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Abstract—In stream data processing, data arrives continuously
and is processed by decision making, process control and e-
science applications. To control and monitor these applications,
reproducibility of result is a vital requirement. However, it
requires massive amount of storage space to store fine-grained
provenance data especially for those transformations with over-
lapping sliding windows. In this paper, we propose techniques
which can significantly reduce storage costs and can achieve high
accuracy. Our evaluation shows that adaptive inference technique
can achieve almost 100% accurate provenance information for
a given dataset at lower storage costs than the other techniques.
Moreover, we present a guideline about the usage of different
provenance collection techniques described in this paper based
on the transformation operation and stream characteristics.

Keywords-Fine-grained data provenance, Stream Data, Infer-
ence, Storage.

I. INTRODUCTION

Stream data processing involves a large number of sensors

and a massive amount of sensor data. Applications take

decisions as well as control operations using these sensor

readings. In case of any wrong decisions, it is important

to have reproducibility to validate the previous outcome.

Reproducibility refers to the ability of producing the same

output after having applied the same transformation process

on the same set of input dataset, irrespective of the process

execution time. To be able to reproduce results, we need to

store provenance data, a kind of metadata relevant to the

transformation process and associated input and output dataset.

Data provenance refers to the derivation history of data from

its original sources [1]. It can be defined either at the tuple-

level or at the relation-level [2] also known as fine-grained and

coarse-grained data provenance respectively. Fine-grained data

provenance can achieve reproducibility because it documents

the used set of input tuples for each output tuple and the trans-

formation process as well. On the other hand, coarse-grained

data provenance cannot achieve reproducibility because of the

updates and delayed arrival of tuples. However, maintain-

ing fine-grained data provenance in stream data processing

is challenging. In stream data processing, a transformation

process is continuously executed on a subset of the data stream

known as a window. Executing a transformation process on a

window requires to document fine-grained provenance data for

this processing step to enable reproducibility. If a window is

large and subsequent windows overlap significantly, then the

ratio of storage space consumed by provenance data to actual

sensor data becomes too high. Since provenance data is ’just’

metadata and less often used by the end users, this approach

seems to be infeasible and too expensive.

In [3], we report our initial idea of achieving fine-grained

data provenance using a temporal data model. In that paper,

we theoretically explain the application of the temporal data

model to achieve the database state at a given point in time.

Then, we introduce fine-grained provenance inference algo-

rithm combining temporal data model and coarse-grained data

provenance in [4]. This inference approach provides accurate

provenance information considering both processing delay of

the operation and sampling time of input tuples.

Processing delay or δ refers to the amount of time required

by the system to execute the transformation process on the cur-

rent window. The other parameter, sampling time or λ refers

to the amount of time between the arrival of the current tuple

to the subsequent one. Our proposed provenance inference

algorithm reported in [4] provides 100% accurate provenance

if the maximum processing delay is less than the minimum

sampling time which can be expressed as max (δ) < min (λ),
i.e. no new tuple arrives before the processing is completed.

However, due to the system workload and irregular arrival

pattern of input data tuples, both δ and λ vary which may lead

to infer inaccurate provenance information by our algorithm.

To increase the accuracy of inferred provenance in these

situations, we propose an adaptive inference algorithm that

can achieve almost 100% accurate provenance information

at a storage cost equal to the inference approach [4] in

this paper. The adaptive inference algorithm adjusts the size

of the window so that the exclusion of contributing tuples

and the inclusion of non-contributing tuples can be avoided.

Furthermore, in this paper, we also present the dynamic
mode switching approach which decides at run-time either to

store fine-grained provenance data explicitly or to infer the

provenance information using adaptive inference based on the

variation of δ and λ.

The rest of the paper is organized as follows. Section II

discusses our motivating scenario. In Section III, we briefly

explain our provenance inference algorithm, reported in [4],

followed by the discussion of problems which result into

inaccuracy in Section IV. In Section V and VI, we propose

the two new, extended approaches. Section VII shows our
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Fig. 1. Example workflow

experimental results followed by a brief discussion on related

work in Section VIII. Finally, we conclude with hints of future

work.

II. MOTIVATING SCENARIO

RECORD1 is one of the projects in the context of the

Swiss Experiment2, which is a platform to enable real-time

environmental experiments. One of the main objectives of the

RECORD project is to study how river restoration affects the

purity of groundwater and the ecosystem.

