
On reconfigurable tiled multi-core programming
Processing cores evaluation

Kenneth C. Rovers, Marcel D. van de Burgwal, Jan Kuper, André B.J. Kokkeler and Gerard J.M. Smit
Computer Architecture for Embedded Systems group
CTIT, Department of EEMCS, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Email: K.C.Rovers@utwente.nl
http://caes.cs.utwente.nl/Research/?project=BeamForce

Abstract—For a generic flexible efficient array antenna receiver
platform a hierarchical reconfigurable tiled architecture has been
proposed. The architecture provides a flexible reconfigurable
solution, but partitioning, mapping, modelling and program-
ming such systems remains an issue. A semantic model has
been presented to allow the development of the model for the
specification, design and implementation. The semantic model is
used for partitioning the application, evaluating the consequences
and mapping to an architectures. Design space exploration allows
us to adapt the partitioning and mapping to an architecture or
visa-versa.

With tiled reconfigurable cores as basis for the architecture,
this paper explores the different options for processing cores and
its suitability with respect to the design flow of the semantic model
approach. Trade-offs with respect to granularity depending on
flexibility and efficiency allow interesting design evaluations,
especially for programability. This work therefore represent an
important step forward in the design flow for designing and using
multi-core tiled architectures.

Index Terms—Phased array, beamforming, hierarchical tiled
architecture, semantic model, dataflow, functional programming

I. INTRODUCTION

This paper will evaluate processing cores for use as an
building block in a tiled multi-core architecture. The appli-
cation domain for this architecture is high performance digital
signal processing. The specific case is phased array beam-
forming processing. Beamforming is characterised by high
rate streaming data and dependability requirements. The most
important is performance, however, that doesn’t mean energy
efficiency or cost are not important. The goal is to define a
generic phased array platform solution for applications areas
like radar, radio astronomy or satellite receivers (DVB-S).
A reconfigurable scalable system is envisioned as to achieve
these goals. Therefore we will focus on (reconfigurable) digital
processing. [1]

We will first summarise the beamforming application and
the rationale for a reconfigurable tiled multi-core architecture.
Section II will then discuss the design flow for using such
architectures by partitioning and mapping. This will give us the
environment in which the processing core will operate, which
is used to evaluate different option in section III. Many of those
have been used or are evaluated for use for the beamforming
application. None of those however are suitable as a tile in the
proposed architecture. Therefore a new core is proposed, the

Fig. 1. Beamform or radiation pattern

FlexCore, to be used to fulfil this task in section IV. As the
signal processing is all sample based, we prefer course-grained
reconfigurable hardware operating at word level. The goal is
to achieve the efficiency of an FPGA/ASIC with the flexibility
and ease of use of an DSP/GPP by applying a reconfigurable
core matched to the tiled architecture and application domain.

A. Array antenna receiver platform

Phased array beamforming systems use multiple antennas
in an array to make a receiver directional, i.e. form a electro-
magnetic beam into a certain direction (Fig. 1). The direction
of the beam can be influenced by beamsteering. This allows
one to point at the direction of interest in order to reduce
interference or reject interferers, use less (wasted) energy or
provide higher throughput for example.

A block diagram of a typical phased array receiver is
shown in figure 2. Assume a single omni-directional wave
source, emitting a spherical waveform in time and space
s(t, l) = A · cos(ωt ± kl), with A the amplitude, ω the
frequency, k the wave number, t time and l the path length
from the source. For a source in the far field perpendicular
to the array, the wavefront is considered planar. If the plane
of the array is not perpendicular, the wavefront arrives at
different times at the antennas (see fig. 2). If the antennas
are placed a distance d apart and the wavefront arrives at an
angle ϑ incident to the array, the wavefront travels a distance
d · sin (ϑ) further to the next antenna, resulting in a time delay
∆t = d·sin(ϑ)

c between the signals (c is the propagation speed
of radio waves). Depending on the frequency of the wave, this
time delay results in a phase shift (∆ψ = ω · ∆t) giving rise

+

Beamformer

DOA BS

Beam-control

RF AP ψc

RF AP ψc

RF AP ψc

wave front

d

∆l

Fig. 2. Phased array receiver

to the term “phased array”. By correcting the delay we can
steer the direction of maximum sensitivity [2].

