
 
 

  
Abstract — In this paper we present a method for  mapping 

streaming applications, with real-time requirements, onto a 
reconfigurable M PSoC. In this method, the per formance of the 
hardware architecture (the reconfigurable Processing Element, 
the Network Inter face and the Network-on-Chip) is integrated in 
the per formance models of the applications. In this way the 
per formance of the mapped application can be determined at run-
time. A predictable NoC (guaranteed bandwidth and bounded 
latency), a predictable Network Inter face and a predictable 
Processing Element are key requirements for  our  approach.  

I. INTRODUCTION 

n the EU-FP6 project 4S* we propose an energy-efficient 
reconfigurable Multi-Processor System-on-Chip (MPSoC) 

architecture with run-time software and tools. The MPSoC 
architecture consists of a heterogeneous set of processing 
elements (PEs) (also denoted as tiles) interconnected by a 
Network-on-Chip (NoC). By exploiting the available 
parallelism of the PEs, they can run at a relatively low 
frequency (below 500 MHz) to achieve sufficient performance 
at an acceptable energy cost. The architecture, including the 
run-time software, can replace inflexible ASICs for future 
embedded systems. 

A. Streaming applications and MPSoCs 

In this paper we focus on the domain of streaming 
applications [1]: e.g. wireless baseband processing for 
audio/video broadcast (DAB, DRM, DVB) and multi-media 
processing (MPEG-2, MPEG-4). Streaming applications show 
a predictable temporal and spatial behavior. Some 
characteristics are:  
• Relatively simple local processing on huge amounts of data.  
• Throughput guarantees (in data items per sec.) are required 

for the processing as well as for the communication.  
• The life-time of a streaming application is semi-static, which 

means that its processes and communication streams are 
fixed for a relatively long time (seconds to hours).  

Current standard processing architectures are not suitable for 
adaptive streaming applications because:  
• General Purpose Processors (GPPs) have a large 

overhead; therefore they are by far not efficient enough 
for high-performance streaming applications, 

• Streaming implies a very high I/O rate (mega samples/sec) 

 
 
* This work is part of the 4S project [4] that has been supported by the 

Sixth European Framework Programme under project number IST 001908 

that cannot be handled by von Neuman style processors, 
• Data caching, one of the pillars of modern processors, is 

not very effective for streaming applications and therefore 
needs to be reconsidered. 

It is expected that devices with hundreds of cores 
interconnected by a NoC [6] can be designed and will become 
available in the coming years [10]. We expect that, due to 
energy and performance constraints, these cores will be 
reconfigurable and heterogeneous.  

We believe reconfigurable MPSoC architectures will, to a 
large extend, replace ASICs especially for the streaming part 
of energy-efficient embedded systems. This trend leads to a 
number of challenges. For example: we have learned in the last 
decades that mapping an arbitrary program on a MPSoC is a 
tough problem; the available parallelism is often difficult to 
exploit. However, for an extremely important sub-class of 
programs, streaming applications mentioned above, we believe 
this mapping problem is more manageable. The reason is that 
streaming applications are inherently parallel and that memory 
can be distributed. This is beneficial for the memory wall, the 
energy wall, and the ILP wall [3]. 

B. SR-SDF graphs and MCM analysis 

To map streaming applications on a MPSoC, we assume the 
applications can be represented as communicating parallel 
processes. In this paper, we use a Single Rate Synchronous 
Data Flow (SR-SDF) graph model [7] which is a directed 
graph with nodes representing sequential processes (also 
called tasks or actors) and edges representing FIFO 
communication between processes. The vertices of an SR-SDF 
graph are called actors; they model some activity. The actors 
are characterised by an execution time given as a label of the 
actor. The graph’s edges represent dependencies between the 
actors. The actors interact by exchanging tokens over the 
connecting edges. An edge behaves like a FIFO buffer where 
the tokens are stored.  

When there is at least one token preset on each input edge 
of an actor, the actor is executed (also called fired). After a 
time period equal to its execution time, the actor produces one 
token on each of its output edges. To prevent the start of a 
second execution before the first one has finished, the actor 
can also be connected with a self-edge with a single token.  