Several sensors have been deployed to monitor river restora-

tion effects. Some of them measure electric conductivity of

water which is a measure of the number of ions in the water.

Increasing conductivity indicates higher level of salt in the

water. We are interested to control the operation of a nearby

drinking water well by facilitating the available online sensor

data.

Fig. 1 shows the workflow. There are three sensors, known

as: Sensor#2083, Sensor#2066 and Sensor#2085. They are

deployed in different geographic locations in a known region

of the river. The whole region is represented by a grid with

3 × 3 cells. For each sensor, there is a corresponding source

processing element named PE1, PE2 and PE3 which provide

data tuples in a view V1, V2 and V3 respectively. These views

are the input for the Union processing element which produces

a view Vuni as output. For each data tuple, TransactionTime is

added which indicates the point in time when the tuple inserts

to the database. Next, the view Vuni is fed to the processing

element Project which selects only a few attributes from each

tuple and generates the view Vproj . This view acts as an input

to the processing element Interpolate. The task of Interpolate
is to calculate the interpolated values for the different cells

of the grid using the values sent by the three sensors and

store the interpolated values in the view Vinter. Next, Vinter

is used by the Average processing element which calculates

the average electric conductivity over the region at a particular

point in time. The view Vavg holds these data tuples and later

Visualization processing element facilitates this view Vavg , to

produce a contour map of electric conductivity. Later, they

may produce a contour map of electric conductivity for that

region. If the map shows any abnormality, researchers may

want to reproduce results to validate the previous outcome. We

consider the shaded processing elements in Fig. 1 to evaluate

the proposed solutions later in this paper.

1http://www.swiss-experiment.ch/index.php/Record:Home
2http://www.swiss-experiment.ch/

Fig. 2. Retrieval, Reconstruction & Inference of Provenance Algorithm

III. PROVENANCE INFERENCE TECHNIQUE [4]

A. The Algorithm

At first, we document coarse-grained provenance of the

transformation which is a one-time action, and performed dur-

ing the setup of a processing element. To explain the remaining

phases, we consider a simple workflow where a processing
element takes one source view as input and produces one

output view. Moreover, we assume that, sampling time is 2
time units and the window holds 3 tuples. The processing
element will be executed after arrival of every 2 tuples.

1) Document Coarse-grained Provenance: The stored

provenance information is quite similar to process provenance
reported in [5]. Inspired from this, we keep the following

information of a processing element specification based on

[6] as coarse-grained data provenance.

• Number of sources: indicates the total number of source

views.

• Source names: a set of source view names.

• Window types: a set of window types; one element for

each source. The value can be either tuple or time.

• Window predicates: a set of window predicates; one

element for each source. The value actually represents

the size of the window.

• Trigger type: specifies how the processing element will

be triggered for execution (e.g. tuple or time based)

• Trigger predicate: specifies when a processing element
will be triggered for execution.

2) Retrieve Data & Reconstruct Processing Window: This

phase will be only executed if the provenance information

is requested for a particular output tuple T generated by a

processing element PE and it returns the set of candidate

tuples which reconstruct the processing window, denoted as

IC . The tuple T is referred here as chosen tuple for which

provenance information is requested (see Fig. 2.A).

We apply a temporal data model on streaming sensor data

to retrieve appropriate data tuples based on a given timestamp.

The temporal attributes are: i) valid time represents the point

in time a tuple was created by a sensor and ii) transaction
time is the point in time a tuple is inserted into a database.

While valid time is anyway maintained in sensor data, trans-
action time attribute requires extra storage space.
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Fig. 2.B shows this retrieval phase. The transaction time
of the chosen tuple is t8 which is the reference point to

reconstruct the processing window. Since window size is 3

tuples, we retrieve the last 3 tuples having transaction time
< t8 from the source view. The retrieved tuples reconstruct the

processing window which is shown by the tuples surrounded

by a dark shaded rectangle in Fig. 2.B. This set of candidate

tuples denoted by IC is used in the final phase of our inference

algorithm.

3) Identifying Provenance: The last phase of our proposed

approach associates the chosen output tuple with the set of

contributing input tuples. This mapping is done by facilitating

the output and input tuples order in their respective view.

