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ABSTRACT
Exact analysis of synchronous dataflow (sdf) graphs is often
considered too costly, because of the expensive transforma-
tion of the graph into a single-rate equivalent. As an alter-
native, several authors have proposed approximate analyses.
Existing approaches to approximation are based on the op-
erational semantics of an sdf graph.

We propose an approach to approximation that is based
on functional semantics. This generalises earlier work done
on multi-rate sdf graphs towards cyclo-static sdf (csdf)
graphs. We take, as a starting point, a mathematical char-
acterisation, and derive two transformations of a csdf graph
into hsdf graphs. These hsdf graphs have the same size as
the csdf graph, and are approximations: their respective
temporal behaviours are optimistic and pessimistic with re-
spect to the temporal behaviour of the csdf graph. Analysis
results computed for these single-rate approximations give
bounds on the analysis results of the csdf graph. As an
illustration, we show how these single-rate approximations
may be used to compute bounds on the buffer sizes required
to reach a given throughput.

Categories and Subject Descriptors
F.1 [Computation by Abstract Devices]: Models of
Computation

General Terms
Algorithms, Theory.

Keywords
Synchronous Dataflow, Transformation, Approximation.

1. INTRODUCTION
Synchronous dataflow (sdf) [13] is a popular model of

computation, used to conservatively model real-time stream
processing applications. The model is attractive, because it
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allows for analysis of a modelled application’s temporal be-
haviour. Such analyses allow for e.g., the derivation of static
order schedules, computation of throughput, verification of
latency constraints, and optimisation of buffer sizes under
a throughput constraint. The model is particularly suitable
in the domain of real-time embedded systems, as analyses
provide guarantees with respect to performance.

Different varieties of sdf exist, such as homogeneous (or
single-rate) sdf (hsdf) [13], multi-rate sdf (mrsdf, or sim-
ply sdf) [13] and cyclo-static sdf (csdf) [2]. These models
differ in their succinctness, where (of these three) hsdf is the
least, and csdf the most succinct. In an hsdf graph, all ac-
tors produce data at the same rate, whereas in mrsdf these
rates may vary per actor and per channel. The csdf model
is a generalisation of mrsdf, and allows for actors with pe-
riodically varying behaviour. As a result, csdf models can
capture streaming applications with greater accuracy than
mrsdf graphs can, which leads to a reduction of the resource
usage of implementations following this model [15].

Efficient analysis techniques for hsdf graphs exist; the
throughput and associated static order schedule of such a
graph may be computed in polynomial time [5]. These
techniques can not be applied directly to mrsdf and csdf
graphs, however; for these graphs, a transformation into an
equivalent hsdf graph is required. The size of such an equiv-
alent hsdf graph may, in the worst case, be exponential in
the size of the original graph, making analyses that involve
the construction of these equivalent hsdf graphs very ex-
pensive in terms of computation time and memory.

Instead of constructing an equivalent hsdf graph, some
authors have proposed state-space exploration of a self-timed
execution of the graph as an analysis method. As a self-
timed execution of an sdf graph will eventually settle in a
periodically repeating schedule, a graph’s throughput can
be determined from its self-timed execution. This approach
may be tailored to the optimisation of buffer sizes under a
throughput constraint. Although they work quite efficiently
in practice, these methods suffer from the same problem as
those based on the construction of an equivalent hsdf graph.

As an alternative to exact analysis, approaches have been
proposed to compute approximations on performance char-
acteristics. These approximations involve the construction
of linear bounds on the execution schedules of the actors in
the graph. With these bounds, analysis and optimisation
problems may be formulated as linear programs, which may
be solved efficiently.

Existing approaches to exact and approximate analysis of
sdf graphs may be characterised as operational : they are



hsdf

mrsdf

csdf
1

2

3

Figure 1: Transformations between different classes
of dataflow: 1. exact [7], 2. approximate [6], 3.
approximate (this paper).

derived from the graph’s temporal behaviour, i.e., its execu-
tion schedule. Instead, we propose a functional approach,
in which we give mathematical abstractions of the depen-
dencies of actors. We define so-called predecessor functions,
which describe the times actors are enabled for their kth

execution in terms of its dependencies. By bounding these
functions, we can describe systems that model the original
system either conservatively, or optimistically, giving bounds
on performance from both sides. To our knowledge and at
the time of writing, our approach is still the only one to
also provide optimistic bounds, which bounds the degree of
over-dimensioning, based on the conservative analysis.

