
2011 NASAIESA Conference on Adaptive Hardware and Systems (AHS-2011)

Multicore SoC for On-Board Payload Signal

Processing

Karel H.G. Walters, S.H. Gerez, GJ.M. Smit

Computer Architecture for Embedded Systems

University of Twente

Enschede, The Netherlands

S. Baillou, G.K. Rauwerda

Recore Systems

Enschede, The Netherlands

gerard.rau werda @recoresystems.com

R. Trautner

European Space Agency, ESTEC

Noordwijk, The Netherlands

roland.trautner@esa.int

k.h.g. walters@utwente.nl

true Abstract-This paper introduces a new generic platform
for onboard payload signal processing. The system is built up
around an NoC with a bridge to an AMBA system which supports
easy integration with existing AMBA based platforms. With
the use of a pthreads interface the platform allows for simple
programming and easy extension. For prototyping purposes,
an implementation has been made on an FPGA together with
a range of I/O options to assess its capabilities. SpaceWire
and other interfaces support the extension of the demonstrator
platform across multiple boards and allow to connect it to on
board networks and systems. This paper shows that novel and
established chip architectures can be integrated in a way that
combines their benefits, and represents a promising candidate
architecture for future on-board processing platforms.

I. IN TRODUCTION

Data rates and data volumes generated by on-board instru

ments on science and earth observation missions are constantly

increasing. This creates an increasingly high demand for

power efficient on-board processing performance since the

available energy is limited and the data rates available on

the down links represent an unavoidable bottleneck. Existing

processing platforms are usually based on a combination of

'old' DSP or GPP processor technology and space-qualified

(but power hungry) FPGAs or dedicated ASICs [1-3].The

development of specific space qualified ASICs is expensive

and time consuming, in particular if they can only be used

for a single mission. For this reason, new generic processing

platforms need to be developed and made available for use

in space. This paper describes a new platform developed in

the "Massively Parallel Processor Breadboarding" projectl.

It integrates accepted technologies with novel elements that

have been developed in recent years. These new technologies

include a new signal processor, a Network-on-Chip (NoC) as

well as SpaceWire interfaces which are used together with

an AMBA subsystem and a LEON2 processor. This hybrid

architecture makes it possible to develop applications relatively

fast and integrate them with existing systems while still

exploiting the speed and throughput of modern technologies. It

also combines the specific strengths of the individual elements,

which is control-dominated processing for the LEON2, and

stream based signal processing for the DSPs and the NoC.

The following sections first describe the prototype the

signal processor. This is followed by a description of the

I ESA TRP contract (21986/08/NLlLvH)

978-1-4577-0599-1/11/$26.00 ©2011 IEEE 17

different input and output interfaces, developmentenvironment

and system programming, and related work. Considerations on

future work including planned system improvements conclude

the paper.

II. PLATFORM

The current implementation of the platform is mainly in

tended for prototyping purposes and serves as an intermedi

ate step towards an ASIC implementation. The prototyping

platform consists of two main parts, the NoC sub-system and

AMBA system, as can be seen in Figure 1. The reason to

include the AMBA system and not going for a full NoC

oriented system is that a lot of hardware IPs do not have an

NoC interface or an interface which is easy to adapt to an NoC

oriented system. Another reason is to allow easy portability of

software and integration with existing systems.

Mainly the high bandwidth peripherals are connected to the

NoC while the others are connected to the AMBA system.

The AMBA system also provides the ability to attach the well

known LEON2 core processor to support execution of existing

software with minimal changes to the source code.

A. AMBA

Fig. I. Current platform architecture

The AMBA system implements the AMBA-Lite standard

which allows for one single master per layer. More masters

2011 NASAIESA Conference on Adaptive Hardware and Systems (AHS-2011)

on a layer would require more wires for the bus and lead to

higher overall system complexity. The downside is that every

master on the bus requires its own layer. So a trade-off was

made between the number of layers and complexity of the

system. The current implementation has four layers, one for

each master on the bus, and seven slaves. The masters and

slaves are indicated by AHB-M and AHB-S respectively in

Figure 1.

B. NoC

Fig. 2. NoC Architecture

The NoC is based upon earlier work of developing NoCs

within our group [4] and is loosely based on the work by

Bolotin et. al [5]. The NoC consists of a set of packet

switched, five-port routers. A router is connected to each

neighboring router via a single 32-bit full-duplex link and

to its local peripheral via four 32-bit full-duplex links. Each

router schedules four different priorities. From high priority

interrupt data to low priority single read and write operations.

