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Abstract— In this paper we study the problem of achieving
regulated output synchronization in a network of minimum-
phase SISO agents. Our problem formulation is characterized
by the combination of three different challenges: the network
is heterogeneous (meaning that the agents are governed by non-
identical models); the agents are non-introspective (meaning that
they do not have access to information about their own state
or output); and the agents are not allowed to exchange internal
controller states via the network. To handle these challenges, we
present an observer-based control methodology that combines
elements of low-gain and high-gain design techniques.

I. INTRODUCTION

In recent years, a large body of work has emerged on
the topic of synchronization, where the goal is to secure
agreement among networked agents on a common state or
output trajectory. Much of this work is focused on state syn-
chronization based on diffusive state coupling, progressing
from single- and double-integrator agent dynamics (e.g., [1]–
[3]) to more general agent dynamics (e.g., [4], [5]). State
synchronization based on diffusive partial-state coupling has
also been considered by several authors (e.g., [6]–[8]). In
this context, Li, Duan, Chen, and Huang [9] introduced a
distributed observer that makes additional use of the network
by allowing the agents to exchange information with their
neighbors about their internal estimates, effectively requiring
another layer of communication. On the other hand, Seo,
Shim, and Back [10] presented a low-gain control design that
does not require the exchange of internal states, provided the
poles of the agent dynamics are located in the closed left-half
complex plane. Many of the results on the synchronization
problem are rooted in the seminal work of Wu and Chua
[11], [12].

A limited amount of work has also been done on hetero-
geneous networks, where the agents are governed by non-
identical dynamical models. In a heterogeneous network, the
agents’ internal states may not be comparable to each other;
thus, one often aims to achieve output synchronization—that
is, agreement on some partial-state output.
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Some work on heterogeneous networks has focused pri-
marily on synchronization criteria (e.g., [13], [14]); other
work has been more design-oriented [15]–[19]. Most designs
for heterogeneous networks are based on either modifying
the agent dynamics via local feedbacks, in order to change
how the agents present themselves to the network [15]–[17];
or on synchronizing an embedded model via the network
and then regulating the actual output toward the embedded
model output [18], [19]. In either case, the agents are
assumed to be introspective, meaning that they have access
to information about their own state or output in addition
to the information received from the network. The authors
have recently considered the more challenging case of non-
introspective agents, and developed a methodology based on
a distributed high-gain observer [20]. However, like several
other designs for heterogeneous networks [17], [19], it is
assumed that the agents can exchange internal controller
states with neighboring agents in the network.

A. Topic of This Paper

In this paper, we combine several challenges by consider-
ing output synchronization in a heterogeneous network with
partial-state coupling, where the agents are non-introspective
and unable to exchange controller states with neighboring
agents. We focus only on SISO agent dynamics, but we note
that the same principles can be applied to right-invertible
MIMO agents (albeit with more complications). The only
other significant restriction on the agent dynamics is that
it must be minimum-phase.

Our approach will be based on a low-gain design method-
ology similar to that of Seo et al. [10], combined with a
high-gain amplification in both the observer and controller.
Unlike Seo et al. [10], we do not require the poles of the
agent dynamics to be in the closed left-half complex plane,
and thus our design also covers a class of homogeneous
networks that, to the best of the authors’ knowledge, cannot
be handled by any other methods from the literature.

Our focus will be on regulated output synchronization,
where the goal is not only agreement on some output trajec-
tory, but convergence toward a particular trajectory specified
by an autonomous exosystem. This approach can also be
applied to regular synchronization without an exosystem for
networks containing a directed spanning tree, by appointing
the root of the spanning tree as an autonomous leader.

Zhao, Hill, and Liu [21] have previously presented a de-
sign for certain heterogeneous networks of non-introspective
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agents without exchange of controller states, albeit under the
strict requirement of passivity.

