
Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2012
c© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

53

Specification of APERTIF Polyphase Filter
Bank in CλaSH

Rinse WESTER a, Dimitrios SARAKIOTIS a, Eric KOOISTRA b and Jan KUPER a

a Department of Computer Science, University of Twente, The Netherlands
b ASTRON, Dwingelo, The Netherlands

Abstract. CλaSH, a functional hardware description language based on Haskell, has
several abstraction mechanisms that allow a hardware designer to describe architec-
tures in a short and concise way. In this paper we evaluate CλaSH on a complex DSP
application, a Polyphase Filter Bank as it is used in the ASTRON APERTIF project.
The Polyphase Filter Bank is implemented in two steps: first in Haskell as being close
to a standard mathematical specification, then in CλaSH which is derived from the
Haskell formulation by applying only minor changes. We show that the CλaSH for-
mulation can be directly mapped to hardware, thus exploiting the parallelism and con-
currency that is present in the original mathematical specification.

Keywords. CλaSH, parallel specification, FPGA, filter bank.

Introduction

As the complexity of embedded systems increases, there is a need for more abstraction in the
specification of such systems. CλaSH[1] is a relatively new functional Hardware Description
Language (HDL) and compiler that addresses these abstractions. In addition, CλaSH is an
appropriate language for describing parallel hardware. We use CλaSH because it supports
higher order functions and type inference which allows for short and concise hardware de-
scriptions. Currently, CλaSH has only been applied to a few test cases of small to medium
complexity (FIR filter [2], a reducer circuit [1] and a dataflow processor [3]). In this paper
we investigate a more complex case, the design of a Polyphase Filter Bank which is used in
the Westerbork Synthesis Radio Telescope as part of the APERTIF project [4].

This paper describes how the APERTIF Polyphase Filter Bank is specified and simu-
lated using CλaSH. First, all components of the APERTIF Polyphase Filter Bank are speci-
fied using the functional language Haskell[5]. Since the CλaSH compiler accepts a subset of
Haskell as input language, only minor modifications have to be made to the Haskell descrip-
tion before it can be compiled by CλaSH. Secondly, this CλaSH description is simulated to
verify the correctness of the design. The last step is generating the hardware for FPGA such
that performance numbers can be extracted.

Using Haskell for hardware design is not new, several embedded languages exist sup-
porting simulation verification and generation of hardware [6] [7]. What makes CλaSH dif-
ferent from other embedded languages is that CλaSH accepts a subset of Haskell itself instead
of an embedded language in Haskell.

This paper is organized as follows: Section 1 shows the background on the Polyphase
Filter Bank and an introduction to the CλaSH language. The specification of the APERTIF
Polyphase Filter Bank is presented in Section 2. Simulation results and performance numbers
of the resulting hardware are presented in Section 3. Finally, in Section 4 we draw the final
conclusions and discuss future work.



54 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

1. Background

The Netherlands Institute for Radio Astronomy (ASTRON) is currently developing technol-
ogy to increase the field of view (area of the sky that can be observed at the same time) of the
Westerbork Synthesis Radio Telescope in the APERTIF project [4]. An important part in the
signal processing chain that combines the signals from the telescope dishes is the Polyphase
Filter Bank. First, the structure of a Polyphase Filter Bank is introduced, followed by an
introduction to the CλaSH language.

1.1. APERTIF Filter Bank

The field of view of the Westerbork Synthesis Radio Telescope is increased by replacing
the single antenna in the dishes with a small array of antennas. The signals of this array are
combined by a beam former which consist of two parts: a Polyphase Filter Bank for each
antenna and a part that combines all these signals. This paper only focuses on the specification
of the Polyphase Filter Bank.

A Polyphase Filter Bank consist of two parts, a polyphase filter and an FFT [8]. The
polyphase filter is used for decimation the input signal before sending it to the FFT. The FFT
on the other hand splits the signal into its frequency components such that all antenna signals
can be easily combined in the beamformer. The structure of the APERTIF Polyphase Filter
Bank is shown in Figure 1.