At first, we determine the chosen tuple’s tuplePosition. In

our example, we have 3 tuples having TransactionTime equal

to chosen tuple’s TransactionTime which is t8. Since the

chosen tuple’s position is 2nd among them, tuplePosition =

2. Now, using same approach we also determine each input

tuple’s tuplePosition which are included in the reconstructed

window. Since, the value of tuplePosition is 2, we choose

2nd tuple in descending order of tuple appearance from the

reconstructed window. The tuple with TransactionTime t5
actually contributes to produce the chosen tuple from output

view and is represented as a shaded tuple within the dark

shaded rectangle in Fig. 2.C.

B. Requirements

The provenance inference algorithm has some requirements

to be satisfied. Most of the requirements are already introduced

to process streaming data in literature. In [7], authors propose

to use transaction time on incoming stream data. Ensuring

temporal ordering of data tuples is one of the main require-

ments in stream data processing. It also ensures monotonicity
in tuple ordering property in both source and output views.

This property ensures that input tuples producing output tuples

in the same order of their appearance and this order is also

preserved in the output view. Classification of operations is

an additional requirement for the proposed approach.

1) Classification of Operations: In our streaming data pro-

cessing platform, various types of SQL operations (e.g. select,
project, aggregate functions, cartesian product, union) and

generic functors (e.g. interpolate, extrapolate) are considered

as operations which can be implemented inside a processing
element. Each of these operations takes a number of input

tuples and maps them to a set of output tuples. Depending

on the ratio of mapping from input to output tuples we

can classify these processing elements (PEs) into two major

categories: Constant and Variable mapping operations.

Constant mapping operations are PEs which maintain a

fixed ratio of mapping from input to output tuples. As for

example: project, aggregate functions, interpolation, Cartesian

product, and union. Variable mapping operations are PEs

which don’t maintain a fixed ratio of mapping from input to

output tuples. As for instance: select and join. Currently, our

inference algorithm is directly applicable to constant mapping

operations.

Fig. 3. Chance of inaccuracy in tuple-based windows

Each of these operations has properties like Input tuple
mapping which specifies the number of input tuples per

source contributed to produce exactly one output tuple and

Output tuple mapping which refers to the number of output

tuples produced from exactly one input tuple per source.

Moreover, there are operations where all sources (e.g. join)

or a specific source (e.g. union) can contribute at once. These

information should be also documented in the coarse-grained

data provenance of the transformation.

IV. INACCURACY PROBLEM

A. Tuple-based Windows

In case of tuple-based windows, our inference algorithm

may infer inaccurate provenance information if a new input

tuple arrives, i.e. outside the current processing window, before

finishing the execution. To explain this further, at first, let us

assume the following variables:

• W be the set of processing windows. W = {wi | wi ε W}
where i = 1, 2, ..., n

• tij be the jth input tuple of window wi where j =
1, 2, ...,m

• t̃ij be the jth input tuple outside window wi.

• λ(wi) be the amount of time between first tuple

outside window wi and last tuple of wi. λ(wi) =

getTransactionT ime(t̃i1)− getTransactionT ime(tim)
• δ(wi) be the amount of the time required to process

window wi, also known as processing delay.

In Fig. 3, the window size is 3 tuples and the window is

triggered after the arrival of every 3rd tuple. The window w1,

containing tuple 1, 2 and 3, triggers just after the arrival of

tuple 3 at 00:00:29. This small time gap between the arrival

of the last tuple in the window and of the window triggering

is represented by ε which is 1 second in this case. The

output of window w1 is produced at 00:00:42 referred to by a

square. Therefore, the processing delay δ(w1) is 13 seconds.

Meanwhile, a new input tuple (Tuple 4) arrives at 00:00:40

before the processing of the window w1 is finished. Thus,

the value of λ(w1) is 12 seconds. Since we use the output

tuples’ TransactionTime as the reference point in our inference

algorithm, our algorithm will infer window w1 containing the

latest 3 tuples where the TransactionTime of input tuples is

less than the reference point 00:00:42. Therefore, our inferred

window w1 contains tuple 2, 3 and 4 which is wrong compared
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Fig. 4. Chance of inaccuracy in time-based windows

to the actual window w1. This wrong reconstruction of the

window w1 introduces inaccuracy in our inference algorithm.