B. Notation and Preliminaries

For a matrix A, A′ denotes its transpose and A∗ denotes
its conjugate transpose. The Kronecker product between A
and B is denoted by A⊗B. We denote by [x1; . . . ;xn] the
vector obtained by stacking vectors x1, . . . ,xn (similarly for
matrices).

Definition 1: We say that a matrix pair (A,C) contains
the matrix pair (S,R) if there exists a matrix Π such that
ΠS = AΠ and CΠ = R.

Remark 1: Definition 1 implies that for any initial condi-
tion ω(0) of the system ω̇ = Sω , yr = Rω , there exists an
initial condition x(0) of the system ẋ = Ax, y =Cx, such that
y(t) = yr(t) for all t ≥ 0.1

II. PROBLEM FORMULATION

We consider a network of N SISO agents on the form

ẋi = Aixi +Biui, yi =Cixi, (1)

where xi ∈ Rni , ui ∈ R, and yi ∈ R. Our goal is to achieve
regulated output synchronization among the agents, meaning
that limt→∞(yi−yr) = 0 for all i∈ {1, . . . ,N}, where yr is the
output of an exosystem

ω̇ = Sω, yr = Rω, (2)

where ω ∈ Rnr and yr ∈ R. Because unobservable and
asymptotically stable modes in the exosystem play no role
asymptotically, we assume without loss of generality that
(S,R) is observable and that the eigenvalues of S are in the
closed right-half complex plane.

Assumption 1: For each i ∈ {1, . . . ,N}, the transfer func-
tion Hi(s) :=Ci(sI−Ai)

−1Bi from ui to yi is minimum-phase
and not identically zero.

Remark 2: Assumption 1 implies that the triple (Ai,Bi,Ci)
is right-invertible, the pair (Ai,Bi) stabilizable, and the pair
(Ai,Ci) detectable (see, e.g., [23, Ch. 3]).

During our design in Section III, we denote by n̄ an upper
bound on the order ni of the agents.

A. Network Communication

The agents are in general non-introspective; hence, agent
i does not have access to its own state xi or output yi. The
information available to each agent comes from the network,
in the form of a linear combination of its own output relative
to that of the other agents. In particular, agent i has access
to the quantity

ζi =
N

∑
j=1

ai j(yi− y j),

where ai j ≥ 0.
The communication topology of the network can be de-

scribed by a directed graph (digraph) G with nodes corre-
sponding to the agents in the network and edges given by

1See [22] for a discussion of system inclusion and its role in network
synchronization.

the coefficients ai j. In particular, ai j > 0 implies that an edge
exists from agent j to i. Agent j is then called a parent of
agent i, and agent i is called a child of agent j. The weight
of the edge equals the magnitude of ai j. We shall make use
of the Laplacian matrix G = [gi j], where gii =−aii+∑

N
j=1 ai j

and gi j =−ai j for j 6= i, which has the property that all the
row sums are zero. We can then write ζi = ∑

N
j=1 gi jy j.

In order to facilitate regulated output synchronization, we
assume that a subset I ⊂ {1, . . . ,N} of the agents have
access to their own output relative to the output of the
exosystem; specifically, each agent has access to the quantity

ψi = ιi(yi− yr), ιi =

{
1, i ∈I ,

0, otherwise.

Assumption 2: Every node of G is a member of a directed
tree with its root contained in I .

Remark 3: A directed tree is a subgraph in which every
node has exactly one parent, except a single root node with
no parents. Furthermore, there must exist a directed path
from the root to every other agent.

We define the matrix Ḡ := G + diag(ι1, . . . , ιN). It then
follows from Assumption 2 and Lemma 7 of Grip et al.
[20] that all the eigenvalues of Ḡ are in the open right-
half complex plane. In the following sections, we shall only
assume knowledge of a lower bound τ > 0 on the real part
of the eigenvalues of Ḡ.

III. CONTROL DESIGN

We begin by solving the problem for a special case where
the dynamics of each agent contains the exosystem dynamics,
and all the agents have a common relative degree ρ . We
then show that our original problem formulation can be
transformed to the special case by first augmenting the agents
with dynamic pre-compensators.