Figure 1. APERTIF Polyphase Filter Bank

The polyphase filter consist of 1024 (M ) FIR filters each having 16 (N ) taps and is
derived from a single filter withM×N = 16384 coefficients [9]. All coefficients are column-
wise distributed in the polyphase filter i.e. the first M filter coefficients form the first column
(C0, C1, . . . , CM−1). In front of the filters, a decimation step ↓M is used to reduce the sample
rate of the data by a factor M . The combination of delays and decimation has the same
effect as a commutator, a switch sending sequentially a single sample to all FIR filters. Since
only one filter is active for each sample, the amount of required hardware can be reduced
dramatically compared to a fully parallel implementation. All filters can therefore be merged
into a single filter alternating between the different sets of coefficients and registers. This also
means that for each sample consumed by the filters also one sample will be sent to the FFT.



R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH 55

The FFT splits the signal into M distinct frequency components which are combined for
all antennas in the beamformer. The architecture of the FFT is a pipeline as described in [10].
From the size and radix of the FFT, it follows that log4(1024) = 5 stages are required.

The whole Polyphase Filter Bank design should fit on a single Altera Stratix IV FPGA
(EP4SGX230KF40C2). Data from the antenna arrives in the FPGA using high speed serial
interconnect producing data at 800 MS/s. The desired clock frequency for the filterbank is
200 MHz. Therefore, the structure has to be parallelized by a factor of p = 800/200 = 4 in
order to meet the throughput.

1.2. CλaSH

CλaSH [1] is a new functional hardware description language based on Haskell. CλaSH is
both a simulation environment and a compiler . The language accepted by the CλaSH com-
piler (a subset of Haskell that can be translated to hardware) supports advanced features such
as poly-morphism, higher-order functions, pattern matching and type derivation. Polymor-
phism and higher-order functions (functions that have functions as argument or result) allow
circuit designers to describe parameterizable circuits in a natural way. Especially Higher Or-
der functions are a powerful abstraction since they allow for reasoning about structure and
parallelism of the hardware.

CλaSH is a purely synchronous and cycle accurate hardware description language where
everything is, on the lowest level, expressed as a Mealy machine. Therefore, every output
and new state is a function of the input combined with the current state. Since every CλaSH
description is also a valid Haskell program, simulation comes for free. This combination
results in a fast and cycle accurate hardware simulator.

Besides simulating hardware, CλaSH is also able to translate the description to VHDL.
For simulation, CλaSH accepts plain Haskell but for translation to VHDL this is limited to
descriptions without general recursion and lists (the length may change during runtime).

Listing 1 shows a simple example, a multiply accumulate, written in CλaSH. Every func-
tion in CλaSH is formatted as shown in Listing 1. First, the name of the function to be defined
is given (mac) followed by the current state (s) and the inputs (a, b). These are arguments
of the the function mac and separated by spaces instead of commas. The result consists of
the new state s′ using the State keyword and the output out . Finally, all calculations are
performed, combinatorially, in the where clause.

Listing 1 Multiply Accumulate example in CλaSH.

mac (State s) (a, b) = (State s ′, out)
where

s ′ = s + a ∗ b
out = s ′

The Hardware corresponding with Listing 1 is shown in Figure 2.

Figure 2. Multiply Accumulate structure

As mentioned before, CλaSH supports an abstraction mechanism called higher order
functions, which are very useful to describe structure and parallelism. Higher order functions



56 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

are functions that can accept functions as argument or return a function as a result which
is particularly useful for describing structure. Listing 2 shows a description of a FIR filter
utilizing the higher order functions vzipWith and vfoldl (the prefix ’v’ refers to vector i.e. a
list of fixed length).

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out
respectively. The new state of the registers us ′ is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using CλaSH.

fir cs (State us) inp = (State us ′, out)
where

us ′ = inp +� us
ws = vzipWith (∗) us cs
out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.

Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the CλaSH compiler. These changes are necessary
since the CλaSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.

2.1. Polyphase Filter

2.1.1. Specification in Haskell

Since the basic building block of the Polyphase Filter is a FIR filter, we start by specifying
the CλaSH description of Listing 2 in Haskell. The code of the filter is shown in Listing 3.



R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH 57

Listing 3 FIR filter in Haskell.

fir cs us inp = (us ′, out)
where

us ′ = inp +� us
ws = zipWith (∗) us cs
out = foldl (+) 0 ws

The fir function accepts three input arguments: a list of filter coefficients cs , a list of
registers containing the current state us and an input inp. During a single clock cycle, the
new state s′ and output out are calculated in the where clause. As a matter of notation, lists
and lists of lists are denoted with one s or two ss respectively. Note that parameters cs remain
constant during simulation.

