
Dynamic Homecare Service Provisioning
Architecture

Alireza Zarghami, Mohammad Zarifi Eslami, Brahmananda Sapkota, Marten van Sinderen
Department of Electrical Engineering, Mathematics and Computer Science, University of Twente

Enschede, The Netherlands
{a.zarghami,m.zarifi,b.sapkota,m.j.vansinderen}@utwente.nl

Abstract—The realization of homecare services is difficult
because of dynamicity requirements and constraints that exist
in this domain. These requirements call for a dynamic service
provisioning, i.e., adaptivity and adaptability of the (composition
of) homecare services in response to a) frequently occurring
changes like change in the location or vital signs, or b) slowly
developing changes like extent of impairments of a care-receiver.
In this paper, we explain our understanding of a dynamic
service provisioning platform, its requirements and constraints.
As such, we design an architecture based on an existing hybrid
service provisioning approach (a combination of process and
rule) and related architectural patterns. Then, we implement
this approach using the commercially available process and rule
engines. We demonstrate how a homecare application can be
deployed, executed and how the application can adapt itself to the
frequently occurring changes at runtime. We also demonstrated
how a care-giver can modify the behaviour of the application to
adapt the slowly occurring changes. Finally, we discuss the pros
and cons of the approach and explain our future plan.

Index Terms—service provisioning; application platform; busi-
ness process and rules; adaptive and adaptable service

I. INTRODUCTION

Population aging and demographic change is a global phe-
nomenon for the near future in the industrialized countries.
As a result of the increase in the proportion of old people,
the industrialized countries will face new challenges [1].
One challenge will be to cope with the need of care for
elderly (care-receiver) while there is not enough manpower
(care-givers) to work in this domain. It will be difficult to
support care-receivers, if the existing health care systems and
processes remain as they are now [1]. A promising solution
can be providing IT-based healthcare systems and supporting
independent living for elderly in their own home [2].

A homecare system is ”a potentially linked set of services ...
that provide or support the provision of care in the home” [3].
With the emergence of Service-oriented computing, many of
these services (such as vital sign monitoring) are provided
by third-party organizations and can be integrated to provide
a seamless homecare solution. Homecare applications can
be built by composing several homecare services. To this
end, service-oriented architecture and its advantage of service
composition in a loosely-coupled manner are being considered
as one of the approaches to promote such solutions [4] [5].

The realization of homecare services is difficult because
of the dynamicity requirements and constraints that exist in
this domain [6]. These requirements call for adaptivity and

adaptability of the (composition of) homecare services in
response to a) frequently occurring changes like change in
the location or vital signs of a care-receiver, or b) slowly
developing changes like extent of impairments of a care-
receiver [7]. Existing homecare provisioning platforms do not
(completely) address these requirements and constraints [8].

Our objective is to design and implement a homecare ser-
vice provisioning platform which can support the dynamicity
demands and constraints of the homecare domain. We propose
a hybrid service composition approach that uses business
processes and rules [9]. Having business rules beside pro-
cesses, enables the provisioning platform to adapt the services
execution based on runtime situations. In addition, it helps
the care-givers to simply change the rules to satisfy individual
requirements of care-receivers without changing the processes.

In this paper, we show the feasibility of a dynamic service
provisioning platform for a homecare application scenario. As
such, we design an architecture and accordingly implement
the hybrid service provisioning approach. We explain how a
homecare application can be deployed, executed and how the
application can adapt itself to the frequently occurring changes
at runtime. We also explain how the care-giver can modify the
application behaviour to adapt the slowly occurring changes.

The rest of this paper is structured as follow. In Section 2,
we explain the dynamicity requirements and constraints of the
homecare domain, the overall view of our solution and our
definition of a dynamic homecare provisioning platform. In
Section 3, an application scenario will be presented. Section
4, elaborates the logical architecture of the platform and the
architectural patterns which are employed. The deployment
architecture, implementation and the technologies used are
described in Section 5. In Section 6, we discuss the advantages
and disadvantages of our approach in comparison with other
related works and accordingly explain our future plan. Finally,
in Section 7, we conclude the paper.

II. DYNAMICITY IN THE HOMECARE DOMAIN

To design a dynamic service provisioning platform, first we
need to identify the dynamicity requirements and constraints
that exist in the homecare domain. Then we present the overall
view of our ICT-based solution in the homecare environment to
show how the provisioning platform interacts with its environ-
ment. Finally, we introduce our dynamic service provisioning
platform with respect to the identified changes and constraints.