A. Control Design for Special Case

We consider the special case where for each i∈{1, . . . ,N},
(i) the pair (Ai,Ci) contains (S,R); and (ii) the triple
(Ai,Bi,Ci) is of relative degree ρ > 0. Then we can assume
without any loss of generality that the agent model (Ai,Bi,Ci)
is given in the special coordinate basis (SCB) [24]. This
means that xi can be partitioned as xi = [xia;xid ], where

ẋia = Aiaxia +Liadyi, xia ∈ Rni−ρ , (3a)
ẋid = Adxid +Bd(ui +Eidaxia +Eiddxid), xid ∈ Rρ , (3b)
yi =Cdxid . (3c)

Furthermore, the eigenvalues of Aia are the invariant zeros
of (Ai,Bi,Ci), which are all in the open left-half complex
plane due to the minimum-phase property in Assumption 1,
and Ad ∈Rρ×ρ , Bd ∈Rρ×1, and Cd ∈R1×ρ have the special
form

Ad =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 , Bd =


0
...
0
1

 , Cd =
[
1 0 · · · 0

]
.
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If an agent is not in the SCB, it can be transformed to the SCB
via state and input transformations (no output transformation
is required for SISO systems).

Let δ ∈ (0,1] and ε ∈ (0,1] denote a low-gain and a high-
gain parameter, respectively. Noting that the pair (Ad ,Cd) is
observable, let K be chosen such that Ad−KCd is Hurwitz,
and define Kε = ε−1S−1

ε K, where Sε := diag(1, . . . ,ερ−1).
Noting that (Ad ,Bd) is controllable, let Pδ be the solution
of the algebraic Riccati equation

Pδ Ad +A′dPδ − τPδ BdB′dPδ +δ I = 0, (4)

and define Fδε =−ε−ρ B′dPδ Sε . Now, for each i∈ {1, . . . ,N},
define the following dynamic controller

˙̂xid = Ad x̂id +Kε(ζi +ψi−Cd x̂id), ui = Fδε x̂id . (5)

We have the following result, which is proven in the Ap-
pendix.

Theorem 1: Suppose that for each i ∈ {1, . . . ,N}, the pair
(Ai,Ci) contains (S,R) and the triple (Ai,Bi,Ci) is of relative
degree ρ > 0. Let the controller for each agent be defined
by (5). There exists a constant δ ∗ ∈ (0,1] such that, for each
δ ≤ δ ∗, there exists an ε∗(δ ) ∈ (0,1] such that, for all ε ≤
ε∗(δ ), limt→∞(yi− yr) = 0 for all i ∈ {1, . . . ,N}.

B. Recovering the Special Case via Pre-Compensators

We now show how to recover the special case specified
above, by augmenting each original agent with two dynamic
pre-compensators.

Pre-Compensator 1: The purpose of the first pre-
compensator is to add modes from the exosystem to agent
i, so that the augmented agent dynamics contains the ex-
osystem. Toward this end, start by constructing a state
transformation Σi ∈ Rni×ni taking the pair (Ai,Ci) to the
Kalman observable canonical form:

Σ
−1
i AiΣi =

[
Ai11 0
Ai21 Ai22

]
, CiΣi =

[
Ci1 0

]
,

where Ai11 ∈ Rn̄i×n̄i and (Ai11,Ci1) is observable. Next, let

Oi =

 Ci1 −R
...

...
Ci1An̄i+nr−1

i11 −RSn̄i+nr−1

 . (6)

Let qi denote the dimension of the null space of Oi, and
define ri = nr− qi. Furthermore, let Λiu ∈ Rn̄i×qi and Φiu ∈
Rnr×qi be chosen such that Oi

[
Λiu
Φiu

]
= 0 and rank

[
Λiu
Φiu

]
= qi.