Figure 1 shows an example SR-SDF graph that models a 
bounded FIFO buffer with a capacity of two data items. The 
number of tokens on the cycle between the two actors 
corresponds to the buffer capacity. Each token on the upper 
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edge corresponds to an empty buffer space and each token on 
the lower edge corresponds to a full buffer space. When a 
token arrives on the edge IN, the actor A1 is executed, 
consuming an empty buffer space and producing a full buffer 
space. Subsequently, executing A2 consumes a full buffer 
space and produces an empty buffer space and a data item on 
the OUT edge.  

 
Figure 1: SR-SDF model of a FIFO buffer of capacity two 

data items 
Given an SR-SDF graph, we can derive its throughput in 

terms of the number of tokens per time unit by applying a 
standard analysis technique for single-rate synchronous data 
flow models called Maximum Cycle Mean (MCM) analysis 
[8]. MCM analysis examines all cycles in an SR-SDF graph 
and determines their cycle mean. The cycle mean of a cycle is 
defined as the ratio between the sum of the execution times of 
all the actors on the cycle and the number of tokens on the 
cycle. 

SR-SDF graphs have two important properties [8]: 
periodicity and monotonicity. The periodicity property means 
that after a transient period after the start of an application, the 
execution of a strongly connected SR-SDF graph will exhibit 
periodic behavior. The monotonicity property means that the 
throughput of a SR-SDF graph is a non-decreasing function of 
the execution time of the actors. In other words, decreasing 
these execution times may only lead to equal or higher 
throughput. In our models, the execution times may vary, but 
we label the actors always with the worst case execution times. 
Hence, according to the monotonicity property, by applying 
the MCM analysis we derive the worst case throughput.  

C. Run-time mapping 

The MPSoC architecture of our system is controlled by a 
Central Coordinating Operating System (CeCOS) that runs on 
one of the GPPs (General Purpose Processors) of the MPSoC. 
The main task of the CeCOS is to manage the system 
resources. When applications are started, the CeCOS tries to 
satisfy the Quality of Service (QoS) requirements, to optimize 
the resources usage and to minimize the energy consumption. 
To reduce the energy consumption, each process is mapped on 
the PE that can execute it most efficiently. This so called 
spatial mapping of processes is performed at run-time by the 
spatial mapping tool [5]. Run-time mapping offers a number of 
advantages over design-time mapping. For example: 

• to adapt to the available resources. In general it is only 
known at run-time what mix of applications will run in 
parallel; 

• to enable unforeseeable upgrades after first product 
release; 

• to avoid defective parts of a SoC. Larger chips mean 
lower yield. The yield can be improved when the 
mapper is able to avoid faulty parts of the chip. Also, 

aging can lead to faulty parts that are unforeseeable at 
design-time. 

The CeCOS determines when the spatial mapping tool is 
called; in principle only when a new streaming application is 
started, but sometimes applications should be remapped, 
because other applications have freed resources that will make 
the applications to be remapped run more efficiently. The 
objective of the spatial mapping tool is to minimize the energy 
consumption of an entire application: processing as well as the 
inter-process communication while preserving timing 
guarantees. To be able to perform the mapping of actors to 
PEs at run-time the mapping algorithm needs: 

1. A model of the application (in our case an SDF graph ), 
2. A model of the SoC platform (number and type of tiles, 

and NoC structure), 
3. The constraints of the application (e.g. throughput 

and/or latency requirements), 
4. The expected worst case execution time (and resource 

usage, e.g. energy consumption) of the process 
implementations on specific tiles, 

5. The performance model (time as well as energy 
consumption) of the inter-process communication. 

In this paper, we present a method for estimating the 
performance of mappings of streaming applications on a 
MPSoC. This can be used by the run-time mapping tool, to 
estimate whether a certain mapping is timing wise feasible.  

We use the following phases in our approach: 
• Phase 1: (design-time) model the application as a SR-SDF 

graph 
• Phase 2: (run-time) map all the actors to an available and 

suitable Processing Element (PE) 
• Phase 3: (run-time) extend the SR-SDF graph with the 

response time of the actor on the selected PE 
• Phase 4: (run-time) extend the SR-SDF graph with the 

performance of the selected route through the NoC 
• Phase 5: (run-time) perform MCM analyses to obtain the 

performance estimates of the entire mapped application 
• Phase 6: (run-time) depending on the result of step 5, go 

back to step 2 (re-map the application), or accept the 
current mapping. The critical cycle can be determined and 
can be fed-back to the mapping algorithm. 