Now that we have defined the FIR filter, we can use the fir function to create the
Polyphase Filter. Since only one filter of the Polyphase Filter is active at each clock cycle,
the hardware performing the fir computation can be reused. However, new filter coefficients
and register contents have to be supplied to the filter every time the next filter is executed.
The architecture that performs this operation is shown in Figure 4.

Figure 4. Sequential FIR filter execution

To translate this into a Haskell description, all states of the filters have to be stored in
the global state of the Polyphase Filter and a proper selection of the filter coefficients has to
be made at every cycle. The easiest way to control this is by a counter that determines which
set of coefficients and state registers will be used. Listing 4 shows the Haskell code of the
complete Polyphase Filter with proper state and coefficient selection.

Listing 4 Polyphase Filter in Haskell.

pfs css (uss , cntr) inp = ((uss ′, cntr ′), out)
where

cntr ′ = (cntr + 1) ‘mod ‘ (length css)
us = uss ! cntr
cs = css ! cntr
(us ′, out) = fir cs us inp
uss ′ = replace cntr us ′ uss

As can be seen in Listing 4, the pfs function accepts three arguments: a parameter list
containing lists of filter coefficients css , the internal state of the PF (uss , cntr) (consisting
of the memory and a counter) and the actual input inp. Again, only data dependencies are
described, everything else is fully parallel. During a single cycle, a new filter state is stored
in the memory uss ′, the internal counter is incremented while the output is sent to out . The



58 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

actual set of registers us and the set of coefficients cs are selected based on the counter
from uss and css respectively. This is performed using the index operator ”!” i.e. us and cs
are the appropriate registers and coefficients for the current filter. The actual filtering part is
performed in the fourth line in the where clause using the selected register states us and set
of filter coefficients cs . This calculation results in a new filter state us ′ and a new output out .
Finally, the changed filter state is stored in the global state of the Polyphase Filter uss ′.

As is mentioned before, the Polyphase Filter has to be parallelized by a factor of P = 4
to meet the throughput of 800 MSps at a clock frequency of 200 MHz. Since there are no data
dependencies between the FIR filters, the hardware structure represented by the pfs function
can simply be replicated 4 times. However, the filter coefficients and registers have to be
distributed among these four Polyphase Filters. The parallelization is depicted in Figure 5.

Figure 5. Parallel FIR filters

As can be seen in Figure 5, the Polyphase Filter is parallelized with a factor P = 4. The
coefficient css and the registers uss are distributed linearly over the four Polyphase Filters
i.e. csn and usn are located at pfsm (where m = n mod p) respectively. Since the FIRcomb

function is replicated four times, the new architecture will also have four inputs and four
outputs. The Haskell code describing this architecture is shown in Listing 5.

Listing 5 Parallel Polyphase Filter in Haskell.

parpfs csss states inps = (states ′, outs)
where

res = zipWith3 pfs csss states inps
(states ′, outs) = unzip res

As can be seen in Listing 5, the parallel Polyphase Filter accepts three arguments: a list
(of lists of lists) of coefficients csss , a list of states states (for the filter registers and counters)
and a list of inputs (4 since P = 4). Since a single pfs accepts three arguments, the higher
order function zipWith3 is used to create 4 instantiations of this block. zipWith3 accepts a
function pfs and three lists (csss , states , inps) after which pfs is applied to each element in
the lists. This results in a list of tuples res which are split into a list of new states states ′ and
the outputs outs .

2.1.2. Translation to CλaSH

The last step is to apply a few changes to the Haskell description such that the design is
accepted by the CλaSH compiler. Since hardware is finite and fixed, standard Haskell lists are
not supported because they can be infinite and their length can change during computation.
Therefore, lists are replaced by vectors which have a finite and fixed length and are easy
to translate to hardware. Also floating point operations are not supported since this would
require a lot of hardware. Therefore, all floating point operations have to be rewritten in an
equivalent fixed point representation.



R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH 59

Modifying the Haskell code for CλaSH of the FIR filter of Listing 3 is trivial since the
functions zipWith and foldl only have to be replaced by their vector counterparts (vzipWith
and vfoldl ). As mentioned before, CλaSH has no support for floating point numbers and
therefore special care has to be taken for the multiplications in the FIR filter. The APERTIF
Polyphase Filter Bank uses a Kaiser window for the filter coefficients which are taken to be
less than 1.0. Therefore, a fixed point implementation doesn’t need an integer part and the
fixed point coefficient cFP can be found by (1) (assuming 18 bits sample size).

cFP = round(c ∗ 217) (1)

The function to perform a fixed point multiplication, fpmult , is shown in Listing 6 where
both operands (18 bits unsigned numbers) are first resized to 36 bit signed numbers. Then,
the actual multiplication is performed after which the result is divided by 217 (shifting 17 bits
to the right) and resized (back to 18 bits) to keep the number of significant bits the same.