The matrix Φiu has full column rank because (Ai11,Ci1) is
observable (see [20, App. D]). Let therefore Φio be chosen
such that Φi := [Φiu,Φio] is nonsingular. We can now state
the following lemma, which is proven in the Appendix.

Lemma 1: We have that

Φ
−1
i SΦi =

[
Si11 Si12
0 Si22

]
, (7)

for some matrices Si11 ∈ Rqi×qi , Si12 ∈ Rqi×ri , and Si22 ∈
Rri×ri . Furthermore, there exists a nonsingular transformation

Γi ∈ Rri×ri taking Si22 to the companion form

Γ
−1
i Si22Γi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−si1 −si2 · · · −siri

 .
Based on Lemma 1, let Aip1 denote the above com-

panion form of Si22, and define Cip1 = [1,0, . . . ,0] and
Bip1 = [0; . . . ;0;1], so that (Aip1,Bip1) is controllable and
(Aip1,Cip1) is observable. We define the following dynamic
pre-compensator:

żi1 = Aip1zi1 +Bip1vi, ui =Cip1zi1,

where vi ∈ R is a new input.
Pre-Compensator 2: The purpose of this step is to make

the relative degree of the augmented system equal to ρ :=
n̄+nr. Toward this end, let ρi denote the relative degree of
(Ai,Bi,Ci), and define the matrices

Aip2 =

[
0 Iρ−ρi−ri−1
0 0

]
, Bip2 =


0
...
0
1

 , Cip2 =
[
1 0 · · · 0

]
.

Define the following dynamic pre-compensator:

żi2 = Aip2zi2 +Bip2υi, vi =Cip2zi2,

where υi ∈ R is a new input.2

By stacking the original state and the state of the two pre-
compensators as χi = [xi;zi1;zi2], we obtain the following
augmented agent dynamics with input υi:

χ̇i = Aiχi +Biυi, yi = Ciχi, (8)

where

Ai =

Ai BiCip1 0
0 Aip1 Bip1Cip2
0 0 Aip2

 ,Bi =

 0
0

Bip2

 ,Ci =
[
Ci 0 0

]
.

We can now state the following result, which recovers the re-
sult of Theorem 1 for general systems satisfying Assumption
1. The proof can be found in the Appendix.

Theorem 2: The augmented agent dynamics (8) satisfies
Assumption 1, and moreover (i) the pair (Ai,Ci) contains
(S,R); and (ii) the triple (Ai,Bi,Ci) is of relative degree
ρ > 0.

IV. EXAMPLE

We illustrate the results on a network of ten agents. Agents
1–5 are standard double integrators, whereas agents 6–10 are
second-order oscillators:

Ai =

[
0 0.01

−0.01 0

]
, Bi =

[
0
1

]
, Ci =

[
1 0

]
.

The exosystem is also a second-order oscillator:

S =

[
0 0.1
−0.1 0

]
, R =

[
1 0

]
.

2Note that it is possible to have ρ − ρi− ri = 0. In this case, the pre-
compensator should be defined simply as vi = υi.
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The network topology is described by the adjacency matrix

A =



0 1 0.2 0 0 0.1 0 0 0 0
0 0 1 0 0 0 0 0 0 0.1

0.2 0 0 0.9 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1.1 0 0 0
0 0 0 0 0 0.1 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0.7
0 0 0 0 0 0 0 0 0.2 0


.

The relative output of the exosystem is available only to
agent 10 (i.e., I = {10}), which satisfies Assumption 2.
A lower bound on the real part of the eigenvalues of Ḡ is
τ = 0.5. An upper bound on ni is n̄ = 2, and we therefore
operate with ρ = 2+nr = 4.