This allows for a total aggregated bandwidth of 1.6Gb/s per

link at the current clock frequency of 50MHz.

All the devices on the NoC are memory mapped and

accessible by devices on the AMBA and vice versa. This

makes it possible for every master on the system to read

and write data anywhere in the system. The LEON2 can for

example read and write in local Xentium memory (see Section

II-C) , as can the Xentium read and write directly to the serial

port on the AMBA.

C. Xentium

The Xentium tile processor has been developed by Recore

Systems. The Xentium is a programmable digital signal pro

cessing tile that is designed for baseband processing. The

Xentium datapath has by default a width of 32-bits, but is

customizable at design time. In this paper, we employ a default

non-customized Xentium. A default implementation of the

Xentium design is depicted in Figure 3.

DSP operations are performed on different processing units.

One operation can be issued on each unit in each clock cycle.

All operations require a single clock cycle (with the exception

of load operations which require two cycles). Multiple units

18

Fig. 3. Xentium core

Fig. 4. Xentium together with memory and NoC interface

can be used in parallel to perform operations used in DSP

kernels such as two complex multiplications per clock cycle,

four multiply accumulates (MACs) per clock cycle or one

radix-2 FFT butterfly per clock cycle.

The processing units in the Xentium datapath can operate

in two different modes; 32-bit word or 16-bit vector mode.

In vector mode, the 32-bit unit operands are interpreted as

16-bit 2-element vectors. The elements of these vectors are

the low and high half-word parts of a word. Vector operations

perform the same operation on the low and high parts of the

vectors. Moreover, the datapath is equipped with dedicated

40-bit accumulators for improved accuracy.

The default Xentium design has two M units, four S units,

two P units and two E units. The M units can perform multiply

operations. The S and P units perform ALU operations (e.g.

additions and subtractions) including shift and pack instruc

tions respectively. The E units are responsible for load and

store operations. Each operation can be executed conditionally.

As shown in Figure 4, the data path is accompanied by a 32

kilobyte local SRAM, a timer, and a network interface.

III. IN T ERFAC ES AND P ERIPH ERALS

The system has several peripherals to support the interop

erability with other systems and provide options for basic

debugging. The LEON2 processor was chosen as a general

purpose processor. The LEON2 is used for the control

intensive parts of code and overall platform management.

Although the processor has already been superseded by the

LEON3 and the LEON4 [6, 7], the fully available V HDL and

experience with it was the reason to choose this GPP. For a

future ASIC the processor will be replaced by a fault tolerant

version. The available Eclipse IDE and GRMON debugger

make it easy to use and integrate with the other parts of the

system.

The peripherals include an LCD display, a real-time clock,

and several general purpose I/O. The real-time clock presents

its values according to the CCSDS 301.0 standard for un

segmented time codes. This allows integration with CCSDS

2011 NASAIESA Conference on Adaptive Hardware and Systems (AHS-2011)

compliant telemetry packets without having to reformat the

fields.

The memory tile in the NoC is an SRAM with low access

times and running at the same speed as the whole platform. It

is included to have a high speed generic memory to provide

access to and from any of the high speed interfaces available

on the platform. Especially the ADC and DAC require a place

to store to and read data from without having to worry about

underflow or overflow.

A. ADC and DAC

Both the analog to digital (ADC) and digital to analog

(DAC) IPs (ADCIDAC bridge in Figure 1 and II-B) operate

at a sample rate of up to 40 MS/s. The clock frequency

of the system is the main bottleneck as there would be no

room for processing if the sample rate was any higher. The

ADIDA IP are customized towards an Analog Devices AD2

and Texas Instruments DA3. They sample at 14-bit and 12-

bit respectively and allow the samples to be packed to make

efficient use of the 32-bit wide lanes on the NoC. The IP has

been implemented to do all transfers via DMA such that no

processing element needs to actively keep track of the transfers

other than initialization.

B. Space Wire

The system provides three SpaceWire [8, 9] connections.

Two of these SpaceWire connections are directly connected

to the NoC (SpWl and SpW2 in Figure 1). This makes it

possible to fully exploit the speed of the NoC and make use

of low latency connections to any of the other IPs connected

to the NoC. In fact, any device in the system can transfer

data via the interface by accessing a memory location and

configuring the DMA of the IP accordingly. The transfer

clock frequency of the SpaceWire connections is 100MHz.

Although the standard allows for a transfer clock of 200MHz

the platform's current clock frequency limits it to 100MHz.

The Space Wire standard allows to connect any device that is

compliant with the standard, which makes it relatively simple

to integrate with already existing systems.