Listing 6 Fixed point multiplication in CλaSH

fpmult :: Unsigned D18 → Unsigned D18 → Unsigned D18
fpmult a b = c

where
a ′ = resizeSigned a :: Signed D36
b ′ = resizeSigned b :: Signed D36
c ′ = a ′ ∗ b ′

c = resizeSigned (c ′ ‘shiftR‘ 17) :: Signed D18

All necessary changes are now made to the Haskell description such that it is accepted
by the CλaSH compiler. The final code is shown in Listing 7.

Listing 7 Complete Polyphase Filter in CλaSH

fir cs (State us) inp = (State us ′, out)
where

us ′ = inp +� us
ws = vzipWith fpmult us cs
out = vfoldl (+) 0 ws

pfs css (State (uss , cntr)) inp = (State (uss ′, cntr ′), out)
where

-- same as Listing 4 but with vzipwith
parpfs csss (State states) inps = (State states ′, outs)

where
res = vzipWith3 pfs csss states inps
(states ′, outs) = vunzip res

Again, all functions in Listing 7 are distinct components of the hardware which shows
the implicit parallelism.

2.2. FFT pipeline

The FFT pipeline is built according to the same procedure followed for the Polyphase Filter,
accept that the FFT is only shown with parallelization factor P = 1. First, the basic building
blocks are built in Haskell and combined into a full pipeline. Secondly, parts of the code that
are not supported by CλaSH are changed such that hardware can be generated with CλaSH.



60 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

2.2.1. Haskell description

The FFT pipeline is based on [10] and utilizes a radix 22 algorithm which requires the same
number of multipliers as a radix 4 algorithm but has the same butterfly structure of a radix
2 algorithm. This pipeline uses two types of butterfly blocks and a complex multiplier as
depicted in Figure 6.

Figure 6. FFT pipeline

The first butterfly operation BF2I has two modes: a stage where data is simply forwarded
to the memory located above and a stage where the butterfly operation is performed. All oper-
ations are performed on complex numbers which results in the schematic shown in Figure 7.

Figure 7. BF2I butterfly structure

Specifying the architecture from Figure 7 in Haskell is easy since Haskell supports com-
plex numbers. As can be seen in Listing 8, the bf2i operation accepts a single input inp, has
a state consisting of a counter cnt and a list for memory lst and a single output out .

Listing 8 BF2I butterfly operation in Haskell

bf2i (cntr , lst) inp = ((cntr ′, lst ′), out)
where

n = length lst
cntr ′ = (cntr + 1) ‘mod ‘ n
lst ′ = lstin +� lst
(out , lstin) = if cntr > n

then (lstout + inp, lstout − inp)
else (lstout , inp )

lstout = last lst

Also the second butterfly operation BF2II has a stage where data are stored and a stage
where the butterfly computation is performed. However, the butterfly operation in BF2II
comes in two variations: a butterfly operation as in BF2I and one with an additional multipli-
cation with the complex number −j. Figure 8 shows the structure of BF2II.

Implementing the architecture of Figure 8 in Haskell is now straightforward (Listing 9).



R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH 61

Figure 8. BF2II butterfly structure

Listing 9 BF2II butterfly operation in Haskell

bf2ii (cntr , lst) inp = ((cntr ′, lst ′), out)
where

n = length lst
cntr ′ = (cntr + 1) mod n
lst ′ = lstin +� lst
(out , lstin) = if (n 6 cntr < 2 ∗ n) ∨ (3 ∗ n 6 cntr < 4 ∗ n)

then (lstout + a, lstout − a)
else (lstout , a)

lstout = last lst
a = if cntr > 3 ∗ n

then inp ∗ (−j )
else inp

The last component to describe is the complex multiplier which multiplies every incom-
ing sample with a twiddle factor. The state of the complex multiplier only consist of a counter
cntr to select the correct twiddle factor w from the list of twiddle factors ws (first parameter).
Listing 10 shows the implementation as it is written in Haskell.