Thus, signals at the receiving antennas have different time
delays and when combined the interference pattern results in
a beam in the radiation pattern.After the RF (radio frequency)
front end for each antenna, antenna processing (AP) may be
applied for calibration or equalisation purposes (to correct
for electrical or mechanical distortions of the front-end). The
signals are then combined by the beamforming processing
(beamformer). Beamsteering (BS) applies time delay or phase
shift corrections to the antenna signals to add the antenna
signals coherently in the direction of interest. Gain taper-
ing/windowing can be used to change the shape of the beam.
Note that multiple beams in different directions can be formed
by duplicating the antennas signals and apply the beamform-
ing for each beam with different correction parameters. To
calculate these parameters, the beamsteerer needs to know in
which angle (direction) to point the beam. This information is
provided by the beam control process. It can be set by the user,
based on an algorithm (for example for tracking a source) or
based on an estimation of the angles of the strongest sources
available. This latter estimation is provided by the direction
of arrival (DOA) estimation process.

B. Reconfigurable tiled architectures

Phased array processing can be characterised as a streaming
application with high data rates and processing requirements,
but a regular processing structure. Because of costs, com-
plexity, dependability and scalability reasons a design with
mostly identical components is preferred, but because of
functionality with different requirements and use it will be
heterogeneous. We would like to limit the data rate as soon as
possible through beamforming, because I/O is expensive. This
implies that the processing is moved closer to the antennas.
However, combined data cannot be separated later on, so we
lose flexibility. Furthermore, the distributed processing must
be synchronised. Because a scalable and dependable solution
is needed, a tiled architecture is proposed with reconfigurable

• Any radio (RF) system
! Satellite receivers

! Radar

! Radio Astronomy

! Mobile

! Wireless (WLAN/WiMax)

BeamForce

Phased Array Beamforming

Beamforming

http://caes.cs.utwente.nl/Research/?project=Beamforce

K.C.Rovers@utwente.nl

•Cheap generic flexible efficient

array antenna transceiver platform
! Converging solution for telecom,

military and consumer products

! Multi-standard, adaptable to future

• Implications/choices
! Functionality, size, cost " CMOS

! Multi-standard, flexible, generic "

Software defined radio

! Flexible, efficient, SDR, adaptable "

Reconfigurable hardware

• Multi-core reconfigurable processing on a (single)

CMOS chip (MPSoC)

• Processing close to antenna

• Multiple hierarchical levels
! distributed processing

! fail safety

! scalability

! partitioning

• Streaming data processing
! large amount of data from each

antenna (100 Msamples/s)

! Low latency / real-time

• Multiple beams
! Scanning

! Tracking

! “Null” interferers

• Multi-hierarchical distributed

processing
! Processing tiles

! Multiple feedback loops

• Dependable
! Quality of Service

! Graceful degradation

• Dynamic reconfiguration

Kenneth C. Rovers, Marcel D. van de Burgwal, Gerard J.M. Smit
Computer Architecture for Embedded Systems group, University of Twente

Characteristics

Conclusion

Approach

Model

ApplicationsTECHNISCHE WETENSCHAPPEN

"CMOS Beamforming Techniques" STW Project Proposal Page 2

Interfering

GSM

basestation

Satellite 1

Phased Array

Antenna Roof

Multiple programmable

Antenna beams

“null”

Fixed
beam

Satellite 2

Single mechanically

fixed beam (1 satelite)

Figure 1: Comparison of satellite reception via a traditional mechanically fixed dish antenna and a Phased

Array antenna with smart beamforming. When using smart beamforming, satellite signals in the beam

directions of the antennas are received, while the interfering GSM signal is rejected via a "null" in the beam

pattern. Electronic beamforming also allows for adapting the beam pattern dynamically, e.g. to track the

satellite position when a vehicle is moving.

Figure 2: Principle of beamforming via an array of antenna elements and receivers with variable gain Gi and

variable time-delay Ti: by tuning Ti and Gi appropriately, signals from specific directions add up

constructively (resulting in a beam), while signals from other directions are cancelled (resulting in a null).