Our platform shows that SpaceWire can work well together

with NoC technology in a working protoype. There is an im

plementation of SpaceWire for on-chip communication called

SoCWIRE by Osterloh et. al. [10] but this includes a lot of

overhead for the SpaceWire CODECs since it was originally

intended as off-chip communication.

The SpaceWire connection on the AMBA system (SpWO

in Figure 1 has the additional RMAP target IP integrated

which allows for memory mapped 110 via SpaceWire [9, 11].

Although it is only an RMAP target and not an initiator it

still allows for full memory mapped 110 over the SpaceWire

interface. This not only makes debugging possible but also

provides a means to do data transfers on the system.

The system has memory mapped interrupt registers which

provides the possibility to trigger interrupts from the

2http://www.analog.com!static/imported-files/data_sheets/AD6644.pdf
3http://focus.ti.comllitlds/symlinkldac5662.pdf

19

SpaceWire RMAP interface. This makes it possible to hand

shake transfers over RMAP without having to implement an

RMAP initiator IP or having to spin-lock a processing unit on

a memory location.

C. Gigabit inteiface

The gigabit interface (GBIF in Figure 1) is implemented

with the Rocket 110 available on the FPGA. The Aurora link

layer protocol has been integrated with the NoC and DMA

capabilities were added. The main purpose of the gigabit

interface is to connect any board or other peripherals that

implement the same interface to the NoC and in this way

extend the platform and increase the available processing

power or number of 110 interfaces (i.e. scaling up to virtual

many cores).

IV. PROGRAMMING

A. API

We have written an API for all the interfaces and peripherals

on the system. This API makes writing clear and readable

C code for the LEON2 possible. The code can be compiled

with the sparc-gcc compiler and debugged with the help of

the GRMON system.

The SpaceWire interface is used to supply the platform

with external data. We developed a simple API available

in Matlab to communicate with the SpaceWire interface of

the platform over USB. This allows to initially develop an

algorithm in Matlab and steadily move parts of the algorithm

to the platform. When the data comes back from the platform

the results can be verified using the graphical possibilities

offered by Matlab.

Very efficient DSP kernels for execution on the Xentium

processing tile are written in Xentium assembly. For several

well known DSP kernels, efficient library functions are avail

able. The LEON2 C program includes the Xentium assembly

to be run on the platform.

B. Starting software

The bootloader of the Xentium holds execution until it

receives a memory address to boot from. Typically this is

an address in the RAM of the NoC, AMBA system or off

chip SDRAM. The LEON2 runs the main control thread and

provides the Xentium processors with the memory locations

from where to boot. The DSP kernels that run on the Xentium

typically request certain variables like filter size or twiddle

factor locations. These values are provided by, the LEON2

and the Xentium can reply with an interrupt when the specific

kernel has completed or set a value which the LEON2 can

read.

C. Pthreads

The NewLib library [12] has been ported to the SPARC

architecture which makes it possible to use the pthread library.

In the currently employed programming model the LEON2

starts a phtread for the DSP kernel which is running on the

Xentium. The pthread on the LEON2 can run indefinitely if no

change is needed to the running thread or can be switched for

2011 NASAIESA Conference on Adaptive Hardware and Systems (AHS-2011)

another thread with a different DSP kernel. The LEON2 sets

up a C structure containing a pointer to the DSP kernel code,

the variables and the pointer to the source and target location

of the data. This structure is then used in the pthread to start

the Xentium. It is not needed to replicate program code for

the Xentium if the Xentiums need to run the same code, they

can fetch code from the same location. The only variables that

would need to change are the source and target locations of

the data. This approach makes it possible to switch tasks at

run-time and provides a way to keep track of which task is

running on which processing core.

D. Debugging

The LEON2 is implemented including the debug support

unit. Via this unit it is possible to communicate with GRMON.

GRMON provides a simple debug interface and a GDB server

which makes it possible to communicate with any GDB

capable debugger. Most commonly, the Eclipse IDE is used

which can communicate directly with GDB. The debugging

is eased by the fact that all the devices and peripherals are

memory mapped and since the debug support unit is a master

on the AHB every part of the system can be reached via

the debugger. Debugging is also possible via the SpaceWire

RMAP interface which is also a master and facilitates memory

mapped I/O via the SpaceWire interface.

V. RESULTS

The hardware system is implemented on a XpressLX330T

FPGA board from PLDA 4 containing a Virtex-5 LX 330T

and runs at a clock frequency of 50MHz. The experience

gained from the implementation and writing software for the

platform are used to improve the design and build a hardware

architecture which can be deployed as an ASIC.