A. Requirements and Constraints

We define the dynamicity requirements in the homecare
domain in two categories as follows:

• Frequently occurring changes: These changes occur
when the context or the vital signs of the care-receiver
changes during provisioning of the services (e.g., change
in location, blood pressure of a care-receiver). Since such
changes happen frequently and also during the service
execution, they need to be handled at runtime.

• Slowly developing changes: These changes are about
the care-receiver’s needs and preferences which usually
develop gradually over longer period of time, such as
extension of the care-receiver’s impairments. For such
changes, the care-giver, in consultation with the care-
receiver, should be able to tailor the homecare services
to satisfy their current needs and preferences.

All of these changes should be addressed with respect to the
constraints that exist in the homecare domain such as safety-
critical situation of the care-receiver and lack of technical skills
of the care-giver [6]. Due the safety-critical constraints, the
applications behaviour should be accurate while facing the
frequently occurring changes at runtime. The care-giver must
be able to tailor the application behaviour without the need
of advanced IT knowledge and with minimum cost like the
man-power needed for the tailoring.

B. The Overall View

A homecare provisioning platform should support the home-
care application to adapt its behaviour to the frequently
occurring changes at runtime. If the runtime adaption is
not applicable, the care-giver modifies the homecare services
through a so-called tailoring platform and then (re)deploy
them to the provisioning platform. In order to avoid any
misunderstanding, we should explain our perception from the
tailoring and provisioning platforms and their interaction with
each other. Figure 1 shows the overall view of out ICT-based
solution in the homecare domain.

Provisioning platform

Care-
receiver

Professional
/Social

Controlled
services

Care-
giver

Infrastructure
services

Application
services

Third-party
service Tailoring

interface

Tailoring
platform

Fig. 1. The overall view of our ICT-based homecare solution

With respect to the requirements and constraints that ex-
ist in the homecare domain, we choose a hybrid service
composition, a combination of process and rules, to design
the provisioning platform [6]. A service plan refers to one
or more service building blocks (SBBs) and describes the
configuration and orchestration of these SBBs as well as

decision rules required to specify runtime behaviour. Since
these rules are used in the service plan to specify the runtime
behaviour of the application, we call them decision rules
instead of business rules, which are mostly used to define or
constrain high level business goals. The SBBs, like a medicine
dispenser or reminder, are the smallest manageable services
from the care-giver point of view. Configuration parameters
of SBBs allow the care-givers to specify different aspects
of the SBBs such as service operations and user interface
modalities. Orchestration schemes determine how SBBs are
composed. Decision rules determine the possible adaptation
at runtime, based on evaluation of the rules with runtime data
(e.g., context values). For example, decision rules can be used
to choose between alternative implementations one SBB or
between alternative data and control flows among the SBBs,
based on specific runtime circumstances.

By service provisioning, we mean the execution of the
service plans by employing the functionality offered by avail-
able application services at runtime. The provisioning platform
binds the abstract SBBs used in the service plan to the
application services. As such, the infrastructure services of the
provisioning platform must be able to match an abstract SBB
with the several available application services at runtime. Then
the most suitable application service is binded to this SBB
based on predefined decision rules. The application services
are provided either by the third-party service providers located
outside a care home or the controlled services installed inside
a care home. The care homes are either private homes located
outside of a care center or units located inside a care center.
Although the ownership of these two types of application
services are different, they are treated by the provisioning
platform in the same way. For instance, a blood pressure
measurement service is provided and owned by a third-party
organization while a reminder service is managed and owned
by the platform.

The service plans, coming from the tailoring platform will
be deployed to the provisioning platform through its tailoring
interface. The provisioning platform interacts with the care-
receiver and needs to be installed per each care home to
execute its own services. In contrast, the tailoring platform
interacts with the care-giver and one tailoring platform can be
employed for a care center in charge of several care homes.

C. The Dynamic Service Provisioning Platform

With respect to the aforementioned dynamicity requirements
and constraints, we define dynamic service provisioning plat-
form as an adaptive and adaptable service-oriented application
platform.

a) By adaptive homecare provisioning platform, we mean
that the platform supports the applications to adjust their be-
haviour according to the relevant frequently occurring changes
at runtime with minimal or no manual care-receiver inter-
vention. It is done through adjusting the configuration and
orchestration of a set of available application services at
runtime. The adjustment is constrained by the service plan
which is created by the care-giver.

b) By adaptable homecare provisioning platform, we mean
that the deployed service plans, on top of the platform, can
be updated and instantiated to support the slowly developing
changes, respectively, with the minimum cost. The cost can be
related to the man-power needed for the tailoring or the effect
of updating and instantiation of an application on the platform
and other running applications.