Listing 10 Complex multiplier in Haskell

cmult ws cntr inp = (cntr ′, out)
where

n = length ws
cntr ′ = (cntr + 1) ‘mod ‘ n
w = ws ! cntr
out = inp ∗ w

By combining the complex multiplier, BF2I and BF2II into a single function, a basic
building block for the FFT pipeline is formed. The states of all the building blocks are sim-
ply combined in a single tuple and the twiddle factors are given as an extra input (the first
argument). Listing 11 shows how the aforementioned components are chained in the basic
building block.

The final step is to create a function that describes the full FFT chain. As is mentioned
in the previous sections, the FFT chain consists of a set of basic building blocks chained
together. This could be written down using recursion, however, the CλaSH compiler doesn’t
support recursion (yet). Furthermore, the length of the FFT is fixed M = 1024 for the ap-
plication. As can be seen in Figure 6, the size of the memory, used for intermediate results



62 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

Listing 11 Basic building block of the FFT

fftbb ws (bf1state, bf2state, cmstate) inp = ((bf1state ′, bf2state ′, cmstate ′), out)
where

(bf1state ′, a) = bf2i bf1state inp
(bf2state ′, b) = bf2ii bf2state a
(cmstate ′, out) = cmult ws cmstate b

in the butterfly, is different depending on the position in the chain. Although this is not a
problem for lists in Haskell, it will be for vectors in CλaSH since the length is encoded in
the type resulting in a different type depending on the position of the butterfly in the chain.
Therefore, we have chosen to describe the FFT chain in Haskell by separately defining each
stage of the FFT in a single function such that the result resembles the eventual hardware
more accurately (avoiding this repetition of code still remains future work). Listing 12 shows
the Haskell description of this function.

Listing 12 Haskell code of FFT chain

fftchain (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state ′, bb2state ′, ...), out)
where

(bb1state ′, d1 ) = fftbb ws1 bb1state inp
(bb2state ′, d2 ) = fftbb ws2 bb2state d1
◦
◦

(bbNstate ′, out) = fftbb wsN bbNstate d9

2.2.2. Translation to CλaSH

After having fully specified the FFT pipeline in Haskell, it is time to modify the code such that
it is accepted by the CλaSH compiler. As was the case for the Polyphase Filter, all lists have
to be replaced by vectors and all floating point numbers have to be replaced by an appropriate
fixed point implementation. Special care must be taken in the two butterfly functions (BF2I
and BF2II) in order to prevent any overflow. Therefore, data is first resized from 18 to 19-bits
before starting the butterfly computation. After the butterfly computation, the result is shifted
one position to the right to retain the same number of significant bits. Finally, the result is
resized back to 18 bits again before it is sent to the next component. To hide these low level
details, the + and − operators are overloaded by a function that performs the fixed point
operation (the (+) function in Listing 13). Listing 13 shows how the BF2I butterfly operation
is implemented in CλaSH.

The changes for the BF2II butterfly and complex multiplier are performed in the same
way and therefore not further elaborated. By combining both butterflies and the complex
multiplier, we create the basic building block for the FFT chain. This function fftbb, is the
first function in Listing 14 and accepts the list of twiddle factors ws as argument from outside
of the function. The FFT chain itself, is composed only of building blocks composed in a
single function fftchain clash.

3. Results

The full Polyphase Filter Bank of APERTIF has been implemented using and simulated us-
ing CλaSH. The resulting CλaSH description is concise and cycle accurate. Simulation is



R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH 63

Listing 13 BF2I butterfly operation in CλaSH

bf2i clash (cntr , lst) inp = ((cntr ′, lst ′), out)
where

n = vlength lst
cntr ′ = cntr + 1
lst ′ = lstin +� lst
(out , lstin) = if cntr > n

then (lstout + inp, lstout − inp)
else (lstout , inp)

lstout = vlast lst

(+) a b = c
where

a ′ = resizeSigned a :: Signed D19
b ′ = resizeSigned b :: Signed D19
c = resizeSigned ((a + b) shiftR 1) :: Signed D18

Listing 14 Basic building block of the FFT and FFT chain function in CλaSH

fftbb clash ws (bf1state, bf2state, cmstate) inp = ((bf1state ′, bf2state ′, cmstate ′), out)
where

(bf1state ′, a) = bf2iclash bf1state inp
(bf2state ′, b) = bf2iiclash bf2state a
(cmstate, out) = cmult ws cmstate b

fftchain clash (ws1 ,ws2 , ...) (bb1state, bb2state, ...) inp = ((bb1state ′, bb2state ′, ...), out)
where
(bb1state ′, d1 ) = fftbb clash ws1 bb1state inp
(bb2state ′, d2 ) = fftbb clash ws2 bb2state d1
◦
◦

(bbNstate ′, out) = fftbb clash wsN bbNstate d9

performed using the builtin sim function. This function accepts two arguments: a function
representing the architecture to be simulated and a list of input values and produces a list of
tuples as an output [(states ′, outs)], where states ′ are the new states and outs are the actual
outputs of the simulated architecture. The specification presented in this paper has been sim-
ulated both in Haskell and CλaSH and verified for functional correctness using Matlab by
comparing it with the output of the standard functions fft and filter .