On the contrary, in case of the next window w2, no new input

tuple arrives till the processing is finished. Both original and

reconstructed window contain exactly the same set of tuples.

From this example, we can define one of the failures of our

inference algorithm that may introduce inaccuracy. It is defined

as follows.

Failure 1: If a new input tuple arrives before the processing

of the window wi is finished, our inference algorithm fails

to reconstruct wi correctly due to the inclusion of the newly

arrived non-contributing tuple. If the following condition holds

for tuple-based windows, we have a failure.

λ(wi) < δ(wi) + ε

λ(wi) < δ(wi) [ ε << δ ] (4.1.1)

B. Time-based Windows

Inaccuracy can also occur in case of time-based windows:

• Exclusion of a contributing tuple from the lower end of

the window.

• Inclusion of a non-contributing tuple at the upper end of

the window.

To explain these two cases, let us assume some variables in

addition to the variables described in Section IV-A.

• α(wi) be the amount of the time between the window wi

starts and arrival of first tuple in wi.

• β(wi) be the amount of the time between the arrival of

last tuple in wi and the window wi triggers.

Fig. 4 shows the situation in a particular time-based window

of 30 seconds and triggering after every 30 seconds. In Fig.

4, the window w1 contains tuples 1, 2 and 3. The first tuple,

tuple 1, arrives at 00:00:03 and thus, α(w1) = 2 seconds.

This window is triggered at 00:00:30 and the output tuples are

produced at 00:00:34. Therefore, δ(w1) = 4 seconds. Since

we use the output tuples’ TransactionTime as the reference
point in our inference algorithm, our inferred window for

w1 contains the input tuples having TransactionTime within

00:00:05 to 00:00:34. Therefore, it contains tuples 2 and 3

only which is not the same as the actual window w1 and

thus our inference algorithm provides inaccurate provenance

information. This failure can be defined as follows.

Failure 2: Exclusion of a contributing tuple from the lower

end of the window wi may occur if the processing delay δ(wi)

is longer than the difference between the first input tuple in

wi and the time at which wi starts. If the following condition

holds, we have a failure.

α(wi) < δ(wi) (4.2.1)

The next window w2 contains the tuples 4 and 5. Here,

α(w2) = 10 and β(w2) = 8. Meanwhile, a new input tuple

(Tuple 6) arrives at 00:01:05 before the processing is finished

which makes the value of λ(w2) = 13 seconds and δ(w2) = 7
seconds. The inferred window for w2 holds tuples 4, 5 and 6

which is different to the actual window of w2. This failure can

be defined as follows.

Failure 3: Inclusion of a newly arrived non-contributing

input tuple may occur due to arrival of the new input tuple

before the processing of the window wi is finished. If the

following holds, our inference algorithm provides inaccurate

provenance information.

λ(wi)− β(wi) < δ(wi) (4.2.2)

The last window, w3, shown in Fig. 4 starts at 00:01:01 and

ends at 00:01:30. In this case: α(wi) �≤ δ(wi) and λ(wi) −
β(wi) �≤ δ(wi) holds. So, none of the failures occur in window

w3.

V. PROPOSED DYNAMIC MODE SWITCHING

To increase the accuracy of the provenance inference, we

propose a dynamic mode switching approach. This technique

switches the provenance collection mode from inferred to

explicit at run-time, if it detects any possibilities of reconstruct-

ing the window incorrectly using our inference algorithm.

After switching from inferred to explicit mode, it collects

provenance information in a traditional way only for that

particular processing window wi and then it switches back

again to the inferred mode before processing the next window

wi+1.

To detect any anomalies at the time of window recon-

struction, dynamic mode switching uses the various failure

conditions given in Section IV. However, the value of λ(wi)
cannot be computed unless a new input tuple arrives before this

switching takes place. Therefore, we use the minimum value

computed over λ(w1) to λ(wi−1) instead of λ(wi). Since the

other parameters α(wi), β(wi) and δ(wi) associated with the

failure conditions can be computed for that particular window

wi, we need not to replace them. Therefore, dynamic mode
switching method decides to switch from inferred to explicit
mode if any of the given conditions hold:

• For tuple-based windows: min [λ(w1)..λ(wi−1)] <
δ(wi)

• For time-based windows: α(wi) < δ(wi) or

min [λ(w1)..λ(wi−1)] − β(wi) < δ(wi)

However, using the minimum value computed over previous

λ(wj) (where j < i) will switch the mode from inferred to

explicit many times. It will incur more storage overhead and

may exceed the storage cost of explicit approach. To reduce

the storage overhead, it is possible to compute the minimum
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Fig. 5. Distribution of different variables in Tuple and Time-based windows

value over the previous λ(wj) confined within a window. The

larger the size of the window defined over λ(wj), the more

precise the provenance information is.

