

Abstract — In this paper we present a method for mapping

streaming applications, with real-time requirements, onto a
reconfigurable M PSoC. In this method, the per formance of the
hardware architecture (the reconfigurable Processing Element,
the Network Inter face and the Network-on-Chip) is integrated in
the per formance models of the applications. In this way the
per formance of the mapped application can be determined at run-
time. A predictable NoC (guaranteed bandwidth and bounded
latency), a predictable Network Inter face and a predictable
Processing Element are key requirements for our approach.

I. INTRODUCTION

n the EU-FP6 project 4S* we propose an energy-efficient
reconfigurable Multi-Processor System-on-Chip (MPSoC)

architecture with run-time software and tools. The MPSoC
architecture consists of a heterogeneous set of processing
elements (PEs) (also denoted as tiles) interconnected by a
Network-on-Chip (NoC). By exploiting the available
parallelism of the PEs, they can run at a relatively low
frequency (below 500 MHz) to achieve sufficient performance
at an acceptable energy cost. The architecture, including the
run-time software, can replace inflexible ASICs for future
embedded systems.

A. Streaming applications and MPSoCs

In this paper we focus on the domain of streaming
applications [1]: e.g. wireless baseband processing for
audio/video broadcast (DAB, DRM, DVB) and multi-media
processing (MPEG-2, MPEG-4). Streaming applications show
a predictable temporal and spatial behavior. Some
characteristics are:
• Relatively simple local processing on huge amounts of data.
• Throughput guarantees (in data items per sec.) are required

for the processing as well as for the communication.
• The life-time of a streaming application is semi-static, which

means that its processes and communication streams are
fixed for a relatively long time (seconds to hours).

Current standard processing architectures are not suitable for
adaptive streaming applications because:
• General Purpose Processors (GPPs) have a large

overhead; therefore they are by far not efficient enough
for high-performance streaming applications,

• Streaming implies a very high I/O rate (mega samples/sec)

* This work is part of the 4S project [4] that has been supported by the

Sixth European Framework Programme under project number IST 001908

that cannot be handled by von Neuman style processors,
• Data caching, one of the pillars of modern processors, is

not very effective for streaming applications and therefore
needs to be reconsidered.

It is expected that devices with hundreds of cores
interconnected by a NoC [6] can be designed and will become
available in the coming years [10]. We expect that, due to
energy and performance constraints, these cores will be
reconfigurable and heterogeneous.

We believe reconfigurable MPSoC architectures will, to a
large extend, replace ASICs especially for the streaming part
of energy-efficient embedded systems. This trend leads to a
number of challenges. For example: we have learned in the last
decades that mapping an arbitrary program on a MPSoC is a
tough problem; the available parallelism is often difficult to
exploit. However, for an extremely important sub-class of
programs, streaming applications mentioned above, we believe
this mapping problem is more manageable. The reason is that
streaming applications are inherently parallel and that memory
can be distributed. This is beneficial for the memory wall, the
energy wall, and the ILP wall [3].

B. SR-SDF graphs and MCM analysis

To map streaming applications on a MPSoC, we assume the
applications can be represented as communicating parallel
processes. In this paper, we use a Single Rate Synchronous
Data Flow (SR-SDF) graph model [7] which is a directed
graph with nodes representing sequential processes (also
called tasks or actors) and edges representing FIFO
communication between processes. The vertices of an SR-SDF
graph are called actors; they model some activity. The actors
are characterised by an execution time given as a label of the
actor. The graph’s edges represent dependencies between the
actors. The actors interact by exchanging tokens over the
connecting edges. An edge behaves like a FIFO buffer where
the tokens are stored.

When there is at least one token preset on each input edge
of an actor, the actor is executed (also called fired). After a
time period equal to its execution time, the actor produces one
token on each of its output edges. To prevent the start of a
second execution before the first one has finished, the actor
can also be connected with a self-edge with a single token.

Figure 1 shows an example SR-SDF graph that models a
bounded FIFO buffer with a capacity of two data items. The
number of tokens on the cycle between the two actors
corresponds to the buffer capacity. Each token on the upper

Mapping streaming applications on a
reconfigurable MPSoC platform at run-time

Philip K.F. Hölzenspies, Gerard J.M. Smit, Jan Kuper
University of Twente, the Netherlands

I

1-4244-1368-0/07/$25.00 2007 IEEE ©

edge corresponds to an empty buffer space and each token on
the lower edge corresponds to a full buffer space. When a
token arrives on the edge IN, the actor A1 is executed,
consuming an empty buffer space and producing a full buffer
space. Subsequently, executing A2 consumes a full buffer
space and produces an empty buffer space and a data item on
the OUT edge.