III. APPLICATION SCENARIO

To motivate the need for our proposed provisioning plat-
form, we illustrate a homecare application for blood pressure
monitoring (BPM) and explain its corresponding service plan.

Yes

No

Yes

Yes

Bloodpressure.GetData r1 Reminder.Send

r4

Start r2

t1: time out
dia1: Diastolic level 1
(default value: 55)
dia2: Diastolic level 2
(default value: 100)
sys1: Systolic level 1
(default value: 80)
sys2: Systolic level 2
(default value: 200)

No

t2: Waiting between each reminder
 (default value: 30 min)
n: Number of repetition

(default value: once)
m1: Message to send
rmo: Modality (default value: Visual)
rd: which device to send the reminder
 (default value: Tablet PC)

Alarm.Send

m2: Message to send
in: interface (default value: SMS)
cg: to send to whom (care-giver)

No

r3

Yes

No

Rule:
r0 :If calendar.BloodPressure & BloodPressure.Value is older than 2
hours then start BPM application
r1 : If the blood pressure is measured after t1 min
r2: If the blood pressure is measured after t2 min
r3: (dia< 55 or dia> 100) & (sys< 80 or sys> 200)
r4: If Reminder.repetition < n
r5: (sys> 140)
r6: If Jan is at home then send reminder to his Tablet PC
else send reminder to his PDA

r5

Call MDR

No

Yesr0 r6

Parameters
Parameters

Parameters

Fig. 2. The service plan of blood pressure monitoring (BPM) application

The service plan of the BPM application should be created
and tailored by Nancy (a care-giver) for John (a care-receiver)
to help him to measure his blood pressure on time. The
application starts based on a predefined calendar event and
reminds Jan, possibly several times, to measure his blood
pressure. If he does not measure or his blood pressure is not in
the normal range, the application sends an alarm to Nancy. If
his blood pressure is still in the range but the systolic level is
higher than 140, the application calls medicine reminder (MR)
application to remind him to take his medicine.

Figure 2 shows the service plan of the BPM application
which consists of an orchestration of SBBs as well as decision
rules to specify the behaviour of the application at runtime.
For instance, rule r0 defines when the application starts, rule
r4 determines how many times to send the reminder and rule
r6 determines to which application service the reminder SBB
should be mapped, based on Jan’s location at runtime. To
support the rules, there are several configuration parameters
which are assigned to the SBBs.

The BPM application will be executed for one year. Due
to the extension of Jan’s heart disease, Nancy decreases
the maximum systolic level to 130 to remind him to take
his medicine. Furthermore, due to his movement difficulties,
Nancy increases the reminder time, so Jan has more time to
do his reminded tasks.

IV. PROVISIONING PLATFORM ARCHITECTURE

To present our provisioning architecture, first we explain the
architectural patterns which are employed by our provisioning
platform. Then we describe how the infrastructure services
interact with each other and the other platform services to
deploy and execute the applications. Finally, we explain the
steps to deploy a service plan on top of the provisioning
platform as a homecare application.

A. Architectural Patterns

Based on our definition, the provisioning platform should
address both the adaptivity and adaptability properties. For
these properties, there are several architectural and design
patterns which allow us to reuse of solutions proposed by
experienced practitioners for the common problems [10]. The
patterns which are employed by our proposed logical archi-
tecture are explained as follows:

(1) Adapter: Adapter is a pattern to enable heterogeneous
software components interact with each other by providing
compatible interfaces. This allows us to replace a service by
another service both at design and runtime without considering
their implementation details. As shown in Figure 3, we have
several adapters to provide uniform transportation protocols as
well as interfaces for third-party services. Since our proposed
process engine is interacting only trough SOAP protocol,
these adapters provide web service interfaces out of any
communication protocols such as JMS and HTTP, used by
different service providers. For instance, the blood pressure
(BP) measurement service has an interface to retrieve the last
value of Jan’s BP measurement through a web service which
can be binded to different third-party service providers. In
case of controlled services, since they are implemented by the
platform, there is no need for the adapters. For instance, the
calendar is implemented as an application to provide a web
service to add events and accordingly to be notified. For sake
of simplicity, by application services, we also mean adapter
services.

The host of application services, the application server, has
a service repository to maintain the binding ports and WSDL
interfaces of the application services. The application server
can be located inside a care home, a.k.a home gateway, or at
back office like a care center. This design choice depends on
whether the devices at home are able to communicate with the
application server at back office. In section V, we explain why
our home gateway is located in the back office. The internal
mechanism of the application server is not the focus of this
paper. Instead, we emphasize on the infrastructure services as
the core of our logical architecture.