The main advantage of this method is to achieve 100%

accurate provenance. However, this method incurs extra stor-

age costs because of maintaining explicit provenance data for

some cases where our inference algorithm cannot reconstruct

the window correctly. Furthermore, this method requires extra

processing costs since the mode switching decision is made for

each processing window wi. If a particular processing element

has a very high trigger rate, we would advise to avoid using

this method.

VI. PROPOSED ADAPTIVE INFERENCE

A. Adaptivity in Tuple-based Windows

We can estimate the accuracy of our adaptive inference
algorithm based on the failure conditions given in Section IV.

Suppose, WE be the set of processing windows where Failure

1 occurs. Thus, WE := { wi ε W | λ(wi) < δ(wi) }. Using

probability theory, we can compute the estimated accuracy.

Estimated Accuracy = 1− P (wi ε WE)

= 1−
∑

δ(wi)

[P (λ(wi) < δ(wi) | δ(wi))

× P (δ(wi))] (6.1.1)

In a tuple-based window wi, inaccuracy can occur if a new

input tuple arrives before the processing on the current window

is finished (see Eq. 4.1.1). In this case, our reconstructed

window may include one non-contributing tuple at the upper

end and exclude one contributing tuple from the lower end

of the window since the window size is based on the number

of tuples. To overcome this problem, we have to adjust the

point in time known as reference point beyond which we

will not consider to include any more tuples in the window

wi. Currently, this reference point is the transaction time of

the chosen tuple. The time gap between the current and new

reference point is known as offset and it depends on δ(wi).
Since ∀i : δ(wi) ≥ 0, offset = min {δ(wi)i=1..n}. Therefore,

New Reference Point = Current Reference Point− offset

= TransactionTime of the chosen tuple

−min {δ(wi)i=1..n} (6.1.2)

Fig. 5.A shows the histogram of the distribution of δ(wi)
and λ(wi) for the experiment explained in Section IV-A with

avg{λ(wi)i=1..n} = 12.5 seconds (see Fig. 3) . The black and

light-grey shaded bar shows the relative frequency for δ(wi)
and λ(wi) respectively based on the range defined in x-axis

in seconds. We can see little overlapping between δ(wi) and

λ(wi) within 10-12.5 seconds range. Intuitively, it suggests

that there are only a few windows where Failure 1 occurs.

Our proposed adaptive inference algorithm adjusts the ref-
erence point to infer accurate provenance in presence of this

failure. From Fig. 5.A, we see that δ(wi) = 2.5 seconds.

Considering the window w1 in Fig. 3, the TransactionTime
of the chosen tuple is 00 : 00 : 42. Therefore, according to

Eq. 6.1.2,

New Reference Point = 00 : 00 : 42− 00 : 00 : 02.5

= 00 : 00 : 39.5

So, our adaptive inference algorithm considers only those

tuples having TransactionTime less than 00 : 00 : 39.5 and

retrieves the last 3 tuples based on their TransactionTime.

Now, the adapted inferred window w1 contains tuples 1, 2 and

3 which is exactly same as original window w1. Therefore,

adaptive inference algorithm can significantly resolve the

failures.