• Make the transceiver directional
! Form an EM beam using

constructive interference

• Multiple (thousands of) antennas
! Fields arrive at different times

! Correlate for a direction by adjusting

(gain and) delay

! Time delay !T gives a phase shift for

a single frequency

• Each antenna has its own

channel for each transmitter
! Channel matrix can model coupling

• Multi-stage beamforming
! Possibly mixed analogue/digital

Information Processing

p
ro

ce
ss

in
g

Signal Processing

p
ro

ce
ss

in
g

Antenna Tile

Antenna Tile

a
n

a
lo

g
u

e

d
ig

it
a
l

b
ea

m
fo

rm
er

si
g

n
a

l

p
ro

ce
ss

o
r

in
fo

rm
a

ti
o

n

p
ro

ce
ss

o
r

adaptive

control

a
n

te
n

n
a

a
n

te
n

n
a

a
n

te
n

n
a

re
ce

iv
er

a
n

te
n

n
a

a
n

te
n

n
a

a
n

te
n

n
a

fi
lt

er

a
n

te
n

n
a

a
n

te
n

n
a

a
n

te
n

n
a

fr
eq

u
en

cy

co
n

v
er

si
o

n

a
n

te
n

n
a

a
n

te
n

n
a

a
n

te
n

n
a

b
ea

m
fo

rm
er

a
n

te
n

n
a

b
ea

m
fo

rm
er

RF

Fig. 3. Hierarchical tiled architecture

hardware to regain flexibility. Processing tiles are combined
on multiple hierarchical levels. A multi-processor system-on-
chip (MPSoC) can be extended to multiple chips on a board
(MCoB) and multiple boards in a system (MBiS) giving a
heterogeneous hierarchical tiled architecture (as in figure 3).
We aim at a processing architecture which is flexible enough
to support multiple methods of beamforming, as well as
beamsteering and beam-control. [1]

The phased array application has a high data rate (i.e.
around 100MHz 16-bit for radar and astronomy). Because
of the number of antennas is in the range of 128 to 4096,
the signal processing gives huge processing requirements (400
Gops 50 Tops [1]). Thus, a large number of tiles are needed.
However the amount of processing per data sample is relatively
low and the application is therefore data stream driven and
characterised as a streaming application.

A reconfigurable hierarchical processing array can provide
flexibility and has a number of advantages. We can use only
part of the array or create multiple sub-arrays to save energy
or increase the lifetime. Reconfigurability (also in I/O routing)
supports graceful degradation if tiles break down. Reconfig-
urability inherently leads to having an adaptable system, that
adapts to changing environments while maintaining the quality
of service.

Reconfigurability is defined as fixing functionality (instruc-
tions) for a longer time (multiple clock cycles) in order to
be more energy efficient. For the beamforming application
reconfiguration can be performing at different scales with
respect to the time required for reconfiguration and the impact
to the system. Small scale reconfiguration can for example
consist of changing the beamsteering parameters. For medium
scale reconfiguration, the beamforming or tracking method can
be changed. Large scale reconfiguration for example consists
of changing to direction of arrival estimation, using subarrays
or going to multi-function radar.

II. DESIGN FLOW

For the signal processing application domain, the function-
ality to be performed is captured in mathematical equations.
Furthermore, it is part of a higher level mixed signal system
design. We would like to model this system at various degrees
of sophistication in order to simulate and verify the design. The
system specification used for analysis also often consists of

Specification
(math)

Co-design

Application
(model)

Partition

Dataflow
graph

System
(model)

Architecture
.

Mapping

Implementation
.

Fig. 4. Design flow for tiled architectures

math. Signal processing implementations, however, are often
described in an imperative programming language as a se-
quence of commands changing state. This hinders the use of a
model-based design approach to refine the system specification
modelled in a mathematical tool such as MATLAB into an
implementation.

In [3] and [4] the concept of a semantic model is introduced
as a single model which can be used with different levels of
detail. It is based on using a functional programming language
for modelling. A functional language treats computation as
the evaluation of mathematical functions and avoids state and
mutable data. It is therefore much more suited to the signal
processing application domain. Mathematical rules can be used
for formal verification and model and program transformations
aiding design space exploration. It can also be used to define
different models of computation (MoCs), such as continuous
and discrete time in our mixed signal system. Because it is
a programming language, it can be run for simulation and
evaluation at each stage of the design up to providing an
implementation for the architecture.

To go from system specification to implementation with
a tiled architecture as basis, the design flow of figure 4 is
used. During the co-design stage, the system specification is
split into the different MoCs. For example, analogue/digital
co-design is used to define where to go from continuous
time to discrete time, and hardware/software co-design is used
to define the application. The application is then partitioned
to define the communication between the different parts of
the application and to match with the architecture. After
partitioning the application is modelled as a dataflow graph
to capture the communication. The processes of the dataflow
graph are assigned to hardware blocks by the mapping.

We will elaborate on this design flow with the beamforming
application as an example.

A/D S

S(t) Se Sa

RF

Se

AP

Sc

BF
�

S(t)

Fig. 5. Simplified system block diagram

A. Semantic model and co-design

A simplified beamforming system block diagram is shown
in figure 5. This block diagram corresponds to the system
specification detailed next.

