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true Abstract-This paper introduces a new generic platform 
for onboard payload signal processing. The system is built up 
around an NoC with a bridge to an AMBA system which supports 
easy integration with existing AMBA based platforms. With 
the use of a pthreads interface the platform allows for simple 
programming and easy extension. For prototyping purposes, 
an implementation has been made on an FPGA together with 
a range of I/O options to assess its capabilities. SpaceWire 
and other interfaces support the extension of the demonstrator 
platform across multiple boards and allow to connect it to on
board networks and systems. This paper shows that novel and 
established chip architectures can be integrated in a way that 
combines their benefits, and represents a promising candidate 
architecture for future on-board processing platforms. 

I. IN TRODUCTION 

Data rates and data volumes generated by on-board instru

ments on science and earth observation missions are constantly 

increasing. This creates an increasingly high demand for 

power efficient on-board processing performance since the 

available energy is limited and the data rates available on 

the down links represent an unavoidable bottleneck. Existing 

processing platforms are usually based on a combination of 

'old' DSP or GPP processor technology and space-qualified 

(but power hungry) FPGAs or dedicated ASICs [1-3].The 

development of specific space qualified ASICs is expensive 

and time consuming, in particular if they can only be used 

for a single mission. For this reason, new generic processing 

platforms need to be developed and made available for use 

in space. This paper describes a new platform developed in 

the "Massively Parallel Processor Breadboarding" projectl. 

It integrates accepted technologies with novel elements that 

have been developed in recent years. These new technologies 

include a new signal processor, a Network-on-Chip (NoC) as 

well as SpaceWire interfaces which are used together with 

an AMBA subsystem and a LEON2 processor. This hybrid 

architecture makes it possible to develop applications relatively 

fast and integrate them with existing systems while still 

exploiting the speed and throughput of modern technologies. It 

also combines the specific strengths of the individual elements, 

which is control-dominated processing for the LEON2, and 

stream based signal processing for the DSPs and the NoC. 

The following sections first describe the prototype the 

signal processor. This is followed by a description of the 
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different input and output interfaces, developmentenvironment 

and system programming, and related work. Considerations on 

future work including planned system improvements conclude 

the paper. 

II. PLATFORM 

The current implementation of the platform is mainly in

tended for prototyping purposes and serves as an intermedi

ate step towards an ASIC implementation. The prototyping 

platform consists of two main parts, the NoC sub-system and 

AMBA system, as can be seen in Figure 1. The reason to 

include the AMBA system and not going for a full NoC

oriented system is that a lot of hardware IPs do not have an 

NoC interface or an interface which is easy to adapt to an NoC 

oriented system. Another reason is to allow easy portability of 

software and integration with existing systems. 

Mainly the high bandwidth peripherals are connected to the 

NoC while the others are connected to the AMBA system. 

The AMBA system also provides the ability to attach the well

known LEON2 core processor to support execution of existing 

software with minimal changes to the source code. 

A. AMBA 

Fig. I. Current platform architecture 

The AMBA system implements the AMBA-Lite standard 

which allows for one single master per layer. More masters 
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on a layer would require more wires for the bus and lead to 

higher overall system complexity. The downside is that every 

master on the bus requires its own layer. So a trade-off was 

made between the number of layers and complexity of the 

system. The current implementation has four layers, one for 

each master on the bus, and seven slaves. The masters and 

slaves are indicated by AHB-M and AHB-S respectively in 

Figure 1. 

B. NoC 

Fig. 2. NoC Architecture 

The NoC is based upon earlier work of developing NoCs 

within our group [4] and is loosely based on the work by 

Bolotin et. al [5]. The NoC consists of a set of packet

switched, five-port routers. A router is connected to each 

neighboring router via a single 32-bit full-duplex link and 

to its local peripheral via four 32-bit full-duplex links. Each 

router schedules four different priorities. From high priority 

interrupt data to low priority single read and write operations. 

This allows for a total aggregated bandwidth of 1.6Gb/s per 

link at the current clock frequency of 50MHz. 

All the devices on the NoC are memory mapped and 

accessible by devices on the AMBA and vice versa. This 

makes it possible for every master on the system to read 

and write data anywhere in the system. The LEON2 can for 

example read and write in local Xentium memory (see Section 

II-C) , as can the Xentium read and write directly to the serial 

port on the AMBA. 

C. Xentium 

The Xentium tile processor has been developed by Recore 

Systems. The Xentium is a programmable digital signal pro

cessing tile that is designed for baseband processing. The 

Xentium datapath has by default a width of 32-bits, but is 

customizable at design time. In this paper, we employ a default 

non-customized Xentium. A default implementation of the 

Xentium design is depicted in Figure 3. 

DSP operations are performed on different processing units. 

One operation can be issued on each unit in each clock cycle. 