(2) Event-Control-Action: Due to our definition, contexual
changes is part of the frequently occuring changes which
should be addressed by the dynamic provisioning platform.
We chose Event-Control-Action pattern for our dynamic pro-
visioning platform [11]. By using this pattern, we aim to
decouple context concern from reaction by means of Event-
Control-Action (ECA) rules. The context-related application
services such as the location determination service, provide

Controlled services Third-party services

Provisioning platform

- Calendar
- Reminder
- Alarm

<<subsystem>>
Application server

Application
/Adapter

Service
repository

<<subsystem>>

Deployment

Tailoring interface
Context
manager

Process
engine

Infrastructure
server

Rule
engine

...

- BP measurement
- Pharmacy
- Location determination
...

<<subsystem>>

Fig. 3. The proposed logical architecture of the provisioning platform

publish-subscribe interfaces. For each contextual event, one
or several of these application services have been subscribed
by the context manager. The context manager notifies the rule
engine if any contextual event happens. The rule engine can
also query the context manager about the current contextual
conditions.

(3) Process vs. rule engine: Since we chose the hybrid ser-
vice composition approach, the provisioning platform employs
the rule engine pattern to manipulate the rules. These rules are
fired based on the happening contextual events which are man-
aged by the context manager or non-contextual events which
are triggered directly by application services, for instance, the
calendar service triggers a rule to start a medication reminder
application. In contrast with rule engine, the platform employs
the process engine to manage the orchestration of the services
which is more static compared to the decision rules.

The rule engine can either trigger a process in the process
engine or be queried by the process engine at the decision
points of the running processes. The rule engine has several
components such as rule repository to maintain all the rules
for execution and pattern matcher to decide which rule should
be fired based on the event and contextual conditions. In this
paper, since we emphasize on the interaction between the rule
engine and the process engine, the internal components of the
rule engine are not explained.

B. The Infrastructure Services

In our architecture, we have two types of services: applica-
tion services and infrastructure services. The application ser-
vices are scenario-dependent and implemented by adapters or
applications to support a specific type of application scenario
in the platform. For instance, the BP measurement service is
employed by the BPM application. In contrast, infrastructure
services are generic and scenario-independent.

As explained before, the service plan consists of the process
(i.e., orchestration) and the decision rules to specify the be-
haviour of its corresponding application. The rules can be fired
based on a set of predefined contextual and non-contextual
events. To manipulate the process, rules and contextual events,
as shown in Figure 4, our platform has three infrastructure
services: process engine, rule engine and context manger.
These services have several inner and outer interfaces. The
outer interfaces can be used by the application services,
service repository and deployment component. To execute an
application, first its service plan must be deployed.

We assume all the possible orchestrations of the service
plans have been deployed on the process engine with unique
Identification (ID) and during the deployment, an orchestration
ID is assigned to a care-receiver by a rule. As such, the process
engine does not have deployment interface. The rule engine
and context manger have deployment interfaces to deploy a
rule and contextual event, respectively (R8,C2). Later in this
section, the deployment process will be explained.

Infrastructure
services

Rule engineProcess
engine

Context
manager

Context
enquiry

Trigger
contextual

event

Send
notification

Call
reasoning

service

Receive a
contextual

change

Receive a
non-contextual

event

Call an
application

service

Subscribe a
non-contextual

event

Subscribe a
contextual change

Deploy a
contextual event

Deploy
a rule

Service
repository
enquiry

R1

R2
R3 R4 R5

C1
C2

C4

C3

C5

P1

P2P3

R6R7R8

Fig. 4. The infrastructure services inner and outer interfaces

The rule engine sends notification to the process engine
either to start an orchestration of a service plan or to inform
the running orchestration about new happening event(R1-P1).
In addition, the process engine can call a reasoning service,
provided by executing a rule set on top of the rule engine(P2-
R2). It can happens whenever the notification received by the
process engine or at the decision points of the orchestration.
Since, we use Event-Condition-Action pattern to decouple
contextual concern from the actions done by the services,
there is no direct communication between context manager
and process engine. The process engine can directly call an
application service in order to coordinate the orchestration, for
instance, call a reminder service to send reminder to a care-
receiver(P3).