II. CASE STUDY HIPERLAN/2 

We illustrate our method with a simple example of a number 
of processes connected in a pipelined fashion. We use the 
HiperLAN/2 [1] receiver which we map on a MPSoC. How 
the HiperLAN/2 receiver is partitioned is discussed in [2]. The 
tasks are compiled for Montium processing tiles [2] and the 
processing times reported by the compiler are given in the 
figure (in clock cycles).  

The HiperLAN/2 receiver processes information received 
on a wireless communication channel. Every 4 µs a new data 
item (OFDM symbol = 64 32-bit words) arrives on the input of 
the receiver and the receiver must be ready to process it. 
Therefore, the data inter-arrival period of 4 µs defines the real-



 
 

time constraint on the receiver operation. To be able to process 
all arriving data items, the receiver must have throughput of at 
least THR = 1/4 µs = 250 data items/ms.  

 
Figure 2: Pipeline of a HiperLAN/2 receiver 

One of the tasks of the mapping tool is to evaluate the 
performance of the mapping (timing as well as energy 
performance). The performance depends on the hardware 
architecture of the PE, the Network Interface (NI) and the 
NoC. In this section we show how the PE organization and 
NoC latency can be incorporated in the SR-SDF model of the 
application to predict the overall (time and energy) 
performance of the streaming applications. 

A. MPSoC and NoC architecture model 

The application pipeline consists of 3 tasks, denoted as P1 to 
P3, and we assume they are mapped onto separate PEs of the 
MPSoC. The processed data items are transported between the 
PEs by the NoC. The NoC and a PE exchange data through the 
PE’s local memory (MEM); the received data items are loaded 
in the MEM and after processing they are read from the MEM 
and transmitted to the next PE. The data exchange between a 
PE and the NoC is handled by a network interface (NI). The 
communication uses back-pressure. For example, when the 
input data buffer, reserved in the MEM, for arriving data items 
is full, the NI stops receiving and in turn blocks the next data 
item in the network.  

The performance of the application is determined by the 
time that the tasks need to process a data item and by the time 
needed to communicate a data item between two PEs. To 
predict the application’s performance, all the worst case 
processing and communication times of the application must 
be known before the mapping takes place.  

Besides the processing and communication times, the 
application performance also depends on whether processing 
and communication in a PE can be performed simultaneously. 
When the PE is used in “block mode”  [9], the parallelism 
between processing and communication is restricted by the 
MEM. Since each of the three operations (receiving, 
processing and transmitting a data item) requires access to the 
MEM, these operations can be performed in parallel only if the 
MEM supports parallel access. Based on the simultaneous 
access supported by the MEM, we consider the following three 
cases of parallelism in a PE (more options are possible): (1) 
single port access: the MEM allows only one access at a time, 
so only one operation can be performed simultaneously, (2) 
dual port access: the MEM can be accessed by two actors 
simultaneously and (3) triple port access: the MEM can be 

accessed by three actors at the same time. 
For this paper we assume that the PE organization supports 

single access only. In a heterogeneous MPSoC a mixture of all 
three mechanisms mentioned above might be present. 
Therefore, at run-time, when a task is mapped on the MPSoC, 
depending on which particular PE is selected, one of the three 
access methods is used. 

For predicting the application’s performance in a system, we 
build an application model that captures all the aspects 
influencing the application’s performance – the processing and 
communication times, the effect of blocking due to the back-
pressure and the parallelism enabled by the PEs memory 
organization.  

B. Predicting the throughput of a single process  

To model a process mapped on a PE as an SR-SDF graph 
we need three actors: one for receiving a data item, one for 
processing and one for transmitting. We refer to these actors as 
receiving, processing and transmitting actors.  