A. Software

A number of processing kernels have been developed for the

Xentium processing tile. These kernels include various sizes of

complex FIR filters and FFTs. The FFTs are run with complex

input samples. Table I shows some of the results obtained with

16-bit fixed point data for a single Xentium tile. These figures

include the time required for the copying of the data from

and to a global memory. The time it takes to copy data to

the global memory is comparable to copying data to one of

the interfaces. The current platform can run any two of the

mentioned DSP kernels in Table I at the same time. This is

possible not only because there are two Xentiums available on

the platform but also because of the multiple memories and

the bandwidth available on the Noe.

The two Xentiums provide a total of 400 16-bit MMACs/s,

or 200 32-bit MMACs/s or 200 16-bit complex MMACs Is at

the current clock frequency of 50MHz. The LEON2 delivers

roughly 42 MIPS at 50MHz.

B. Synthesis

The current system runs at 50MHz on a Virtex-5 LX330T

from Xilinx. The device utilization is shown in Table II.

4http://www.plda.comldownloadidoclboardIXpressLX330T/fichelx33OT.pdf

20

TABLE I
DSP KERNEL SPEEDS FOR A SINGLE XENTIUM

kernel

FIR 128

FIR 256

complex FIR 128

complex FIR 256

FFT 1024

FFT 2048

cycles

33 per sample

65 per sample

65 per sample

129 per sample

4687 (10667 FFTs/s)

11360 (4400 FFTs/s)

TABLE II
VIRTEX-5 LX330T DEVICE UTILIZATION

Resource Used Available Utilization

10 pins 283 960 29.48 %

Global Buffers 13 32 40.62 %

Function Generators 147977 207360 71.36 %

CLB Slices 36995 51840 71.36 %

Dffs or Latches 78087 207360 37.66 %

Block RAMs 94 324 29.01 %

DSP48Es 18 192 9.38 %

Although the FPGA development board is employed for

emulation and used mainly for prototyping, verification and

validation the following figures give a small insight into how

the resources are split. The whole LEON2 system takes up

'" 10% of the FPGA design. A single Xentium tile including

its internal memory, timer and DMA unit takes up '" 20%

of the FPGA design. The Xentium tile has been developed to

for ASIC technology and as such is not optimized for FPGA

technology. The whole NoC including the Xentiums, all the

connecting IPs and memory tile takes up '" 88% of the FPGA

design.

V I. RELAT ED WORK

There are other platforms available which are comparable

to this work.

The current COTS SoCs like the TI OMAP chip [13] in

which the TI C64x is combined with the ARM cortex and

an image processor. These kinds of systems exist in various

flavors with different general purpose processors and different

kind of DSPs. The main difference with our work is that we

allow for a larger number of DSPs to be included in a scalable

way via an NoC while still allowing older technologies to be

incorporated. In the same category systems like the Tilera [14]

can be found in which a lot of general purpose computing

power is combined on a single chip via an interconnect. The

main difference here is that we exploit the power efficiency

of DSPs and we try to offload as much of the calculations to

these DSPs as possible.

Then there are the more custom platforms which are

currently used for on-board processing. One example is the

processor module for the ExoMars rover[l]. This system is

built up around a LEON2FT based chip (COLE) running at

64MHz with 512 Megabyte of EDAC protected SDRAM. An

2011 NASAIESA Conference on Adaptive Hardware and Systems (AHS-2011)

AT697F (also based on a LEON2) is used as a co-processor

which runs at a speed of 100MHz. This processor is used for

autonomous rover navigation. A chip based on our architecture

could deliver a lot more processing power while still having

the ability to make use of the code that is being written for

the LEON2FT processor and could eliminate the need for a

dedicated navigation processor.

Another architecture which is comparable to our is one

that is employed for airborne SAR processing which has been

developed by Langemeyer et. al. [15]. Next to the fact that this

platform is not intended to be used in space it uses an FPGA

to extend the platform itself which makes it less scalable.

The HiBRID-SoC they used is also very specific towards the

application of SAR processing and it is based on a AHB

system which makes a single SoC more difficult to extend.

With our gigabit interface we can directly extend the NoC

without the use of an intermediate device and we can extend

the NoC itself easily by adding more routers and devices.

V II. CONCLUSION AND FU TUR E WORK

In this paper we have shown that current technologies can

be well integrated with novel ones. The scalability of the

NoC part of the platform makes it possible to increase the

processing power to match the requirements. The combination

of several DSPs, a LEON2 and the SpaceWire interfaces in

terconnected by an NoC make this a good payload processing

platform.