Figure 1: SR-SDF model of a FIFO buffer of capacity two

data items
Given an SR-SDF graph, we can derive its throughput in

terms of the number of tokens per time unit by applying a
standard analysis technique for single-rate synchronous data
flow models called Maximum Cycle Mean (MCM) analysis
[8]. MCM analysis examines all cycles in an SR-SDF graph
and determines their cycle mean. The cycle mean of a cycle is
defined as the ratio between the sum of the execution times of
all the actors on the cycle and the number of tokens on the
cycle.

SR-SDF graphs have two important properties [8]:
periodicity and monotonicity. The periodicity property means
that after a transient period after the start of an application, the
execution of a strongly connected SR-SDF graph will exhibit
periodic behavior. The monotonicity property means that the
throughput of a SR-SDF graph is a non-decreasing function of
the execution time of the actors. In other words, decreasing
these execution times may only lead to equal or higher
throughput. In our models, the execution times may vary, but
we label the actors always with the worst case execution times.
Hence, according to the monotonicity property, by applying
the MCM analysis we derive the worst case throughput.

C. Run-time mapping

The MPSoC architecture of our system is controlled by a
Central Coordinating Operating System (CeCOS) that runs on
one of the GPPs (General Purpose Processors) of the MPSoC.
The main task of the CeCOS is to manage the system
resources. When applications are started, the CeCOS tries to
satisfy the Quality of Service (QoS) requirements, to optimize
the resources usage and to minimize the energy consumption.
To reduce the energy consumption, each process is mapped on
the PE that can execute it most efficiently. This so called
spatial mapping of processes is performed at run-time by the
spatial mapping tool [5]. Run-time mapping offers a number of
advantages over design-time mapping. For example:

• to adapt to the available resources. In general it is only
known at run-time what mix of applications will run in
parallel;

• to enable unforeseeable upgrades after first product
release;

• to avoid defective parts of a SoC. Larger chips mean
lower yield. The yield can be improved when the
mapper is able to avoid faulty parts of the chip. Also,

aging can lead to faulty parts that are unforeseeable at
design-time.

The CeCOS determines when the spatial mapping tool is
called; in principle only when a new streaming application is
started, but sometimes applications should be remapped,
because other applications have freed resources that will make
the applications to be remapped run more efficiently. The
objective of the spatial mapping tool is to minimize the energy
consumption of an entire application: processing as well as the
inter-process communication while preserving timing
guarantees. To be able to perform the mapping of actors to
PEs at run-time the mapping algorithm needs:

1. A model of the application (in our case an SDF graph),
2. A model of the SoC platform (number and type of tiles,

and NoC structure),
3. The constraints of the application (e.g. throughput

and/or latency requirements),
4. The expected worst case execution time (and resource

usage, e.g. energy consumption) of the process
implementations on specific tiles,

5. The performance model (time as well as energy
consumption) of the inter-process communication.

In this paper, we present a method for estimating the
performance of mappings of streaming applications on a
MPSoC. This can be used by the run-time mapping tool, to
estimate whether a certain mapping is timing wise feasible.

We use the following phases in our approach:
• Phase 1: (design-time) model the application as a SR-SDF

graph
• Phase 2: (run-time) map all the actors to an available and

suitable Processing Element (PE)
• Phase 3: (run-time) extend the SR-SDF graph with the

response time of the actor on the selected PE
• Phase 4: (run-time) extend the SR-SDF graph with the

performance of the selected route through the NoC
• Phase 5: (run-time) perform MCM analyses to obtain the

performance estimates of the entire mapped application
• Phase 6: (run-time) depending on the result of step 5, go

back to step 2 (re-map the application), or accept the
current mapping. The critical cycle can be determined and
can be fed-back to the mapping algorithm.

II. CASE STUDY HIPERLAN/2

We illustrate our method with a simple example of a number
of processes connected in a pipelined fashion. We use the
HiperLAN/2 [1] receiver which we map on a MPSoC. How
the HiperLAN/2 receiver is partitioned is discussed in [2]. The
tasks are compiled for Montium processing tiles [2] and the
processing times reported by the compiler are given in the
figure (in clock cycles).

The HiperLAN/2 receiver processes information received
on a wireless communication channel. Every 4 µs a new data
item (OFDM symbol = 64 32-bit words) arrives on the input of
the receiver and the receiver must be ready to process it.
Therefore, the data inter-arrival period of 4 µs defines the real-

time constraint on the receiver operation. To be able to process
all arriving data items, the receiver must have throughput of at
least THR = 1/4 µs = 250 data items/ms.

Figure 2: Pipeline of a HiperLAN/2 receiver

One of the tasks of the mapping tool is to evaluate the
performance of the mapping (timing as well as energy
performance). The performance depends on the hardware
architecture of the PE, the Network Interface (NI) and the
NoC. In this section we show how the PE organization and
NoC latency can be incorporated in the SR-SDF model of the
application to predict the overall (time and energy)
performance of the streaming applications.