All operations require a single clock cycle (with the exception 

of load operations which require two cycles). Multiple units 
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Fig. 3. Xentium core 

Fig. 4. Xentium together with memory and NoC interface 

can be used in parallel to perform operations used in DSP 

kernels such as two complex multiplications per clock cycle, 

four multiply accumulates (MACs) per clock cycle or one 

radix-2 FFT butterfly per clock cycle. 

The processing units in the Xentium datapath can operate 

in two different modes; 32-bit word or 16-bit vector mode. 

In vector mode, the 32-bit unit operands are interpreted as 

16-bit 2-element vectors. The elements of these vectors are 

the low and high half-word parts of a word. Vector operations 

perform the same operation on the low and high parts of the 

vectors. Moreover, the datapath is equipped with dedicated 

40-bit accumulators for improved accuracy. 

The default Xentium design has two M units, four S units, 

two P units and two E units. The M units can perform multiply 

operations. The S and P units perform ALU operations (e.g. 

additions and subtractions) including shift and pack instruc

tions respectively. The E units are responsible for load and 

store operations. Each operation can be executed conditionally. 

As shown in Figure 4, the data path is accompanied by a 32 

kilobyte local SRAM, a timer, and a network interface. 

III. IN T ERFAC ES AND P ERIPH ERALS 

The system has several peripherals to support the interop

erability with other systems and provide options for basic 

debugging. The LEON2 processor was chosen as a general 

purpose processor. The LEON2 is used for the control

intensive parts of code and overall platform management. 

Although the processor has already been superseded by the 

LEON3 and the LEON4 [6, 7], the fully available V HDL and 

experience with it was the reason to choose this GPP. For a 

future ASIC the processor will be replaced by a fault tolerant 

version. The available Eclipse IDE and GRMON debugger 

make it easy to use and integrate with the other parts of the 

system. 

The peripherals include an LCD display, a real-time clock, 

and several general purpose I/O. The real-time clock presents 

its values according to the CCSDS 301.0 standard for un

segmented time codes. This allows integration with CCSDS 
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compliant telemetry packets without having to reformat the 

fields. 

The memory tile in the NoC is an SRAM with low access 

times and running at the same speed as the whole platform. It 

is included to have a high speed generic memory to provide 

access to and from any of the high speed interfaces available 

on the platform. Especially the ADC and DAC require a place 

to store to and read data from without having to worry about 

underflow or overflow. 

A. ADC and DAC 

Both the analog to digital (ADC) and digital to analog 

(DAC) IPs (ADCIDAC bridge in Figure 1 and II-B) operate 

at a sample rate of up to 40 MS/s. The clock frequency 

of the system is the main bottleneck as there would be no 

room for processing if the sample rate was any higher. The 

ADIDA IP are customized towards an Analog Devices AD2 

and Texas Instruments DA3. They sample at 14-bit and 12-

bit respectively and allow the samples to be packed to make 

efficient use of the 32-bit wide lanes on the NoC. The IP has 

been implemented to do all transfers via DMA such that no 

processing element needs to actively keep track of the transfers 

other than initialization. 

B. Space Wire 

The system provides three SpaceWire [8, 9] connections. 

Two of these SpaceWire connections are directly connected 

to the NoC (SpWl and SpW2 in Figure 1). This makes it 

possible to fully exploit the speed of the NoC and make use 

of low latency connections to any of the other IPs connected 

to the NoC. In fact, any device in the system can transfer 

data via the interface by accessing a memory location and 

configuring the DMA of the IP accordingly. The transfer 

clock frequency of the SpaceWire connections is 100MHz. 

Although the standard allows for a transfer clock of 200MHz 

the platform's current clock frequency limits it to 100MHz. 

The Space Wire standard allows to connect any device that is 

compliant with the standard, which makes it relatively simple 

to integrate with already existing systems. 

Our platform shows that SpaceWire can work well together 

with NoC technology in a working protoype. There is an im

plementation of SpaceWire for on-chip communication called 

SoCWIRE by Osterloh et. al. [10] but this includes a lot of 

overhead for the SpaceWire CODECs since it was originally 

intended as off-chip communication. 

The SpaceWire connection on the AMBA system (SpWO 

in Figure 1 has the additional RMAP target IP integrated 

which allows for memory mapped 110 via SpaceWire [9, 11]. 

Although it is only an RMAP target and not an initiator it 

still allows for full memory mapped 110 over the SpaceWire 

interface. This not only makes debugging possible but also 

provides a means to do data transfers on the system. 

The system has memory mapped interrupt registers which 

provides the possibility to trigger interrupts from the 

2http://www.analog.com!static/imported-files/data_sheets/AD6644.pdf 
3http://focus.ti.comllitlds/symlinkldac5662.pdf 
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SpaceWire RMAP interface. This makes it possible to hand

shake transfers over RMAP without having to implement an 

RMAP initiator IP or having to spin-lock a processing unit on 

a memory location. 