Next to the DSP kernels that have been implemented

now, we are working on more complex applications such

as the CCSDS wavelet based image compression standard

and a software defined radio application. The 2D wavelet

transformation has already been mapped on the Xentium as

part of a hyperspectral image compressor [16]. With these

applications we further investigate the platform's capabilities

and issues that might arise which should be resolved before

ASIC implementation.

In a future ASIC implementation we want to enlarge the

NoC and number of Xentium processors as well as increasing

the clock frequency. In an FP7 project (CRISP5) [17] we

employ 9 Xentiums on an NoC running at 200MHz in UMC

90nm technology. For a space qualified design, we need to

improve the platform radiation tolerance by using techniques

like EDAC and hardening of specific architectural elements.

Apart from hardware improvements, software scheduling will

be a continuing area of research in our group, this includes

topics as dynamically rescheduling of tasks based on the

current condition of the hardware platform [18]. This will for

example enable a task to migrate away from a malfunctioning

tile with minimum or no downtime for the overall application.

REF ER ENC ES

[1] T. Hult, A. Petersn, B. Dean, and A. Winton, "The

ExoMars Rover Vehicle OBC," in In proceedings of

DASIA 2010, 2010.

5http://www.crisp-project.eul

21

[2] G. Estaves, P. Leconte, G. Vissio, and Leyre, "Super

Computers For Space Applications," Defence Technical

Information Center, 2005.

[3] F. Arenou, C. Babusiauxand, F. Chreau, and S. Mignot,

"The Gaia On-Board Scientific Data Handling," in

Proceedings of the Gaia Symposium "The Three

Dimensional Universe with Gaia" (ESA SP-576). , 2004.

[4] P. T. Wolkotte, "Exploration within the network-on

chip paradigm," Ph.D. dissertation, University of Twente,

Enschede, January 2009.

[5] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny,

"QNoC: QoS architecture and design process for network

on chip," Journal of Systems Architecture, vol. 50, pp.

105-128, 2004.

[6] Aeroftex-Gaisler, "Leon3 mUltiprocessing cpu core,"

http://www.gaisler.com/doc/leon3_produccsheet.pdf.

[7] AeroftexGaisler, "Leon4 32-bit processor core,"

http://www.gaisler.com/docILEON4_32-biCprocessor_

core.pdf.

[8] European Cooperation for Space Data Standardization,

"ECSS-E-ST-50-12C - SpaceWire - Links, nodes, routers

and networks," http://www.ecss.nl. European Coopera

tion for Space Data Standardization.

[9] European Space Agency, "Spacewire web page," http:

IIwww.estec.esa.nl/tech/spacewire/.

[10] B. Osterloh, H. Michalik, and F. B, "Socwire: A

spacewire inspired fault tolerant network-on-chip for

reconfigurable system-on-chip designs in space applica

tions," in In proceedings of Spacewire conference 2008,

2008.

[11] European Cooperation for Space Data Standardization,

"ECSS-E-ST-50-52C SpaceWire - Remote memory ac

cess protocol," http://www.ecss.nl.

[12] R. J. Johnston, "Newlib," http://sourceware.org/newlib/.

[13] Texas Instruments, "Omap application processor," http:

IIwww.ti.com/omap.

[14] Tilera Corp., "Tilera," http://www.tilera.com.

[15] S. Langemeyer, C. Simon-Klar, N. Nolte, and P. Pirsch,

"Architecture of a Flexible On-Board Real-Time SAR

Processor," in In proceedings of 2005 IEEE International

Geoscience and Remote Sensing Symposium, IGARSS,

2005.

[16] K. Walters, A. Kokkeler, S. Gerez, and G. Smit, "Low

complexity hyperspectral image compression on a multi

tiled architecture," in In proceedings of AHS2009, jul.

2009, pp. 330 -335.

[17] H. Hurskainen, J. Raasakka, T. Ahonen, and J. Nurmi,

"Multicore Software-Defined Radio Architecture for

GNSS Receiver Signal Processing," EURASIP Journal

on Embedded Systems, vol. 2009, p. 10, 2009.

[18] T. D. ter Braak, P. K. F. H61zenspies, J. Kuper, J. L.

Hurink, and G. J. M. Smit, "Run-time spatial resource

management for real-time applications on heterogeneous

mpsocs," in Proceedings of the Conference on Design,

Automation and Test in Europe (DAT E 2010), Dresden.

European Design and Automation Association, March

2010, pp. 357-362.

