Rashid, A., Moreira, A. & Araujo, J. (2003). Modularisation
and Composition of Aspectual Requirements. In Second Aspect
Oriented Software Conference. Boston, USA.

[19] Sampaio, A., Loughran, L., Rashid, A. & Rayson, P. (2005).
Mining Aspects in Requirements. In Early Aspects 2005
Workshop at Aspect Oriented Software Development
Conference. Chicago, USA.

[20] Tekinerdogan, B. (2004). ASAAM: Aspectual Software
Architecture Analysis Method. In 4th Working IEEE/IFIP
Conference on Software Architecture.

[21] UML (2004). Unified Modeling Language 2.0 Superstructure
Specification. Retrieved October, 2004 from
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

[22] First International Workshop on Web-Oriented Software
Technology. (2001). http://www.dsic.upv.es/~west/iwwost01/ .
Valencia, Spain