Based on the events defined in a service plan, the rule
engine or the context manager subscribes to a set of adapters
(R7,C3). The contextual events are defined on the context
manager during the deployment process. For each of the

contextual event, the context manager subscribes to one or
several application services. Therefore, the context changes
are sent to the context manager through its interface (C1).
If a contextual event happens, the context manager trigger the
event through the rule engine interface (C4-R5). In addition, if
the rule engine needs more contextual information, it can query
the context manager (R4-C5). The non-contextual events, like
calendar events, are directly defined in the rule engine and the
corresponding application service can notify the rule engine
through its interface (R3). During the execution, the rule
engine contacts the service repository to know what are the
available application services for a specific SBB(R6) to be
binded.

C. Service Plan Deployment

As explained in Section II, the service plan consists of the
orchestration of the SBBs and a set of decision rules. We
explain the deployment process of a service plan in three steps
as follow:

(1) Process deployment: An orchestration of a service plan
will be deployed as a process to the process engine and can not
change without redeploying the process. In our approach, the
orchestration are fixed for each homecare application and if
there is any need to change the orchestration, the service plan
should be redeployed. In order to improve the adaptability,
based on our interview with care-givers, each application has
several alternative orchestrations with unique ID. So during
the deployment, by mapping the care-receiver to one of the
orchestration ID, the desired orchestration will be specified.

(2) Rule deployment: The decision rules will be deployed to
the rule engine by defining their Events-Conditions and corre-
sponding Actions. The rules can change without redeployment
as far as their input and output parameters remain unchanged.
To have more adaptability, instead of having several rule sets
for a service plan, we define a rule set for each service plan.
The rule set have all possible input and output parameters for
a service plan, even if all of the parameters are not currently
used by the decision rules. Therefore, changing the rules does
not change the input and output parameters, unless a new
parameter needs to be defined. Each rule set, after being
deployed on the rule engine, can be accessed by a web service.

(3) Subscription: Based on the events and conditions of
the rule set of the deployed service plan, the rule engine or
the context manager subscribes to several application services.
For instance, the service plan of Jan’s BPM application has a
calendar event, so the rule engine directly subscribes to the cal-
endar service with Jan’s ID and event type of blood pressure. It
also needs to know whether Jan’s blood pressure is measured.
So the rule engine also subscribes to BP measurement service
with Jan’s ID. The service plan also has an event for change
of Jan’s location as a contextual event which is defined on the
context manager. As such, the context manager subscribes to
the location determination service with Jan’s ID and will be
notified whenever Jan arrives at or leaves the care home.

V. DEPLOYMENT AND IMPLEMENTATION

To demonstrate our implementation, first, we show the
deployment architecture to describe the mapping of the logical
architecture to the physical environment and technologies.
Then, to demonstrate our implementation, using the applica-
tion scenario presented in Section III, we explain how the
infrastructure and application services interact with each other
to execute the corresponding service plan.

A. The Deployment Architecture

We have employed several tools and technologies which
can be installed either on one or separate servers. As Fig-
ure 3 shows, in our architecture, we have two types of
services: a) the scenario-independent infrastructure services
and b) scenario-dependent application services. Therefore, in
our deployment architecture, we have allocated two different
servers for them, the infrastructure server and the application
server.

The infrastructure server is running on a PC with Windows
2008 server operating system. As a process engine, we use
WebSphere Lombardi Edition1 and as a rule engine we use
WebSphere ILOG JRules2. We assume that all the application
services, are accessible by the infrastructure services through
SOAP protocol, therefore, this server can be located at our
back office and this eases the maintenance of the server. The
proposed rule engine has a GUI to edit the rules called rule
editor which can only be installed on Windows platform.
In addition, interoperability among different platforms is not
an issue because of using web services. As such, we chose
Windows server for the infrastructure server. Figure 5 depicts
how the provisioning platform has been deployed.

<<PC Windows 2008>>

Infrastructure Server

<<Process engine>>

WebSphere
Lombardi Edition

Homecare gateway
<<Ubuntu 10.4 >>

<<GlassFish 3.0>>
Application Server

<<Rue engine>>
WebSphere
ILOG JRules

Process
engine

Context
manager

Service
repository

Service
adapters

Rule
engine

Deployment

<<protocol>>
SOAP

Mobihealth
server

Pharmacy
website

<<protocol>>
HTTP

<<protocol>>
SOAP

C
are-receiver

PD
A

C
are-giver

P
D

A
C

are-receiver
Tablet PC

<<
pr

ot
oc

ol
>>

TC
P/

IP

Location
determination

server
Rule editor

<<protocol>>
HTTP

<<protocol>>
SOAP

<<protocol>>
SOAP

<<protocol>>
HTTP

Fig. 5. The deployment architecture with respect to our application scenario

The application services on the application server must be
able to communicate with their corresponding heterogeneous
hardware and software components. In the homecare domain,
some of the hardware components such as location sensors
are resource-constrained and therefore, only capable to com-
municate with limited types of networks such as WiFi. On the
other hand, it is not financially feasible to put a server inside