Based on the radar equation [5], the resulting signal after
beam-forming can be represented by the source signal S(t),
an element factor depending on the sensitivity or gain of each
antenna element Se, an array factor depending on the element
positions Sa, a correction (steering) factor Sc and a combining
sum:

S =
∑

S(t) · Se(θ, ϕ) · Sa(l) · Sc(θ0, ϕ0)

=
∑

a · ej(ωt±ψe(θ,ϕ)±kl±ψc(θ0,ϕ0)) (1)

ψc(θ, ϕ) = k · (−∆l(θ0, ϕ0)) = ω · (−∆t(θ0, ϕ0)) (2)

∆l = ~r · ~R = dx · u+ dy · v + dz · w (3)

with ψ the phase, ~r the element position, ~R the plane wave
direction, u, v, w the direction cosines and −∆t(θ0, ϕ0) the
time delay correction [2], [5], [6].

From these block diagram and equations we can identify the
following blocks: a single source source S(t), a transmitter Se,
channel Sa, receiver Se, RF front-end and AP block Sc per
antenna and a beamformer

∑
combining the signals. These

parts correspond to functions in the semantic model shown in
listing 1. Furthermore, the chain, frontend and systm
model compositions (explained below). We defined types to
represent a signal (Sig) with parameters for the frequency,
amplitude, gain, and time, a direction of arrival (DOA) with
range, azimuth, and elevation parameters, an element position
(Pos) with cartesian coordinates, and a beam-steer direction
(BSt) with two angles. The map function applies a function
to each argument of a list. By mapping the source signal over
a list of time instants, we create a list of the signal over
time, which we can use as input to the system to perform
a simulation. The listing can be run, thereby performing a
simulation with results as expected. A single source goes to a
separate transmitter, channel, and receiver chain
for each element. All chains for the elements together form
the frontend, which uses the map function to create such a
chain for each element. The fmap function is used to provide
the same source signal (s::Sig) to each chain by mapping
the list of front end chains over the source function. The output
of the frontend is provided as input to the beamformer
block with the pipe operator (>>, see listing 2), which simply
performs a function composition. The frontend and the
beamformer form the systm, which expects a signal as

type Sig = S (Num −> Num −> Num) Num Num
type DOA = D (Num, Num, Num)
type Pos = P (Num, Num, Num)
type BSt = B (Num, Num)

s o u r c e t = S (s i n e f a) g t
s i m u l a t i o n = map sys tm (map s o u r c e t s)

sys tm : : S ig −> [Num]
sys tm s = (f r o n t e n d d ps >> beamformer bs ps) s
f r o n t e n d : : DOA −> [Pos] −> Sig −> [Num]
f r o n t e n d d ps s = fmap (map (c h a i n d) ps) s

c h a i n : : DOA −> Pos −> Sig −> Num
c h a i n d p s = (t r a n s m i t t e r d p >> c h a n n e l d p >> r e c e i v e r d

p >> adc) s

Listing 1. Phased array semantic model

(f >> g) x = (g . f) x = g (f (x))

Listing 2. Pipe operator

input and gives a beamformed result for each beamsteering
vector provided.

B. Partitioning

The next part is partitioning the application into parts
as shown in figure 6. In this step we add communication
details to part of the system, the antenna processing and
beamforming parts. This is done by going to a dataflow model.
The dataflow model provides a MoC for stream processing
with explicit communication. Processes in the dataflow model
encompass computation and channels between processes en-
compass communciation. This model provides us with auto-
matic synchronisation by using back-pressure and automatic
parallelism by using referentially transparent data. Different
analysis techniques provide quality-of-service (QoS) bounds
on the latency, throughput and buffer sizes [7].

For the phased array beamforming application we partition
the application into a process for each antenna processing
part and a number of processes for the beamforming part.
After some design space exploration, we settle at beamforming
4 inputs into a single output per process. For 64 antennas
this results in a hierarchical beamformer with 21 processes.
The 64 antenna processing processes and the 21 beamforming
processes thus define the partitioning. The dataflow model and
the partitioning are still part of the semantic model and can
be simulated.

C. Mapping

After partitioning each process is assigned to a tile and each
channel to a network connection by the mapping as shown in
figure 7. The dataflow model is annotated with performance
requirements and the architecture with constraints and costs.
The mapping tool uses heuristic algorithm to determine the
mapping. More information can be found in [8]. The result is
that functionality is assigned to tiles and network interfaces
and links.