A. MPSoC and NoC architecture model

The application pipeline consists of 3 tasks, denoted as P1 to
P3, and we assume they are mapped onto separate PEs of the
MPSoC. The processed data items are transported between the
PEs by the NoC. The NoC and a PE exchange data through the
PE’s local memory (MEM); the received data items are loaded
in the MEM and after processing they are read from the MEM
and transmitted to the next PE. The data exchange between a
PE and the NoC is handled by a network interface (NI). The
communication uses back-pressure. For example, when the
input data buffer, reserved in the MEM, for arriving data items
is full, the NI stops receiving and in turn blocks the next data
item in the network.

The performance of the application is determined by the
time that the tasks need to process a data item and by the time
needed to communicate a data item between two PEs. To
predict the application’s performance, all the worst case
processing and communication times of the application must
be known before the mapping takes place.

Besides the processing and communication times, the
application performance also depends on whether processing
and communication in a PE can be performed simultaneously.
When the PE is used in “block mode” [9], the parallelism
between processing and communication is restricted by the
MEM. Since each of the three operations (receiving,
processing and transmitting a data item) requires access to the
MEM, these operations can be performed in parallel only if the
MEM supports parallel access. Based on the simultaneous
access supported by the MEM, we consider the following three
cases of parallelism in a PE (more options are possible): (1)
single port access: the MEM allows only one access at a time,
so only one operation can be performed simultaneously, (2)
dual port access: the MEM can be accessed by two actors
simultaneously and (3) triple port access: the MEM can be

accessed by three actors at the same time.
For this paper we assume that the PE organization supports

single access only. In a heterogeneous MPSoC a mixture of all
three mechanisms mentioned above might be present.
Therefore, at run-time, when a task is mapped on the MPSoC,
depending on which particular PE is selected, one of the three
access methods is used.

For predicting the application’s performance in a system, we
build an application model that captures all the aspects
influencing the application’s performance – the processing and
communication times, the effect of blocking due to the back-
pressure and the parallelism enabled by the PEs memory
organization.

B. Predicting the throughput of a single process

To model a process mapped on a PE as an SR-SDF graph
we need three actors: one for receiving a data item, one for
processing and one for transmitting. We refer to these actors as
receiving, processing and transmitting actors.

In a single-port memory only one of the three actors can be
active at a time. Following the data dependencies, the natural
order in which the actors are executed is: receiving, processing
and transmitting. For each data item, this cyclic pattern is
repeated. We model this task behavior with the SR-SDF graph
in Figure 3. The graph contains one cycle of length three with
one token. The token in the cycle is circling around the actors
allowing only one of them to execute at a time. The token can
be interpreted as a grant for memory access: the actor that
currently has the token has access to the memory. The three
self edges guarantee that actors only fire after their previous
execution finishes. Because we only have one token circling in
the loop, the self edges are redundant in this case.

Ci-1

Pi

Ci

CTi-1 CTi

PTi

Figure 3: An SR-SDF model of a task running on a PE with

a single-port data memory
Applying MCM analysis we derive the throughput of the

graph. Through MCM analysis we find the MCM and the
throughput of the graph in tokens per second:

(1)
()[]

iii

iiiiii

CTPTCT

CTPTCTCTPTCTMCM

++=
++=

−

−−

1

111 ,,,max

(2)
iii CTPTCT

TH
++

=
−1

1

1

Since a grant for memory access is given for the time of
processing and/or communicating a single data item, this result
is interpreted as the worst case throughput in words per second
of the task i running on a PE with single-port data memory.
THR is the requested throughput of the application. From (2) it
follows that to guarantee a lower bound THR on the throughput
(TH1�THR) we must have that:

(3)
R

iii TH
CTPTCT

1
1 ≤++−

C. Throughput of the whole application

The model of the whole application is constructed by
combining the separate models of the application’s tasks.
Since in our example the application has a pipeline structure,
the tasks are concatenated in a pipeline. The throughput of the
application is determined by the throughput of the slowest task
in the pipeline.

In Phase 2 of our mapping algorithm a suitable tile is
chosen. The concatenation of the task models is done by
merging the sending and receiving actors of consecutive stages
of the pipeline, which assumes that the sending and receiving
start and finish at exactly the same time. Such an assumption
neglects the network delay due to the network buffering. The
performance characteristics can now be filled in.