1http://www-01.ibm.com/software/integration/lombardi-edition/
2http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp

each care home. With respect to our application scenario, all
the devices are accessible trough TCP/IP network and thus,
although our application server can be located inside the care
home, it is also located in the back office. As such, we setup
the application server on a Ubuntu (version 10.4) machine. The
adapters and their web services are implemented in an open
source application server called GlassFish3. Its Openness and
support of all Java EE API specifications such as web services,
XML and JMS (Java Message Service), seems promising in
order to have heterogeneous types of adapters.

As previously explained in Section II-B, we have two types
of application services: controlled and third-party services. As
one of our third-party services, the blood pressure monitor-
ing device at home is connected to a server in Mobihealth
company (one of our third-party service providers), through
their own infrastructure. The Mobihealth server is connected to
our application server to provide web service interface which
will be employed by the infrastructure services. The medicine
dispenser service, as another third-party service, is managed by
a pharmacy through a GPRS network. The medicine dispenser
adapter retrieves the data from the pharmacy website to inform
the infrastructure services when the medicine is taken by
mean of its web service interfaces. The location determination
server, as our last third-party service, employs its RFID sensors
at the care home to determine the location of the care-receiver.
Then, the location information can be retrieved from its server
via HTTP protocols.

Beside the third-party services, we implement ourselves
three controlled services: reminder, alarm and calendar ser-
vices. The application components of the reminder and alarm
services provide interfaces to send reminder using Jan’s PDA
and Tablet PC. The application component of alarm service
provides an interface to send alarm using Nancy’s PDA. The
calendar service has an interface to set an appointment and
to trigger an event when that appointment approaches. In the
BPM application scenario, the calendar service, used by all
the third-party service providers such the pharmacy, to set an
appointment to remind the care-receiver of doing a task. As
such, the calendar service sends an event to the rule engine to
start the BPM application.

B. The Implementation

To implement the BPM application scenario, we need to
deploy its service plan. As we explained in section IV-C,
the deployment consists of three steps: process deployment,
rule deployment and subscription. With respect to the process
deployment, the assigned orchestration of BPM application is
shown in Figure 6(A). It uses a BPMN-like language used
by Lombardi software to show how the infrastructure and
application services interact with each other.

The BPM application is triggered by the rule engine through
its starting message event. The orchestration conforms with the
service plan which is explained in Section III but with more
details for being executable. For instance, to implement the

3http://glassfish.java.net/

r0, the process engine calls the reasoning service implemented
by the rule engine to check whether the the latest Jan’s BP
measurement is still valid. The orchestration has a simple
split to define a parallel subprocess to handle the events sent
by the rule engine at runtime. For each event, the reasoning
service will be called to update the values of the configuration
parameters. As an example for the BPM application, if Jan
leaves the care home, the context manager is triggered by the
location service and accordingly the rule engine is triggered by
the context manager. Then the rule engine queries the context
manager if it needs more contextual information. The rule
engine matches the contextual information and the event with
r6 and sends an event to trigger the parallel subprocess of the
orchestration. The subprocess calls the reasoning service to
update the binding port of reminder service from Jan’s Tablet
PC to his PDA, even if the first reminder is already sent.

As Figure 6(B,C) shows the rule engine and the context
manger have their own processes which are implemented as
constantly running processes on top of the process engine.
These two processes are scenario-independent and can be
employed by different homecare applications to subscribe to
different application services for any types of events. For in-
stance, the rule engine process subscribes to BP measurement
service to receive the latest value of Jan’s BP measurement.
It supports the asynchronous interaction between the third-
party service providers and the platform, and thus, Jan can
measure his blood pressure even before the orchestration of
BPM application starts on the process engine.

As mentioned before, there is one rule set, i.e., reasoning
service for the BMP application which is called at different
points of the orchestration with different input values. To
implement the reasoning service, we define a rule set on top
of the rule engine. Each rule set has all the input and output
parameters which can be transfered between the process and
rule engine to execute a specific application like BPM. All
these parameters are defined as the same data model by both
the process engine and the rule engine.

The data model of the rule engine, which is called XOM
(Executable object model), can be used by its corresponding
BOM (Business object model) and rules templates in the rule
editor to modify the behaviour of BPM application. According
to our application scenario, Nancy can decrease the maximum
systolic level and increase the reminder time by changing
the rules which are represented in natural language without
redeployment of the orchestration. Figure 7 shows how Nancy
can edit the BPM application rules in the rule editor. For
instance, the diastolic and blood pressure are the business
objects and ”the diastolic of The Blood pressure is more than”
is a rule template. By clicking on the plus/minus symbols,
Nancy can change the objects or their values.