RF A/D AP BFsource

Dataflow
FIR

FIR

FIR

MAC

MAC

MAC

MAC

MAC

sink

Fig. 6. Partioning

T

R

T

R

T

R
T

RD

Dataflow

Complex
FIR

Complex
FIR

Complex
FIRFIR

Complex
FIR

Complex
FIR

Complex
FIRFIR

Complex
FIR

Complex
FIR

Complex
FIRFIR

Complex
FIR

Complex
FIR

Complex
FIRMAC

Complex
FIR

Complex
FIR

Complex
FIRMAC

Complex
FIR

Complex
FIR

Complex
FIRMAC

Complex
FIR

Complex
FIR

Complex
FIRMAC

Complex
FIR

Complex
FIR

Complex
FIRMAC

Fig. 7. Mapping

III. PROCESSING CORES

In this section different options for the processing are eval-
uated. For simplicity we will assume a single processing core
for each tile in the architecture. After the requirements, the
available solutions are discussed, which will give us enough
information to define the “ideal” core for our case.

A. Requirements

After going through the design flow of section II, the
application is partitioned and mapped to the tiled multi-core
architecture. However, during the mapping process we claimed
the mapped is based on constraints and cost of the architecture.
These constraints and cost are for a large part defined by the
choice of processing cores and network part in the architecture.
The mapping process and also the partitioning are therefore
very much a back and forth process, indicated by the dotted
arrows in figure 4. For the relatively simple case provided
this process could be performed without making detailed
architectural choices besides choosing a tiled design.

So the starting point is a dataflow model mapped to a tiled
architecture. Each tile in the architecture is a process in the
dataflow model. The beamforming operation mostly consists
of multiply-accumulates (MAC) and much streaming IO with
a fixed route. The beamsteering operation are mostly in the
area of complex number algebra. Direction-of-arrival (DOA)
or tracking algorithms consist of matrix operations. Calibration
consists of logical and comparison operation, with equalisation
and filtering again being MACs. All these have mainly fixed

routing requirements. However, control, supervision and test
consists of control instructions and requires flexible IO routing.

The major part of the work of the front-end is in the AP and
BF block. Most of the needed performance is determined by
those parts. Thus, in this paper we will focus on the processing
and assume the network is configured and transparent for the
application.

B. Available solutions

A number of options are available in the trade-off between
efficiency and flexibility. Advantages and disadvantages of
each are discussed and summarised.

1) ASIC: At one side of the scale is an ASIC, which is a
natural choice if performance is of uttermost importance. A
complete hardware solution for beamforming is fast, efficient
and has little overhead. However, functionality is fixed at
design time. So needed flexibility must be design in. Further-
more, ASICs are relatively difficult to design and very costly,
both in development as in production of limited amount (less
than millions).

In the past these costs were lower and they were used for
their performance. However, for dependability and control,
flexibility in the design is required and the costs are too high.

2) Fine grained reconfigurable hardware (FPGA): A field-
programmable-gate-array (FPGA) can be used as a stand-
in for an actual ASIC. Digital hardware is “emulated” by
allowing the designer to connect gates. Therefore, the same
design tools as for ASICs can be used and the overhead
is limited. But more flexibility is gained because the FPGA
can be reconfigured in the field to change its functionality.
However, this reconfiguration can not be performed easily at
run-time. Unfortunately, as the same design tools are used
they remain difficult to design or program. And while they
are much cheaper than ASICs they are still too expensive for
consumer products. A more generic building block achieving
the numbers needed for an ASIC is preferred there. An FPGA
also has quite some overhead (in area and power) because the
interconnect between the gates is quite extensive.

FPGAs are the main processing hardware used for signal
processing in radar and radio astronomy, but it is too expensive
for a satellite receiver. Furthermore, the shorter product cycles
means the development effort needed for FPGAs becomes
limiting.

3) Coarse-grained reconfigurable hardware (Montium):
An example of a course-grained reconfigurable processor is the
Montium [9]. The Montium has 5 ALUs and 10 memories with
address generation units (AGUs) connected by an interconnect.
The functionality of the ALUs, AGUs and interconnect is con-
figured and fixed while processing data. The Montium can be
run-time reconfigured and is designed for energy efficiency by
exploiting locality of reference and avoiding unnecessary bit-
flips. The design is balanced with approximately equal parts
for processing, memory and control and communication. The
application domain is digital signal processing applications
with streaming data and it is well suited for running FIR filters
or FFTs.

The Montium therefore seems well suited to perform the
beamforming processing. The beamforming operation was
implemented on a Montium, but because of the large amount
of choices for running an application on a Montium, the
implementation on the Montium is a labour intensive manual
process. This corresponds with the effort required to imple-
ment other applications [10]. Furthermore, the 3-stage ALU
give overhead as only the MAC stage is needed. It also is not
flexible enough for the control parts.