The agent models do not satisfy the special case in Section
III-A, and hence the first step is to add pre-compensators to
the agents. We illustrate this process for the double-integrator
dynamics. First note that, because (Ai,Ci) is observable,
the Kalman observable canonical form is the same as the
model itself with Ai11 = Ai and Ci1 = Ci. After calculating
Oi, we find that qi = 0 =⇒ ri = 2. Hence, Λiu and Φiu
are empty, and we can choose Φio = I. It follows that
Φ
−1
i SΦi = S, meaning that S22 = S, which can be taken to

the companion form via Γi = diag(1,10). Note that ρi = 2
and ri = 2, and hence the second pre-compensator is simply
a direct feedthrough according to footnote 2. The resulting
augmented agent dynamics is given by the matrices

Ai =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 −0.01 0

 , Bi =


0
0
0
1

 , Ci =


1
0
0
0


′

,

which are already in the SCB. We follow a similar procedure
for the oscillator dynamics of agents 6–10.

After application of the pre-compensators, we get dy-
namics that satisfy the special case in Section III-A. We
therefore proceed by selecting K ≈ [3.08;4.24;3.08;1.00],
such that Ad −KCd is Hurwitz. Next, we solve the alge-
braic Riccati equation (4) with δ = 10−12, which yields
B′dPδ ≈ [1.41 · 10−6,1.27 · 10−4,5.74 · 10−3,0.15]. Finally,
defining Kε = ε−1S−1

ε K and Fδε = −ε−4B′dPδ Sε , we find
that stability is achieved for for ε = 0.5, which yields Kε ≈
[6.15;16.94;24.62;16.00] and Fδε ≈ [−2.26 · 10−5,−2.02 ·
10−3,−2.30 · 10−2,−0.30]. Fig. 1 shows the simulated out-
puts together with the output of the exosystem.

APPENDIX

Proof of Theorem 1

For each i∈ {1, . . . ,N}, let x̄i = xi−Πiω , where Πi is such
that ΠiS = AiΠi, CiΠi = R in accordance with Definition 1.
Then ˙̄xi = Aixi−ΠiSω +Biui = Aixi−AiΠiω +Biui = Aix̄i +
Biui. Furthermore, the synchronization error ei = yi− yr is
given by ei = Cixi − Rω = Cixi −CiΠiω = Cix̄i. Since the
dynamics of the x̄i system with output ei is governed by
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Fig. 1. Agent and exosystem outputs for simulation example

the same triple (Ai,Bi,Ci) as the dynamics of agent i, we
can decompose it in the same way as in (3), by writing
x̄i = [x̄ia; x̄id ], where

˙̄xia = Aiax̄ia +Liadei,

˙̄xid = Ad x̄id +Bd(ui +Eidax̄ia +Eidd x̄id),

and ei = Cd x̄id . Define ξi = Sε x̄id and ξ̂i = Sε x̂id . Then it is
easy to confirm that we can write

˙̄xia = Aiax̄ia +LiadCdξi,

εξ̇i = Adξi−BdB′dPδ ξ̂i + ε
ρ Bd(Eidax̄ia +EiddS−1

ε ξi),

with ei =Cdξi. Furthermore, noting that ∑
N
j=1 gi j = 0, we can

write ζi +ψi = ∑
N
j=1 gi jy j + ιi(yi− yr) = ∑

N
j=1 gi j(y j− yr)+

ιi(yi− yr) = ∑
N
j=1 ḡi je j, where ḡi j represents the coefficients

of Ḡ. We therefore have ε
˙̂
ξi = Ad ξ̂i + K ∑

N
j=1 ḡi jCdξ j −

KCd ξ̂i. Let ξ = [ξ1; . . . ;ξN ], ξ̂ = [ξ̂1; . . . ; ξ̂N ], and x̄a =
[x̄1a; . . . ; x̄Na]. Then

˙̄xa = Aax̄a +Lad(IN⊗Cd)ξ ,

εξ̇ = (IN⊗Ad)ξ − (IN⊗BdB′dPδ )ξ̂

+ ε
ρ(IN⊗Bd)(Edax̄a +Edd(IN⊗S−1

ε )ξ ),

ε
˙̂
ξ = (IN⊗Ad)ξ̂ +(Ḡ⊗KCd)ξ − (IN⊗KCd)ξ̂ ,

where Aa = diag(Aia, . . . ,AN1), Lad = diag(L1ad , . . . ,LNad),
Eda = diag(E1da, . . . ,ENda), and Edd = diag(E1dd , . . . ,ENdd).