VI. DISCUSSION

In this paper, we investigate the feasibility of using our
hybrid service composition approach to achieve adaptivity and
adaptability for our homecare service provisioning platform.
Initial results shows that the non-technical care-receiver can

Fig. 6. The assigned orchestration of BPM application on the process engine (A), the process of the rule engine (B) and the process of context manager (C)

Fig. 7. The business objects and rule templates in the rule editor

modify the rules relatively easily provided that a comprehen-
sive list of rule templates, which can be edited, is given.
Currently, we conduct an experiment in a care center to
decide on this list of rule templates required for provisioning
dynamic homecare services. The increase in the number of
rules increases the complexity of the tailoring process beyond
a manageable level. In order to decrease the number of
rules, for each service plan, we propose to use a number
of alternative orchestrations as the basis. We believe that
by deploying several alternative orchestrations for a service
plan, we can have an acceptable level of dynamic service
provisioning and by providing a number of rule templates,
we enable the care-giver to tailor the services to individual
requirements and preferences of care-receivers.

One of the limitations of our approach is the use of
alternative orchestrations. Since the alternative orchestrations
of a service plan are static and cannot be changed after its
deployment, the adaptability and adaptivity aspects have to
be handled using rules. However, the rules cannot change
the orchestration which limits the adaptation capability of our

approach. A fully rule-based service plan would make it easier
to support adaptability. However, it makes the tailoring process
more difficult for non-technical care-givers and increases the
possibility of miss-planing in addition to making it difficult to
manage. This requires an approach that makes a balanced use
of rules and processes in the service plan, which is planned
as our future work.

Alternatively, the hybrid service composition can already
be used at tailoring level to generate an abstract service
plan. The tailoring platform then can generate a fully rule-
based executable service plan, automatically and deploy to
the provisioning platform. However, this can complicate the
conformance validation. It would be difficult to guarantee that
the generated rule-based service plan actually conforms to the
initial service plan. Keeping the hybrid service provisioning
both in the tailoring and provisioning, makes the service plan
refinement more straightforward and can possibly provide a
basis for an automatic service plan refinement from the tailor-
ing to the provisioning level. On the other hand, the hybrid
service provisioning approach makes conformance validation
simpler in comparison to a fully rules-based approaches.

In our approach, we use only one rule set per each service
plan. Therefore, whenever the process engine calls the rule
engine, all the rules of the rule set can be executed. Their
execution depends on the input parameters which are sent by
the process engine. It has a negative impact on the performance
of the rule engine because some of the rules might be
executed while they are not required. Although classifying
rules, like before and after interceptor as in [12], improves the
performance of the rule engine, it increases the complexity of
tailoring a service plan. In our approach, the care-giver can
edit the rule templates for a specific care-receiver in any order
and at once without specifying where (before or after a specific

task) they should be executed. We need to do a performance
evaluation of our approach which is planed as our future work.

Some of the rules are crosscutting concerns and defined
by specifying where (i.e., after or before an activity) to be
executed. This types of issues are handled through use of as-
pects from aspect-oriented-programming in the filed of service
composition [13]. However, this requires modification of the
existing process engines, which we like to avoid. We believe
that the task-dependency of rules can also be implemented
by existing process and rule engines. Thus, as another future
work, we plan to define a set of tasks similar to the SBBs
which can be called by the rule engine and then the result will
be returned to the process engine. For instance, currently our
service plan does not let the care-giver to add a rule to execute
MR application within the orchestration of BPM application.
But if we define MR application as an application service,
then it can be invoked from a rule engine (e.g., WebSphere
ILOG allows us to call external services). After its execution,
the control and data flows will be returned to the process
engine and thus from the care-giver’s point of view, it seems
that the MR application is added to the orchestration of BPM
application.

To address adaptivity, we employ a parallel subprocess
in the orchestration of the service plan. As discussed in
Section V, the runtime contextual events are sent to the
rule engine by the context manger and accordingly the rule
engine sends the events to the process engine. Finally, the rule
engine updates the data model of the service plan through its
reasoning service. This data model, which is defined on both
rule and process engines, is the essential element for both
adaptivity and adaptability of a service plan. In order to have
the desired application behaviour, the data model of a service
plan must be consistent in both process and rule engines. If
a new rule needs a new parameter, the data model should
be updated on both the rule engine and the process engine.
As such, the process must be redeployed which interrupt the
service provisioning process. To alleviate this problem, we
plan to externalize the data model from the process engine and
thus, a change in the data model does not cause the process
to be redeployed.