C. Gigabit inteiface 

The gigabit interface (GBIF in Figure 1) is implemented 

with the Rocket 110 available on the FPGA. The Aurora link 

layer protocol has been integrated with the NoC and DMA 

capabilities were added. The main purpose of the gigabit 

interface is to connect any board or other peripherals that 

implement the same interface to the NoC and in this way 

extend the platform and increase the available processing 

power or number of 110 interfaces (i.e. scaling up to virtual 

many cores). 

IV. PROGRAMMING 

A. API 

We have written an API for all the interfaces and peripherals 

on the system. This API makes writing clear and readable 

C code for the LEON2 possible. The code can be compiled 

with the sparc-gcc compiler and debugged with the help of 

the GRMON system. 

The SpaceWire interface is used to supply the platform 

with external data. We developed a simple API available 

in Matlab to communicate with the SpaceWire interface of 

the platform over USB. This allows to initially develop an 

algorithm in Matlab and steadily move parts of the algorithm 

to the platform. When the data comes back from the platform 

the results can be verified using the graphical possibilities 

offered by Matlab. 

Very efficient DSP kernels for execution on the Xentium 

processing tile are written in Xentium assembly. For several 

well known DSP kernels, efficient library functions are avail

able. The LEON2 C program includes the Xentium assembly 

to be run on the platform. 

B. Starting software 

The bootloader of the Xentium holds execution until it 

receives a memory address to boot from. Typically this is 

an address in the RAM of the NoC, AMBA system or off

chip SDRAM. The LEON2 runs the main control thread and 

provides the Xentium processors with the memory locations 

from where to boot. The DSP kernels that run on the Xentium 

typically request certain variables like filter size or twiddle 

factor locations. These values are provided by, the LEON2 

and the Xentium can reply with an interrupt when the specific 

kernel has completed or set a value which the LEON2 can 

read. 

C. Pthreads 

The NewLib library [12] has been ported to the SPARC 

architecture which makes it possible to use the pthread library. 

In the currently employed programming model the LEON2 

starts a phtread for the DSP kernel which is running on the 

Xentium. The pthread on the LEON2 can run indefinitely if no 

change is needed to the running thread or can be switched for 
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another thread with a different DSP kernel. The LEON2 sets 

up a C structure containing a pointer to the DSP kernel code, 

the variables and the pointer to the source and target location 

of the data. This structure is then used in the pthread to start 

the Xentium. It is not needed to replicate program code for 

the Xentium if the Xentiums need to run the same code, they 

can fetch code from the same location. The only variables that 

would need to change are the source and target locations of 

the data. This approach makes it possible to switch tasks at 

run-time and provides a way to keep track of which task is 

running on which processing core. 

D. Debugging 

The LEON2 is implemented including the debug support 

unit. Via this unit it is possible to communicate with GRMON. 

GRMON provides a simple debug interface and a GDB server 

which makes it possible to communicate with any GDB 

capable debugger. Most commonly, the Eclipse IDE is used 

which can communicate directly with GDB. The debugging 

is eased by the fact that all the devices and peripherals are 

memory mapped and since the debug support unit is a master 

on the AHB every part of the system can be reached via 

the debugger. Debugging is also possible via the SpaceWire

RMAP interface which is also a master and facilitates memory 

mapped I/O via the SpaceWire interface. 

V. RESULTS 

The hardware system is implemented on a XpressLX330T 

FPGA board from PLDA 4 containing a Virtex-5 LX 330T 

and runs at a clock frequency of 50MHz. The experience 

gained from the implementation and writing software for the 

platform are used to improve the design and build a hardware 

architecture which can be deployed as an ASIC. 

A. Software 

A number of processing kernels have been developed for the 

Xentium processing tile. These kernels include various sizes of 

complex FIR filters and FFTs. The FFTs are run with complex 

input samples. Table I shows some of the results obtained with 

16-bit fixed point data for a single Xentium tile. These figures 

include the time required for the copying of the data from 

and to a global memory. The time it takes to copy data to 

the global memory is comparable to copying data to one of 

the interfaces. The current platform can run any two of the 

mentioned DSP kernels in Table I at the same time. This is 

possible not only because there are two Xentiums available on 

the platform but also because of the multiple memories and 

the bandwidth available on the Noe. 

The two Xentiums provide a total of 400 16-bit MMACs/s, 

or 200 32-bit MMACs/s or 200 16-bit complex MMACs Is at 

the current clock frequency of 50MHz. The LEON2 delivers 

roughly 42 MIPS at 50MHz. 

B. Synthesis 

The current system runs at 50MHz on a Virtex-5 LX330T 

from Xilinx. The device utilization is shown in Table II. 