In a single-port memory only one of the three actors can be 
active at a time. Following the data dependencies, the natural 
order in which the actors are executed is: receiving, processing 
and transmitting. For each data item, this cyclic pattern is 
repeated. We model this task behavior with the SR-SDF graph 
in Figure 3. The graph contains one cycle of length three with 
one token. The token in the cycle is circling around the actors 
allowing only one of them to execute at a time. The token can 
be interpreted as a grant for memory access: the actor that 
currently has the token has access to the memory. The three 
self edges guarantee that actors only fire after their previous 
execution finishes. Because we only have one token circling in 
the loop, the self edges are redundant in this case. 
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Figure 3: An SR-SDF model of a task running on a PE with 

a single-port data memory 
Applying MCM analysis we derive the throughput of the 

graph. Through MCM analysis we find the MCM and the 
throughput of the graph in tokens per second: 
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Since a grant for memory access is given for the time of 
processing and/or communicating a single data item, this result 
is interpreted as the worst case throughput in words per second 
of the task i running on a PE with single-port data memory. 
THR is the requested throughput of the application. From (2) it 
follows that to guarantee a lower bound THR on the throughput 
(TH1�THR) we must have that: 
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C. Throughput of the whole application 

The model of the whole application is constructed by 
combining the separate models of the application’s tasks. 
Since in our example the application has a pipeline structure, 
the tasks are concatenated in a pipeline. The throughput of the 
application is determined by the throughput of the slowest task 
in the pipeline.  

In Phase 2 of our mapping algorithm a suitable tile is 
chosen. The concatenation of the task models is done by 
merging the sending and receiving actors of consecutive stages 
of the pipeline, which assumes that the sending and receiving 
start and finish at exactly the same time. Such an assumption 
neglects the network delay due to the network buffering. The 
performance characteristics can now be filled in.  

After Phase 4 the communication parameters should be 
taken into account. To express the NoC delay and throughput 
in the application SR-SDF graph explicitly, the graphs of the 
separate tasks are connected by introducing a new actor(s) 
between the sending and receiving actors. Figure 4 shows an 
SR-SDF model of an application of two tasks (P1 and P2) 
running on PEs with a single-port data memory and 
communication actor N2. For simplicity self-edges are omitted. 
The execution time of the new actor N2 has to be set to the 
delay (in cycles) of the communication channel between the 
tasks. The throughput of the NoC can be modeled with an 
actor with a self-cycle with a single token. This is largely 
simplified when the NoC has a predictable performance: i.e. 
the NoC has a guaranteed throughput and an upper bound on 
the latency. A NoC as proposed in [6] has such properties. 

The throughput of the overall application THG is found by 
applying MCM analysis for all cycles in the graph. In our 
simple example equation (2) for each of the three tasks in the 
pipeline determine the throughput: 
(4)  
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The throughput bound THR is derived by applying 
inequality (3) for each of the three tasks: 
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, for i∈{ 1,2,3}  

By providing that all the inequalities (5) are satisfied we 
guarantee that the application throughput is greater than or 
equal to THR.  

 
Figure 4: Two tasks running on PEs with a single-port data 

memory and communication latency actor N2 

D. Throughput of sample application (see Figure 2)  

In our case, the Montium tiles have single port memories, so 
we can derive the throughput of the sample application by 
combining three inequalities (5). 

The Montium tiles are set to run at a fixed clock frequency 
of 100 MHz. Hence, the actual task execution times are 
PT1=0.67 µs, PT2=2.04 µs and PT3= 1.1 µs.  

Any solution of the system of inequalities (5) gives a set of 
worst case communication times for which the required 
application throughput THR is guaranteed. One possible 
solution is: CT0=2.35µs, CT1=0.98µs, CT2=0.98µs, 
CT3=1.92µs. Having the communication times and the size of 
the communicated data items, we can verify the throughput of 
the entire application including the throughput of the 
communication channels of the NoC.  

III. CONCLUSION 

In this paper we study run-time mapping of streaming 
processes on PEs of a MPSoC. The performance of 
applications running on a MPSoC is influenced by the memory 
organisation of the PEs, the clock frequencies of the PEs and 
the NoC. In our approach, we extend the application graph 
with performance figures of the PEs and the NoC. The 
performance parameters (latency, throughput and energy) can 
be introduced in the model at run-time, so the overall system 
performance of a specific mapping can be determined at run-
time.  
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