After Phase 4 the communication parameters should be
taken into account. To express the NoC delay and throughput
in the application SR-SDF graph explicitly, the graphs of the
separate tasks are connected by introducing a new actor(s)
between the sending and receiving actors. Figure 4 shows an
SR-SDF model of an application of two tasks (P1 and P2)
running on PEs with a single-port data memory and
communication actor N2. For simplicity self-edges are omitted.
The execution time of the new actor N2 has to be set to the
delay (in cycles) of the communication channel between the
tasks. The throughput of the NoC can be modeled with an
actor with a self-cycle with a single token. This is largely
simplified when the NoC has a predictable performance: i.e.
the NoC has a guaranteed throughput and an upper bound on
the latency. A NoC as proposed in [6] has such properties.

The throughput of the overall application THG is found by
applying MCM analysis for all cycles in the graph. In our
simple example equation (2) for each of the three tasks in the
pipeline determine the throughput:
(4)

[]iii
i

G CTPTCT
TH

++
=

−∈ 1
]3,1[

max

1

The throughput bound THR is derived by applying
inequality (3) for each of the three tasks:

(5)
R

iii TH
CTPTCT

1
1 ≤++−

, for i∈{ 1,2,3}

By providing that all the inequalities (5) are satisfied we
guarantee that the application throughput is greater than or
equal to THR.

Figure 4: Two tasks running on PEs with a single-port data

memory and communication latency actor N2

D. Throughput of sample application (see Figure 2)

In our case, the Montium tiles have single port memories, so
we can derive the throughput of the sample application by
combining three inequalities (5).

The Montium tiles are set to run at a fixed clock frequency
of 100 MHz. Hence, the actual task execution times are
PT1=0.67 µs, PT2=2.04 µs and PT3= 1.1 µs.

Any solution of the system of inequalities (5) gives a set of
worst case communication times for which the required
application throughput THR is guaranteed. One possible
solution is: CT0=2.35µs, CT1=0.98µs, CT2=0.98µs,
CT3=1.92µs. Having the communication times and the size of
the communicated data items, we can verify the throughput of
the entire application including the throughput of the
communication channels of the NoC.

III. CONCLUSION

In this paper we study run-time mapping of streaming
processes on PEs of a MPSoC. The performance of
applications running on a MPSoC is influenced by the memory
organisation of the PEs, the clock frequencies of the PEs and
the NoC. In our approach, we extend the application graph
with performance figures of the PEs and the NoC. The
performance parameters (latency, throughput and energy) can
be introduced in the model at run-time, so the overall system
performance of a specific mapping can be determined at run-
time.

REFERENCES

[1] William Dally et al. "Stream Processors: Programmability with
Efficiency" ACM Queue, March 2004, pp. 52-62

[2] P. M. Heysters, “Coarse-grained reconfigurable processors” , CTIT
Ph.D.-thesis series No. 04-66, 2004.

[3] D. Patterson, Arvind, K. Asanovic, D. Chiou, J. Hoe, C. Kozyrakis, S.
Lu, M. Oskin, J. Rabaey, J. Wawrzynek, "RAMP: Research Accelerator
for Multiple Processors," Technical Record of the 18th Hot Chips
Symposium, Palo Alto, CA, August 2006

[4] http://www.smart-chips.net
[5] L.T. Smit, J.L. Hurink, G.J.M. Smit: “Run-time Mapping of

Applications to a Heterogeneous SoC.” , In: Proceedings 2005
International Symposium on System-on-Chip, Tampere, Finland. pp.
78-81, November 2005

[6] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. “A virtual channel
router for on-chip networks” In Proceedings of IEEE International SOC
Conference, pages 289–293, IEEE Computer Society Press, September
2004.

[7] E. A. Lee et al. “Synchronous dataflow.” , Proceedings of the IEEE,
75(9):1235{ 1245, September 1987.

[8] J. L. Pino et al. “Hierarchical static scheduling of dataflow graphs onto
multiple processors” . In Proceedings of ICASSP, May 1995.

[9] M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, P.M. Heysters,
“Hydra: an Energy-efficient and Reconfigurable Network Interface” In:
Proceedings of ERSA2006, 26-29 June 2006

[10] Vangal, Sriram et al: “An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS”, proceedings ISCC 2007, pp 98-99

2 C 0

P 1

 C 1

P 2

C N 2 C3

	Index
	SOC 2007 Home
	Conference Info
	Foreword
	Invited Presentations
	Organizing Committee
	Sponsors

	Sessions
	Tuesday, 20 November 2007
	TuePm2-Industry2
	TuePm3-Poster1 and Coffee
	TuePm4-Sensing and Image Processing SoC
	TuePm5-SoC Design Methodology

	Wednesday, 21 November 2007
	WedAm3-Poster2 and Coffee
	WedAm4-Modelling and Analysis
	WedAm5-Processor Architectures
	WedAm6-Invited5
	WedPm2-Industry4 and Coffee
	WedPm3-On-Chip Communication and Logic
	WedPm5-Invited7

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Industry abstract
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Philip Hölzenspies
	Gerard Smit
	Jan Kuper