Let U be defined such that U−1ḠU = J, where J is the
Jordan form of the matrix Ḡ, and define ν = (JU−1⊗ I)ξ
and ν̂ = (U−1⊗I)ξ̂ . Note that the eigenvalues of Ḡ along the
diagonal of J are all in the open right-half complex plane,
as explained in Section II-A. We have

˙̄xa = Aax̄a +La(UJ−1⊗Cd)ν ,

εν̇ = (IN⊗Ad)ν− (J⊗BdB′dPδ )ν̂

+ ε
ρ(JU−1⊗Bd)(Edax̄a +Edd(UJ−1⊗S−1

ε )ν),

ε ˙̂ν = (IN⊗Ad)ν̂ +(IN⊗KCd)ν− (IN⊗KCd)ν̂ .
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Next, let ν̃ = ν− ν̂ . We then have

˙̄xa = Aax̄a +La(UJ−1⊗Cd)ν ,

εν̇ = (IN⊗Ad)ν− (J⊗BdB′dPδ )ν +(J⊗BdB′dPδ )ν̃

+ ε
ρ(JU−1⊗Bd)(Edax̄a +Edd(UJ−1⊗S−1

ε )ν),

ε ˙̃ν = (IN⊗ (Ad−KCd))ν̃− (J⊗BdB′dPδ )ν +(J⊗BdB′dPδ )ν̃

+ ε
ρ(JU−1⊗Bd)(Edax̄a +Edd(UJ−1⊗S−1

ε )ν).

Finally, let η = [ν1; ν̃1; . . . ;νN ; ν̃N ]. Then

˙̄xa = Aax̄a +La(UJ−1⊗Cd)ν ,

εη̇ = Āη + ε
ρ M(Edax̄a +Edd(UJ−1⊗S−1

ε )ν),

where

Ā = IN⊗
[

Ad 0
0 Ad−KCd

]
+ J⊗

[
−BdB′dPδ BdB′dPδ

−BdB′dPδ BdB′dPδ

]
and

M =

(
IN⊗

[
Iρ

Iρ

])
(JU−1⊗Bd).

Due to the upper block-triangular structure of Ā, we know
that its eigenvalues are the eigenvalues of the matrices

Āi :=
[

Ad−λiBdB′dPδ λiBdB′dPδ

−λiBdB′dPδ Ad−KCd +λiBdB′dPδ

]
,

where λi is the i’th eigenvalue of Ḡ along the diagonal of J.
Noting that Ad has all its poles in the closed left-half complex
plane, the matrix Āi corresponds to the system matrix from
Seo et al. [10, Eq. (19)] except for the appearance of λi
instead of λi − 1 in the second row. The proof of [10,
Theorem 4] can now be followed to prove that Āi is Hurwitz
for all δ less than some sufficiently small δ ∗ > 0. Note that
δ ∗ is independent of the high-gain parameter ε .

Next, let P̃ = P̃′ > 0 be the solution of the Lyapunov
equation P̃Ā+ Ā∗P̃ = −I. Furthermore, let Pa = P′a > 0 be
the solution of the Lyapunov equation PaAa + A′aPa = −I,
which exists because Aa is block-diagonal with elements
A1a, . . . ,ANa, each of which are Hurwitz. Define the Lya-
punov function V = εη∗P̃η + ερ x̄′aPax̄a. Then

V̇ =−‖η‖2 +2ε
ρ Re(η∗P̃M(Edax̄a +Edd(UJ−1⊗S−1

ε )ν)

− ε
ρ‖x̄a‖2 +2ε

ρ Re(x̄′aPaLa(UJ−1⊗Cd)ν).