B. Adaptivity in Time-based Windows

Estimating the accuracy of our inference algorithm for time-

based windows is possible in the following way. If WE be

the set of processing windows where Failure 2 and Failure 3

occurs then, WE := { wi ε W | λ(wi) < δ(wi) or λ(wi) −
β(wi) < δ(wi)}. Therefore, using probability theory,

Estimated Accuracy = 1− P (wi ε WE)

= 1−
∑

δ(wi)

[P (α(wi) < δ(wi)|δ(wi))

×P (δ(wi))]

−
∑

δ(wi)

[P (λ(wi)− β(wi) < δ(wi)|δ(wi))

×P (δ(wi))] (6.2.1)

In time-based windows, inaccuracy can occur by either

including a non contributing tuple at the upper end of the

window or excluding a contributing tuple from the lower end

of the window. Our proposed adaptivity technique adapts the

window size so that we can avoid these situations. Both lower

and upper ends of the window based on Eq. 4.2.1 and 4.2.2

respectively will be adjusted. The lower end of the window

is calculated by this formula: LowerEnd = TransactionTime -

windowSize - offset lower where offset lower must satisfy the

following:

• offset lower ≥ a and offset lower ≤ avg{λ(wi)i=1..n} +
b where a = max{δ(wi) − α(wi)i=1..n} and b =
min{δ(wi) − α(wi)i=1..n}. The value of offset lower

should lie within this range and the value should max-

imize the accuracy. To determine the actual value, we

should iterate over this given range and choose the value

which gives the maximum accuracy.
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On the other hand, UpperEnd = TransactionTime - offset upper

where offsetupper must satisfy the following conditions.

• offset upper ≥ c and offset upper ≤ avg{λ(wi)i=1..n}+d
where c = max{(δ(wi) − (λ(wi) − β(wi)))i=1..n} and

d = min{(δ(wi) − (λ(wi) − β(wi)))i=1..n}. Similar to

the offset lower, the value of offset upper should lie within

the aforesaid range and we should choose the value which

gives the maximum accuracy.

Fig. 5.B shows the relative frequency distribution of δ(wi),
α(wi) and λ(wi) − β(wi) in black, light-grey and dark-

grey shaded bars respectively for the experiment described

in Section IV-B with avg{λ(wi)i=1..n} = 12.5 seconds (see

Fig. 4). In Fig. 5.B, we see that there are some cases where

α(wi) < δ(wi), i.e. failure 2 occurs. There is also little

overlapping between δ(wi) and λ(wi) − β(wi) within 0-2.5

seconds range which suggests that failure 3 can also occur a

few times.

Adaptive inference algorithm adjusts the lower and upper

end of the window to provide accurate provenance in case of

these failures. From Fig. 5.B, a = 2.5 and b = 0 seconds.

Therefore, offset lower ≥ 2.5 and ≤ 12.5 seconds. Similarly,

c = 2.5 and d = 0 seconds. Thus, offset upper ≥ 2.5 and

≤ 12.5 seconds. Considering the window w2 in Fig. 4, 00 :
00 : 24.5 ≤ LowerEnd ≤ 00 : 00 : 34.5 and 00 : 00 :
54.5 ≤ UpperEnd ≤ 00 : 01 : 04.5. Now, adaptive inference
technique adjusts the window w2 that starts at 00 : 00 : 34.5
and ends at 00 : 00 : 54.5 and contains tuples 4 and 5 which

is exactly same as the original window w2 (see Fig. 4).

VII. EVALUATION

A. Evaluating Criteria & Datasets

The consumption of storage space for fine-grained data

provenance is our main evaluation criteria. Existing ap-

proaches [8], [7], [9] record fine-grained data provenance

explicitly in varying manners. Since these implementations

are not available, our proposed approach is compared with

an implementation of a fine-grained data provenance doc-

umentation running in parallel with the proposed approach

on the Sensor Data Web3 platform. Moreover, we improve

this explicit fine-grained provenance collection system using

the concept of basic factorization [9]. Basic factorization
technique minimizes the provenance storage requirement by

removing the common provenance records and storing only

one copy of the provenance record. We also compare our

approach with this improved explicit method.

Finally, we need to check whether all approaches produce

the same provenance information. In this case the traditional

fine-grained provenance information is used as a ground

truth and it is compared with the fine-grained provenance

information inferred by dynamic mode switching and adaptive
inference techniques.

For evaluation, a real dataset4 measuring electric conduc-

tivity of the water, collected by the RECORD project is used.

3http://sourceforge.net/projects/sensordataweb/
4http://data.permasense.ch/topology.html\#topology

Fig. 6. Storage space requirements in different cases

The workflow operating on this dataset has been discussed in

Section II. The experiments are performed on a PostgreSQL

8.4 database and the Sensor Data Web platform. The input

dataset contains 3000 tuples requiring 720kB storage space.