To mitigate some of the disadvantages we have cut-out
the unnecessary stages in the ALUs. Unfortunately this does
achieve a speed-up as the balance in the design breaks down.
Therefore more extensive design changes would be needed.

4) DSP/GPU: A digital signal processor (DSP) or a graph-
ics processing unit (GPU) can be seen as general purpose
processors (GPP) optimised for an application domain, signal
processing and graphics respectively. Both could be suitable
for the beamforming application. An advantage is they are
much more flexible with respect to control operation than the
previous options, especially the DSP. An DSP has support
for complex numbers, saturated computations and MACs.
An GPU support operations on large amount of data at the
same time. All of which are useful for the beamforming
application. Another large advantage is the support for higher
level programming languages and tools.

Of course, this added flexibility comes at a cost of overhead
and performance. Because they are easy to program, DSPs
are used but later in the chain for lower data rates, as the
performance is not enough. GPUs have been evaluated but do
not provide enough flexibility to be effectively used.

5) GPP/CPU: The general purpose processor (GPP) or
central processing unit (CPU) provides a lot of flexibility at
a low cost. It can support any application of beamforming. It
also has extensive programming languages and tool support.
The performance is not sufficient for beamforming. Also the
energy efficiency is worse than the other options because of
years of increasing the clock frequency and performance at
any cost. However, with the advances over the years, the GPP
has been moving forward in the phased array beamforming
processing domain. It is used for simple system and for general
control. A disadvantage that the GPP shares with the DSP
is that the design is based on a sequential Von Neumann
machine. While beamforming is embarrassingly parallel and
data oriented, the Von Neumann machine is control oriented
[11], [12].

6) Comparison: The different options discussed are sum-
marised in table I. This table shows that an ASIC is very strong
in performance and efficiency, while the GPP is very strong
in cost, programability and flexibility. A good trade-off could
be found in the Montium if it would be more programmable
and flexible or the DSP if it would have a higher performance
and efficiency.

C. Approach

A solution could be to more extensively redesign the
Montium. A survey around a group of practical users of the

TABLE I
PROCESSOR COMPARISON

ASIC FPGA Montium DSP GPP

performance ++ + + - - -
efficiency ++ - + - - -
overhead ++ - + - - -
cost - - - + + ++
programmability - - - - - + ++
flexibility - - + - + ++

Montium identified the following pros and cons:
• The reconfiguration abilities together with the address

generation units effectively exploit locality of reference to
achieve an competitive design from an performance/en-
ergy perspective. This is especially true for applications
such as a FIR filter or FFT.

• The five parallel ALUs within one Montium provide some
performance, but it is limited by either the connections
between them or the decoders of the sequencer or both.

• The first ALU stage is not used for some applications.
• There is a communication bottleneck to and from the

Montium and thus between tiles. Data can not be deliv-
ered to the Montium fast enough for streaming applica-
tions.

So a redesign is feasible with a simpler ALU optimised for
MACs, a simpler non-limiting decoder and a simpler crossbar
with better communication interface between tiles. However,
the problem remains that it is very complex to effectively
configure the Montium. For example, to continuously keep
the processor processing, we must fill a local memory with
new data and read out the processed data at the same time
as processing and we must switch when ready. It is also a
challenge to find a mapping to use all the processing parts
available, because of the many choices and interdependencies.

Therefore, we propose to take the strengths of the Montium
and design a new processor avoiding the weaknesses and better
matched to the design flow detailed above.

IV. FLEXCORE

A design flow for the digital signal processing application
domain is presented with a focus beamforming. Starting point
is a mathematical specification, which we use to define a sys-
tem model, an application and an architecture. The architecture
is assumed to be a system-on-chip (SoC) with tiles connected
by a network-on-chip (NoC), because of the requirements of
the application. However, a suitable processing core to fit
this model has not been found. In this section we will detail
the characteristics and requirements for a processor intended
to solve the problems found. This processor is called the
FlexCore.

A. Design

The main goal is to propose a design that fits the presented
design flow. In the design flow processes from the dataflow
model are mapped to tiles on the architecture. The processing
tile must therefore accept data from channels and output

data to channels, with the channels themselves providing the
connections between the tiles. This fits well with the streaming
application domain. A natural choice is then to use a dataflow
processor. Dataflow processors however, as well as functional
languages, are deemed to be inefficient. We will discus this in
more detail below. First we will discuss the requirements.