Clearly, we have that ερ‖Re(η∗P̃MEdax̄a)‖ ≤ ερ m1‖η‖‖x̄a‖
for some m1 > 0. Also, noting that Sε contains no powers
of ε higher than ρ−1, we have 2ερ‖Re(η∗P̃MEdd(UJ−1⊗
S−1

ε )ν)‖ ≤ εm2‖η‖‖ν‖ ≤ εm2‖η‖2 for some m2 > 0.
Finally, ερ‖Re(x̄′aPaLa(UJ−1 ⊗Cd)ν)‖ ≤ ερ m3‖x̄a‖‖ν‖ ≤
ερ m3‖x̄a‖‖η‖ for some m3 > 0. Hence, we have

V̇ ≤−(1−m2ε)‖η‖2− ε
ρ‖x̄a‖2 +2ε

ρ(m1 +m3)‖η‖‖x̄a‖,
where m1, m2, and m3 are independent of ε . By inspecting
the principal minors of the corresponding quadratic form,
we find that V̇ is negative definite for all sufficiently small
ε . Hence, limt→∞ η = 0 and limt→∞ x̄a = 0. This implies
limt→∞ ξi = 0 for all i ∈ {1, . . . ,N}, which in turn implies
limt→∞ ei = 0.

Proof of Lemma 1
The columns of [Λiu;Φiu] span the unobservable subspace

of the pair (diag(Ai11,S), [Ci1,−R]), which is diag(Ai11,S)-
invariant, and hence[

Ai11 0
0 S

][
Λiu
Φiu

]
=

[
Λiu
Φiu

]
Ui, (9a)

[
Ci1 −R

][Λiu
Φiu

]
= 0. (9b)

for some Ui ∈ Rqi×qi . It follows that SΦiu = ΦiuUi, which
means that

S
[
Φiu Φio

]
=
[
Φiu Φio

][Ui Si12
0 Si22

]
,

for some matrices Si12 and Si22. This, in turn, implies (7)
with Si11 =Ui.

Next, note that, because (S,R) is observable, we have
rank

[
S−λ I

R

]
= n for all eigenvalues λ of S, which implies

that rank(S− λ I) = n− 1 for all eigenvalues of S. Due to
the triangular form obtained via the similarity transform
in (7), we therefore have rank(Si22 − λ I) = ri − 1 for all
eigenvalues λ of Si22; that is, the geometric multiplicity of
each eigenvalue is 1. It follows from this that Si22 is a non-
derogatory matrix that can be transformed to the companion
form [25, Section 7.4.6].

Proof of Theorem 2
Since the pre-compensators are zero-free and have their

poles in the right-half complex plane, no pole-zero can-
cellations occur in the augmented system (which is not
identically zero), and hence it has the same invariant zeros as
the original system and satisfies Assumption 1. The relative
degree of the two pre-compensators are ri and ρ − ρi− ri.
The relative degree of augmented dynamics (8) is therefore
ρi + ri +ρ−ρi− ri = ρ .

Next, to show that (Ai,Ci) contains (S,R), we start by
showing that there exists a Πi such that ΠiS = Ai1Πi,
Ci1Πi = R, where

Ai1 =

[
Ai BiCip1
0 Aip1

]
, Ci1 =

[
Ci 0

]
.

Post-multiplying by Φi and defining Π̄i := ΠiΦi, it can be
seen from the proof of Lemma 1 that we get the equivalent
expression[

Π̄i11 Π̄i12
Π̄i21 Π̄i22

][
Ui Si12
0 Si22

]
=

[
Ai BiCip1
0 Aip1

][
Π̄i11 Π̄i12
Π̄i21 Π̄i22

]
,

[
Ci 0

][Π̄i11 Π̄i12
Π̄i21 Π̄i22

]
=
[
RΦiu RΦio

]
.