Besides simulation, CλaSH has also been used to generate hardware (although the M
had to be reduced to 256 for the Polyphase Filter to make the design fit in the FPGA). The
resulting VHDL code has been synthesized using Altera Quartus and the results are shown
in Table 1.

4. Conclusions and Future Work

A complex digital signal processing algorithm, the APERTIF Polyphase Filter Bank, has
been built using CλaSH. The resulting design has been simulated and behaves correctly. This
shows that CλaSH is an appropriate tool to developed complex parallel architectures like a
Polyphase Filter Bank since the description is fully parallel and cycle accurate. Also simula-



64 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in CλaSH

Table 1. Synthesis results of the Polyphase Filter Bank

Polyphase Filter(256 elements) 1k-points FFT
Logic Utilization 91% 6%

number of dedicated logic registers 74886 (41%) 5762 (3%)
number of block-RAMs 0 0

number of DSP blocks (18-bit elements) 128 70
fmax for slow 900mV 0C model 114 MHz 195 MHz

tion is relatively fast since CλaSH code is valid Haskell code and therefore easy to compile
and run. Furthermore CλaSH itself pushes the user to exploit any available parallelization of
the structure that is describing. Therefore it is a suitable hardware description language for
describing parallel structures, since CλaSH designs are implicitly parallel.

During hardware generation, it has been shown that the current version of CλaSH was
not able to instantiate blockRAMs. Therefore, all filter coefficients and twiddle factors have to
be hardcoded into the CλaSH description which requires a lot of memory during compilation.
Not being able to use blockRAMs results in a lot of register consumption which reduces the
performance of the circuit significantly due to excessive routing. Therefore, the hardware
results are not realistic. Currently, a new version of CλaSH is being developed with proper
blockRAM support which should give realistic numbers.

In the future, CλaSH could really benefit from IP (Intellectual Property) support since
the resulting hardware would have more performance in term of area and clock frequency.

References

[1] C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink, and M. E. T. Gerards. CλaSH: Structural Descrip-
tions of Synchronous Hardware using Haskell. In Proceedings of the 13th EUROMICRO Conference on
Digital System Design: Architectures, Methods and Tools, Lille, France, pages 714–721, USA, September
2010. IEEE Computer Society.

[2] J. Kuper, C. P. R. Baaij, M. Kooijman, and M. E. T. Gerards. Exercises in architecture specification us-
ing CλaSH. In Proceedings of Forum on Specification and Design Languages, FDL 2010, Southamp-
ton, England, pages 178–183, Gières, France, September 2010. ECSI Electronic Chips & Systems design
Initiative.

[3] A. Niedermeier, R. Wester, K. C. Rovers, C. P. R. Baaij, J. Kuper, and G. J. M. Smit. Designing a dataflow
processor using CλaSH. In 28th Norchip Conference, NORCHIP 2010, Tampere, Finland, page 69. IEEE
Circuits and Systems Society, November 2010.

[4] ASTRON. APERTIF Project, 2012. http://www.astron.nl/general/apertif/apertif/.
[5] The GHC Team. The Glasgow Haskell Compiler, 2012. http://www.haskell.org/ghc/.
[6] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design in Haskell. SIGPLAN

Not., 34(1):174–184, September 1998.
[7] Nelio Muniz Mendes Alves and Sergio de Mello Schneider. Implementation of an Embedded Hardware

Description Language Using Haskell. 9(8):795–812, aug 2003.
[8] Richard G. Lyons. Understanding Digital Signal Processing. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1st edition, 1996.
[9] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing. Pearson Education, Inc., fourth

edition, 2007.
[10] Shousheng He and M. Torkelson. A new approach to pipeline FFT processor. In Parallel Processing

Symposium, 1996., Proceedings of IPPS ’96, The 10th International, pages 766 –770, apr 1996.