1) Requirements: The requirements are defined by three
factors involved: the requirements from the application and
application domain, the requirements following from the de-
sign flow and the requirements following from the evaluation
of processing cores.

From the application, where we focus on implementing
beamforming and beam-control, we found that:
• The performance is dominated by the beamforming pro-

cessing, which mainly consists of (complex number)
multiply-accumulate operations.

• Flexibility is required for control and testing. Much of
the flexibility is in the communication and therefore the
NoC.

• Functionality is changed, but there is not much data
dependence. Therefore reconfiguration is sufficient.

• The architecture and tiles must be scalable and modular
to be used as a building block in multiple designs.

• The processing cores must be general enough to be used
by multiple applications to save cost.

• Energy efficiency is important because of the different
requirements between applications and because of the
number required for phased array beamforming. This
means overhead must be limited when possible.

From the design flow, with the main focus on the usability
of the architecture, we found that:
• The processing cores executes a process.
• The communication to and from the core is based on

streaming data channels.
• The processing core preferably directly runs sub-parts

of the application following from the partitioning and
mapping.

• It is therefore directly usable in the semantic and dataflow
models.

• We would like to stay close to the math also for the
processing core.

• State and memory is in principle separated, shared mem-
ory can be implemented on top of it.

From the processing core evaluation, where we focus on the
strengths, we found that:
• We would like a coarse-grained reconfigurable processor

with the efficiency of an FPGA/ASIC and the flexibility
and ease of use of an DSP/GPP.

• The core is optimised for the signal processing ap-
plication domain, but general enough not to limit any
application. Ideally it must be able to run any application
and perform well for signal processing applications.

• The number and mix of execution units is preferably
customisable. This enables one to tweak the core for the
intended application domain and performance at design

time, while relieving the burden of designing and verify-
ing a complete processor at once.

• Energy efficiency is achieved by exploiting locality of
reference with reconfiguration. For these kind of ap-
plications with streaming processing, locality is in the
instructions.

2) Dataflow processors: Dataflow processors fit well with
the dataflow model resulting from the design flow, which in
turn fit well with the application domain. Signal processing
applications have a mathematical specification as base. Math-
ematical functions operate on input and generate output, just as
functions in a functional programming language and processes
in the dataflow model.

This approach has a number of advantages. Functions
have no side-effects other than the output. This means that
state is explicit and therefore probably intended. Thus only
dependencies that are intended and in the mathematics are
created. Therefore, parallelism is not unnecessarily restricted.
Furthermore as there is no central state to continuously update,
shared data is also explicit, distribution of memory is much
easier. However, dataflow processors also have there share of
disadvantages. Because matching on tags is used in order to
connect the results of computations and substitute the result,
matching is performed for each data value. This limits per-
formance and efficiency an expensive associative memory is
needed. Associative memory is about twice the area and energy
of normal memory. We intend to use configurations to fix and
thus disable the matching for a number of clock cycles in order
to drastically reduce this cost. Dataflow processors also have
difficulties handling larger data structures because matching
is performed on words and not on larger data structures. We
intend to use a local memory with a address generation unit
to linearise memory accesses and allow matching on larger
data structures. Furthermore, dataflow processors do not match
very well with the imperative programming languages used by
the majority of software engineers. However, the functional
language we are using matches very well and vice versa the
functional language is also expected to perform better on a
dataflow processor than on a Von Neumann architecture.

Dataflow processors have failed to succeed in the past
because the incredible improvements of RISC processors.
RISC processors could ride Moore’s law to get faster with
each improvement in process technology, while dataflow pro-
cessors could less easily. However, now limits have been
reached in the improvement of single core processors and
multi-core programming because necessary for performance
improvements and this is where dataflow processors shine. The
final flaw of previous dataflow processors has been that they
were positioned as general purpose processors, while they are
by nature much more suitable for data oriented applications
such as ours, than for control oriented applications.

B. Architecture

The FlexCore architecture consists of a local memory, a
address generation unit, a dispatcher, execution units with
corresponding queues and a router for communication. The

FlexCore dispatcher uses tags and matching to perform sub-
stitutions of computational results, as in done in mathematics.
This matching is the communication in the application. In
order to limit the (energy) cost of matching, configurations
are used to fix the matching operation for a number of data
values set by a loop counter. Address generation units are used
to linearise memory access of common data structures. This
limits the amount of data dependent control instructions.