From (9) we have Ai11Λiu = ΛiuUi. By Remark 2, the
pair (Ai,Ci) is detectable, and hence the eigenvalues of the
matrix Ai22 are in the open left-half complex plane. Since
the eigenvalues of Ui are in the closed right-half complex
plane, we can therefore find a solution Xi of the Sylvester
equation XiUi = Ai22Xi +Ai21Λiu (see, e.g., [26, App. 2.A]).
It follows that[

Λiu
Xi

]
Ui =

[
Ai11 0
Ai21 Ai22

][
Λiu
Xi

]
.
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Letting Π̄i11 = Σi[Λiu;Xi], we therefore have Π̄i11Ui =AiΠ̄i11.
Furthermore, using the identity Ci1Λiu = RΦiu from (9), we
have CiΠ̄i11 = [Ci1,0][Λiu;Xi] =Ci1Λiu = RΦiu.

Let Π̄i21 = 0. Next, consider the equations Π̄i11Si12 +
Π̄i12Si22 = AiΠ̄i12+BiΞi, CiΠ̄i12 = RΦio with unknowns Π̄i12
and Ξi. This set of regulator equations is solvable if the
Rosenbrock system matrix

[
Ai−λ I Bi

Ci 0

]
has rank ni + 1 for

each λ that is an eigenvalue of Si22 [26, Corollary 2.5.1].
The normal rank of this matrix is ni + 1, because the
system is right-invertible [27, Proposition 3.1.6]. The matrix
retains its normal rank for each λ that is an eigenvalue of
Si22, since these are all in the closed right-half complex
plane while the invariant zeros of (Ai,Bi,Ci) are all in the
open left-half complex plane. Finally, consider the equations
Π̄i22Si22 = Aip1Π̄i22, Cip1Π̄i22 = Ξi with unknown Π̄i22. To
see that these can be solved, note we can equivalently
write Π̃i22Si22 = Si22Π̃i22, Cip1Γ

−1
i Π̃i22 = Ξi, where Π̃i22 =

ΓiΠ̄i22. Letting Ōi denote the observability matrix of the pair
(diag(Si22,Si22), [Cip1Γ

−1
i ,−Ξi]), it follows from the Cayley-

Hamilton theorem that

rank Ōi = rank

 Cip1Γ
−1
i −Ξ

...
...

Cip1Γ
−1
i Sri−1

i22 −ΞiS
ri−1
i22

≤ ri.

The first ri columns of the above matrix constitute the
observability matrix of the observable pair (Si22,Cip1Γ

−1
i ),

and it follows that Π̃i22 can be chosen such that Ōi[Π̃i22; I] =
0; that is, [Π̃i22; I] spans the unobservable subspace of
(diag(Si22,Si22), [Cip1Γ

−1
i ,−Ξi]). Then Cip1Γ

−1
i Π̃i22 = Ξi and[

Si22 0
0 Si22

][
Π̃i22

I

]
=

[
Π̃i22

I

][
Si22 0
0 Si22

]
,

which implies Si22Π̃i22 = Π̃i22Si22.
Combining the above expressions, we have[
Π̄i11 Π̄i12
Π̄i21 Π̄i22

][
Ui Si12
0 Si22

]
=

[
Π̄i11Ui Π̄i11Si12 + Π̄i12Si22

0 Π̄i22Si22

]
=

[
AiΠ̄i11 AiΠ̄i12 +BiΞi

0 Aip1Π̄i22

]
=

[
Ai BiCip1
0 Aip1

][
Π̄i11 Π̄i12
Π̄i21 Π̄i22

]
and[
Ci 0

][Π̄i11 Π̄i12
Π̄i21 Π̄i22

]
=
[
CiΠ̄i11 CiΠ̄i12

]
=
[
RΦiu RΦio

]
.

Defining Bi1 = [0;Bip1], we can write

Ai =

[
Ai1 Bi1Cip2
0 Aip2

]
, Ci =

[
Ci1 0

]
.

It is now straightforward to see that the matrix Π∗i := [Πi;0]
verifies that the pair (Ai,Ci) contains (S,R).
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