B. Storage Requirement

We measure the storage overhead to maintain fine-grained

data provenance for the Interpolation processing element

based on our motivating scenario (see Section II) with various

window specifications. In the tuple-based non-overlapping

case, each window contains three tuples and the interpola-

tion is executed for every 3rd tuple. This results in about

3000÷3×9 = 9000 output tuples which require about 220kB.

In the tuple-based overlapping case, the window contains 3

elements and the operation is executed for every tuple. This

results in about 3000×9 = 27000 output tuples which require

about 650kB. For time-based windows, we consider windows

having size 15 seconds and trigger rate is once in every 5

and 15 seconds for overlapping and non-overlapping case

respectively.

Fig. 6 shows the comparison among explicit, improved
explicit, dynamic mode switching, inference and adaptive
inference techniques. The sum of the storage costs for input

and output tuples is depicted as dark gray boxes named

as sensor data, while the provenance data storage costs

is depicted as light gray boxes. In all cases, the explicit
method takes maximum storage to maintain provenance data.

The improved explicit technique takes less storage to store

provenance data than explicit technique especially in case

of overlapping windows. However, maintaining provenance

data requires 2 times more space than actual sensor data in

this method. The inference technique [4] and our proposed

adaptive inference method always have same storage cost

for any window specification. Moreover, in this experiment,

the dynamic mode switching approach also requires storage

space equal to adaptive inference because it never switched

the mode from inferred to explicit. For these techniques, the

ratio of provenance data to sensor data is 1 : 1 in the worst

case which is the lowest among all the other techniques.
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Fig. 7. Comparison of Provenance Data storage requirement

However, dynamic mode switching has processing overhead

due to the computation of switching decision and it may

require extra storage when any of the failure conditions has

occurred. On the other hand, adaptive inference approach has

no extra processing cost and is only dependent on the volume

of sensor data which makes the adaptive inference approach

more storage-friendly than the others.

Additional tests confirm the results. Fig. 7 depicts the

comparison among different methods for project and average

operations with varying window sizes. In all these cases, the

window triggers after arrival of every new tuple. In case of

project operation, the dynamic mode switching requires more

storage than the inference and adaptive inference technique

due to the mode switching in almost 30% window executions.

Since the adaptive inference technique only depends on the

size of the sensor data, it takes less than half the storage

compared to the explicit method.

The average operation produces the same number of output

tuples in all cases which is 3000. Therefore, our adaptive
inference method always takes the same amount of storage

space because of the equal size of sensor data. However,

the explicit method depends on the window size and the

overlapping between windows. For the average operation, our

proposed adaptive inference method outperforms all the other

methods and takes at least 4 times less space than the explicit
method. Please be noted that this ratio depends on the chosen

window size and trigger specification and if the window size

is larger and there is a big overlap between windows, the

adaptive inference approach performs even better.

C. Accuracy

Lastly, we discuss about the accuracy of our proposed

techniques. For the experiments described in Section VII-B,

we get 100% accurate inferred provenance for all different

methods. Therefore, we carry out another experiment with

project processing element having different parameters. Fig.

8 shows the comparison of accuracy achieved among differ-

Fig. 8. Comparison of Accuracy among different techniques in various cases

TABLE I
VARIABLES USED FOR ANALYSIS

Number of input tuples: ni Size of a provenance tuple: Sp

Window size in tuples: w Size of a pointer tuple to refer actual
Trigger rate in tuples: t provenance: p
Input tuple mapping: x Number of distinct provenance tuples:
Output tuple mapping: y n1 (n1 ≤ np)
Number of output tuples: no Overhead to add TransactionTime: q
no = (y × ni × w)÷ (t× x) Prob. of wrong window formulation:

Number of provenance tuples: P (wiεW
E)

np = x× no

ent methods proposed in this paper. The estimated method

computes the estimated accuracy using equations 6.1.1 and

6.2.1 in Section VI. This method gives the approximate lower

bound of the accuracy that can be achieved using inference and

adaptive inference algorithm. The inference method provides

the result after using inference algorithm reported in [4]. It

achieves more than 90% accuracy in all experiments. The

small inaccuracy is introduced due to the longer and variable

delays. To increase accuracy, we propose two methods. Firstly,

the dynamic mode switching achieves 100% accuracy since it

stores provenance information explicitly if any of the failure

conditions occurs. Secondly, the adaptive inference method

also increases the accuracy explained in Section VI-A and

VI-B. Our proposed adaptive inference approach achieves

almost 100% accurate provenance information even in the

presence of longer and variable delays.