The execution units are separate autonome components,
processing if instruction are available in the queue and there
is space for the output. The dispatcher fills the queues as
instructions are ready to be processed. The type and number
of execution units is a design parameter which can depend on
the required performance and application. Furthermore, the
number of cores in a tile is scalable as well as the number
of tiles in a chip. Thus the multi-core tiled architecture is
scalable at three levels, which we can use to balance the
design. Performance is then achieved by exploiting parallelism
and distributed processing and the scalability of the design.

The FlexCore is easy to use and program, because it
corresponds well to the functional language used in the
semantic model based design flow. It can directly run the
subpart of the application, while the matching takes care of
connection everything together. Because reconfiguration fixes
the matching, most data transfers are for getting the data to
the processing units and for explicit communication in the
application. Therefore the execution units are expected to be
well utilised, resulting in an efficient design.

V. CONCLUSION

In this paper the design flow for a signal processing ap-
plication on a tiled reconfigurable multi-core architecture is
presented, based on a semantic model. This semantic model
is is a single model for system specification, design, evaluation
and implementation. The design flow is demonstrated by
performing co-design, partitioning and mapping for a phased
array beamforming application. The result is a dataflow model
mapped to a tiled architecture.

A dataflow model is used as a model to effectively and effi-
ciently use tiled multi-core architecture, because computation
is partitioned, communication is made explicit and synchroni-
sation is provided by back-pressure. Analysis techniques can
then provided quality-of-service measures.

Different processing cores are evaluated for use as a tile in
the tiled architecture for the beamforming application. Coarse-
grained reconfigurable processors are found to be most suitable
for their flexibility. However, their ease of use is found to be
lacking which is also a major argument against using FPGA.
DSPs on the other hand lack the required performance.

Thus a new core is proposed called the FlexCore, an easy to
use high performance, energy efficient, reconfigurable proces-
sor. It is based on dataflow principles and using the strengths of
the evaluated cores while avoiding their weaknesses. Recon-
figurability is used to achieve efficiency, dataflow principles
are used for programmability and ease of use. The FlexCore

is scalable at three levels allowing one to balance the design
and achieve high performance.

ACKNOWLEDGMENTS

This research is partly funded by Thales Netherlands
and STW projects CMOS Beamforming (07620) and NEST
(10346).

REFERENCES

[1] K. C. Rovers, M. D. van de Burgwal, A. B. J. Kokkeler, and G. J. M.
Smit, “Rationale for and design of a generic tiled hierarchical phased
array beamforming architecture,” in Proceedings of the 18th Annual
Workshop on Circuits Systems and Signal Processing (ProRISC), Veld-
hoven, the Netherlands. Utrecht: Technology Foundation, November
2007, pp. 160–168.

[2] H. J. Visser, Array and phased array antenna basics. Chichester: Wiley,
2005.

[3] K. C. Rovers, J. Kuper, and G. J. M. Smit, “Semantic programming
model-based design,” in Proceedings of the 19th Annual Workshop
on Circuits Systems and Signal Processing (ProRISC), Veldhoven, the
Netherlands, November 2008, pp. 83–88.

[4] K. C. Rovers, M. D. van de Burgwal, J. Kuper, and G. J. M. Smit,
“Towards effective modeling and programming multi-core tiled re-
configurable architectures,” in Proceedings of the 2009 International
Conference on Engineering of Reconfigurable Systems & Algorithms,
Las Vegas, Nevada, USA. USA: CSREA Press, July 2009, pp. 167–
174.

[5] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. New York, NY,
USA: McGraw-Hill, 2001.

[6] H. L. van Trees, Optimum array processing. New York: Wiley-
Interscience, 2002, vol. Detection, estimation and modulation theory.

[7] M. H. Wiggers, “Aperiodic multiprocessor scheduling for real-time
stream processing applications,” Ph.D. dissertation, University of
Twente, Enschede, The Netherlands, June 2009.

[8] T. ter Braak, “Run-time spatial mapping in heterogeneous mpsocs,”
Master’s thesis, University of Twente, August 2009.

[9] P. M. Heysters, “Coarse-grained reconfigurable processors – flexibility
meets efficiency,” Ph.D. dissertation, University of Twente, Enschede,
The Netherlands, Sep 2004.

[10] G. K. Rauwerda, “Multi-standard adaptive wireless communication
receivers – adaptive applications mapped on heterogeneous dynamically
reconfigurable hardware,” Ph.D. dissertation, University of Twente,
Enschede, The Netherlands, Jan 2008.

[11] J. Backus, “Can programming be liberated from the von neumann style?:
a functional style and its algebra of programs,” Commun. ACM, vol. 21,
no. 8, pp. 613–641, 1978.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2006.