VII. CONCLUSIONS

In this paper, we investigate the feasibility of a dynamic
service provisioning platform by using a hybrid service com-
position approach. The platform is capable of handling the
frequently occurring changes (both contextual and vital signs
changes) at runtime through a parallel subprocess which is
triggered by the rule engine. By exacting the rules embedded in
the process and providing them separately as services, the care-
giver can modify the homecare application behaviour even
at runtime. The platform is implemented using commercially
available process and rule engines to evaluate the feasibility of
our approach. The initial evaluation reveals that our approach
is promising for providing a realistic solution to address
dynamicity requirements in the homecare domain.

Although we show the feasibility of our approach, there
are still several domain-dependent and domain-independent
aspects which require further research. The domain-dependent
aspects such as to what extent the deployed orchestrations of
the homecare applications remain unchanged over a longer
period of time needs further investigation. Furthermore, the
conformance validation between the service plan and the
executable orchestrations and rules is crucial because of the
safety-critical nature of homecare environment. The domain-
independent aspects include, for example, balanced use of
rules and processes in the service plan. This requires further
investigation on how to achieve this requirement and whether
a guideline can be defined.

ACKNOWLEDGEMENTS

This work is part of the IOP GenCom U-Care
project(http://ucare.ewi.utwente.nl) which is sponsored by the
Dutch Ministry of Economic Affairs under contract IGC0816.

REFERENCES

[1] European Commission, “Ageing well in the information society - an
i2010 initiative - action plan on information and communication tech-
nologies and ageing,” EU, Tech. Rep., 2007.

[2] K. Gabner and M. Conrad, “ICT enabled independent living for elderly,
A status-quo analysis on products and the research landscape in the
field of Ambient Assisted Living in EU-27,” prepared by VDI/VDE
Innovation und Technik GmbH, 2010.

[3] M. R. McGee-Lennon, “Requirements engineering for home care tech-
nology,” in 26th Annual SIGCHI Conf. on Human Factors in Computing
Systems, 2008, pp. 1439–1442.

[4] P. D. Gray, T. McBryan, N. Hine, C. J. Martin, N. Gil, M. Wolters,
N. Mayo, K. J. Turner, L. S. Docherty, F. Wang, and M. Kolberg, “A
scalable home care system infrastructure supporting domiciliary care,”
Tech. Rep., 2007.

[5] M. Mikalsen, S. Hanke, T. Fuxreiter, S. Walderhaug, L. Wienhofen,
S. ICT, and N. Trondheim, “Interoperability services in the MPOWER
Ambient Assisted Living platform,” Stud Health Technol Inform, vol.
150, pp. 366–70, 2009.

[6] A. Zarghami, M. Zarifi Eslami, B. Sapkota, and M. van Sinderen,
“Toward dynamic service provisioning in the homecare domain,” in
5th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth), 2011, pp. 292–299.

[7] T. McBryan, M. R. McGee-Lennon, and P. Gray, “An integrated ap-
proach to supporting interaction evolution in home care systems,” in
1st International Conf. on Pervasive Technologies Related to Assistive
Environments. New York, NY, USA: ACM, 2008, pp. 1–8.

[8] A. Zarghami, M. Zarifi Eslami, B. Sapkota, and M. van Sinderen,
“Service realization and compositions issues in the homecare domain,”
in 6th International Conf. on Software and Data Technologies (ICSOFT),
vol. 1, 2011, pp. 347–356.

[9] A. Charfi and M. Mezini, “Hybrid web service composition: business
processes meet business rules,” in 2nd International Conf. on Service
Oriented Computing. ACM, 2004, pp. 30–38.

[10] Pattern-oriented software architecture: On patterns and pattern lan-
guages, 2007.

[11] P. Dockhorn Costa, L. Ferreira Pires, and M. van Sinderen, “Architec-
tural patterns for context-aware services platforms,” in 2nd International
Workshop on Ubiquitous Computing. INSTICC Press, 2005, pp. 3–18.

[12] F. Rosenberg and S. Dustdar, “Business rules integration in bpel -
a service-oriented approach,” in 7th IEEE International Conf. on E-
Commerce Technology, 2005, pp. 476–479.

[13] A. Charfi and M. Mezini, “Ao4bpel: An aspect-oriented extension to
bpel,” World Wide Web, vol. 10, pp. 309–344, 2007.