D. Discussion

Table I summarizes different variables we use in Table

II for quantitative analysis. The first two methods: explicit
and improved explicit provides 100% accurate provenance

information. However, these techniques are not well-suited

in case of sliding windows with large overlapping between

them and processes with high trigger rate due to their exces-

sive storage space requirement. The inference algorithm [4]

achieves around 90% accuracy at less than half the storage

space compared to the explicit method. It suits better for

the applications where approximate results are accepted. Our

proposed adaptive inference technique provides almost 100%

accuracy with the consumption of storage space equal to the

inference method. This approach performs better than the

inference method where ’exact result’ is a requirement and

also transformations are taking place very frequently. The

other proposed method, dynamic mode switching also provides

100% accurate provenance but at a higher storage costs than

adaptive inference. Moreover, it has a processing overhead to

switch between modes. That is why, this approach is well-

suited for the applications with less trigger rate. Table II can

be used as a guideline so that a user can choose a specific

technique based on the transformation processes, distribution

of δ, λ and other parameters. For transformations with high

trigger rate, large overlapping between windows and to achieve

exact reproducibility, adaptive inference approach outperforms

all the other methods.
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TABLE II
SUMMARY OF STORAGE CONSUMPTION AND ACCURACY

Technique Storage Accuracy
Quantitative Qualitative Quantitative Qualitative

Explicit Provenance np × Sp most costly 100% 100% accurate
Improved Explicit Provenance n1 × Sp+ np × p less costly than explicit 100% 100% accurate

if window overlaps

Inference Provenance ni × q + no × q significant reduction can be estimated by Eq. 6.1.1 & 6.2.1 less accurate around 90%
Adaptive Inference Provenance ni × q + no × q same as inference can be estimated by Eq. 6.1.1 & 6.2.1 more accurate than inference

with changed window bounds
Dynamic Mode Switching ni × q + no × q+ more costly than inference 100% 100% accurate

P × np × Sp if P > 0

VIII. RELATED WORK

Several academic and scientific projects facilitate the execu-

tion of continuous queries and stream data processing, reported

in [10], [11], [12]. All these techniques proposed optimization

for storage space consumed by sensor data. However, none of

these systems can achieve reproducible results in stream data

processing.

In [13], authors have described a data model to compute

provenance on both relation and tuple level. This data model

follows a graph pattern and shows case studies for traditional

data but it does not address how to handle streaming data and

associated overlapping windows.

In [14], authors have presented an algorithm for lineage

tracing in a data warehouse environment. They have provided

data provenance on tuple level. LIVE [8] is an offshoot of

this approach which supports streaming data. It is a complete

DBMS which preserves explicitly the lineage of derived data

items in form of boolean algebra. However, these techniques

incur extra storage overhead to maintain fine-grained data

provenance.

In sensornet republishing [7], the system documents the

transformation of online sensor data to allow users to un-

derstand how processed results are derived and support to

detect and correct anomalies. They used an annotation-based

approach to represent data provenance explicitly. However, our

proposed method does not store fine-grained provenance data

explicitly.

In [9], authors proposed approaches to reduce the amount of

storage required for provenance data. To minimize provenance

storage, they remove common provenance records; only one

copy is stored. Then, using an extra provenance pointer, data

tuples can be associated with their appropriate provenance

records. Their approach seems to have less storage consump-

tion than traditional fine-grained provenance in case of sliding

overlapping windows. However, their method still maintain

fine-grained data provenance explicitly.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose several methods to infer fine-

grained data provenance with high accuracy at lower stor-

age costs. Our proposed adaptive inference approach reduces

storage cost significantly than the other approaches and also

achieves almost 100% accuracy even if the processing takes

longer and has high trigger rate. Dynamic mode switching
is suitable for transformations that occur less frequently.

Our proposed approaches are evaluated in different types of

settings with multiple sources and variable delays. In future,

we will try to infer provenance for multiple processing steps

with high accuracy and reduced storage costs.
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