4http://www.plda.comldownloadidoclboardIXpressLX330T/fichelx33OT.pdf 
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TABLE I 
DSP KERNEL SPEEDS FOR A SINGLE XENTIUM 

kernel 

FIR 128 

FIR 256 

complex FIR 128 

complex FIR 256 

FFT 1024 

FFT 2048 

cycles 

33 per sample 

65 per sample 

65 per sample 

129 per sample 

4687 (10667 FFTs/s) 

11360 (4400 FFTs/s) 

TABLE II 
VIRTEX-5 LX330T DEVICE UTILIZATION 

Resource Used Available Utilization 

10 pins 283 960 29.48 % 

Global Buffers 13 32 40.62 % 

Function Generators 147977 207360 71.36 % 

CLB Slices 36995 51840 71.36 % 

Dffs or Latches 78087 207360 37.66 % 

Block RAMs 94 324 29.01 % 

DSP48Es 18 192 9.38 % 

Although the FPGA development board is employed for 

emulation and used mainly for prototyping, verification and 

validation the following figures give a small insight into how 

the resources are split. The whole LEON2 system takes up 

'" 10% of the FPGA design. A single Xentium tile including 

its internal memory, timer and DMA unit takes up '" 20% 

of the FPGA design. The Xentium tile has been developed to 

for ASIC technology and as such is not optimized for FPGA 

technology. The whole NoC including the Xentiums, all the 

connecting IPs and memory tile takes up '" 88% of the FPGA 

design. 

V I. RELAT ED WORK 

There are other platforms available which are comparable 

to this work. 

The current COTS SoCs like the TI OMAP chip [13] in 

which the TI C64x is combined with the ARM cortex and 

an image processor. These kinds of systems exist in various 

flavors with different general purpose processors and different 

kind of DSPs. The main difference with our work is that we 

allow for a larger number of DSPs to be included in a scalable 

way via an NoC while still allowing older technologies to be 

incorporated. In the same category systems like the Tilera [14] 

can be found in which a lot of general purpose computing 

power is combined on a single chip via an interconnect. The 

main difference here is that we exploit the power efficiency 

of DSPs and we try to offload as much of the calculations to 

these DSPs as possible. 

Then there are the more custom platforms which are 

currently used for on-board processing. One example is the 

processor module for the ExoMars rover[l ]. This system is 

built up around a LEON2FT based chip (COLE) running at 

64MHz with 512 Megabyte of EDAC protected SDRAM. An 
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AT697F (also based on a LEON2) is used as a co-processor 

which runs at a speed of 100MHz. This processor is used for 

autonomous rover navigation. A chip based on our architecture 

could deliver a lot more processing power while still having 

the ability to make use of the code that is being written for 

the LEON2FT processor and could eliminate the need for a 

dedicated navigation processor. 

Another architecture which is comparable to our is one 

that is employed for airborne SAR processing which has been 

developed by Langemeyer et. al. [15]. Next to the fact that this 

platform is not intended to be used in space it uses an FPGA 

to extend the platform itself which makes it less scalable. 

The HiBRID-SoC they used is also very specific towards the 

application of SAR processing and it is based on a AHB 

system which makes a single SoC more difficult to extend. 

With our gigabit interface we can directly extend the NoC 

without the use of an intermediate device and we can extend 

the NoC itself easily by adding more routers and devices. 

V II. CONCLUSION AND FU TUR E  WORK 

In this paper we have shown that current technologies can 

be well integrated with novel ones. The scalability of the 

NoC part of the platform makes it possible to increase the 

processing power to match the requirements. The combination 

of several DSPs, a LEON2 and the SpaceWire interfaces in

terconnected by an NoC make this a good payload processing 

platform. 

Next to the DSP kernels that have been implemented 

now, we are working on more complex applications such 

as the CCSDS wavelet based image compression standard 

and a software defined radio application. The 2D wavelet 

transformation has already been mapped on the Xentium as 

part of a hyperspectral image compressor [16]. With these 

applications we further investigate the platform's capabilities 

and issues that might arise which should be resolved before 

ASIC implementation. 

In a future ASIC implementation we want to enlarge the 

NoC and number of Xentium processors as well as increasing 

the clock frequency. In an FP7 project (CRISP5) [17] we 

employ 9 Xentiums on an NoC running at 200MHz in UMC 

90nm technology. For a space qualified design, we need to 

improve the platform radiation tolerance by using techniques 

like EDAC and hardening of specific architectural elements. 

Apart from hardware improvements, software scheduling will 

be a continuing area of research in our group, this includes 

topics as dynamically rescheduling of tasks based on the 

current condition of the hardware platform [18]. This will for 

example enable a task to migrate away from a malfunctioning 

tile with minimum or no downtime for the overall application. 
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