In earlier work, we have presented a single-rate approx-
imation [6], where mrsdf graphs are rewritten into hsdf
graphs of precisely the same size. Also, we have presented an
exact transformation from csdf graphs into mrsdf graphs
[7], in which every actor is expanded into a number of actors
equal to the number of phases. This paper presents a single-
rate approximation for csdf, i.e., an approximate transfor-
mation that rewrites a csdf graph into an hsdf graph. The
resulting set of transformations is depicted in Figure 1.

The transformations from our earlier work can be com-
posed to first transform a csdf graph to mrsdf (exactly,
growing by the number of phases) and then to hsdf (approx-
imately, not growing). The method proposed in this paper
gives a rougher approximation than this composition of pre-
vious methods, but is constant in the size of the input graph.
For mrsdf graphs, however, this method improves upon our
earlier approximation method. The main contribution of
this paper, therefore, is not to obtain improved accuracy,
but rather to expand the sound mathematical characterisa-
tion for the temporal behaviour of mrsdf graphs presented
in our earlier work to the class of csdf graphs.

We discuss existing approximation methods in more de-
tail in Section 2. We introduce briefly the class of csdf
graphs and our notations (Section 3), before we discuss the
deduction of predecessor functions (Section 4). Using these,
we give our single-rate approximation of csdf graphs (Sec-
tion 5) and evaluate its efficacy by means of applying it to
a well-studied case of sdf analysis, namely buffer-capacity
estimation (Section 6).

2. RELATED WORK
Literature on synchronous dataflow can be categorised

into exact and approximate methods. Exact analysis of
(mrsdf and) csdf graphs exploit the fact that the (self-
timed) schedule of a consistent sdf graph, after an ini-
tial transient phase, follows a repetitive pattern, which is

composed of several so-called iterations [9]. Such an it-
eration may be explicitly represented by transforming the
csdf graph into an equivalent hsdf graph, which has a sin-
gle actor for each individual firing in the iteration [8]. For
these hsdf graphs, efficient analysis techniques are avail-
able [5, 12]. However, as the length of a single iteration, in
the worst case, grows exponentially in the size of the csdf
graph, approaches that rely on the construction of an equiv-
alent hsdf graph are often considered too costly for practical
use [10,17].

As an efficient alternative, approaches that explore the
state-space of a self-timed execution for its periodicity have
become the common approach to analysing sdf graphs [10].
This approach may be tailored to the optimisation of buffer
sizes under a throughput constraint [17]. Although in the
worst case, these approaches suffer from the same problem
that prohibits methods based on equivalent hsdf graphs,
experiments suggest that they run much faster, primarily
because they avoid the costly mrsdf-to-hsdf transforma-
tion [10,17].

Rather than performing an exact analysis, an approximate
model of the sdf graph may be constructed and analysed
with much less effort [6, 11]. Such an approximate model
gives a conservative estimation of the graph’s performance;
the actual performance is never worse than the performance
computed from the model. This perfectly suits the typical
aim of dataflow analysis, which is to give guarantees on the
properties of a real-time system. However, the error made
by such an approximation may be considerable, and lead to
a costly over-dimensioning of the system at hand. Methods
to bound this error are only known for mrsdf, but not for
csdf [6]. The transformation presented in this paper gen-
eralises [6] towards csdf graphs. Furthermore, by explicitly
taking into account the greatest common divisor of the cu-
mulative production and consumption of tokens onto and
from a channel, this work improves upon [6].

Many of the existing approaches to approximate analysis
of sdf graphs work by capturing the analysis problem in a
linear program. Although a linear program may be solved
in polynomial time when using sophisticated techniques or
clever pivoting rules, our proposed derivation of single-rate
approximations allows well-established analysis algorithms
to be applied. Furthermore, the structural correspondence
between the csdf graph and its single-rate approximation
allows results computed for the latter, to be translated back
to the csdf graph in a trivial way.

The accuracy of approximating required buffer sizes for a
minimum throughput in a csdf graph improves if the indi-
vidual phases of an actor are considered. This finding is pre-
sented in [1], where schedules of actors and phases of actors
are captured in a so-called min-max linear program, which
may be solved in polynomial time. A different approach to
considering the individual phases of an actor is presented
in [7], where a csdf graph is transformed into an equiva-
lent mrsdf graph. The goal of this paper is not to achieve
maximum accuracy in buffer sizing, but rather to give a
mathematical characterisation of the temporal behaviour of
a csdf graph. If maximum accuracy is desired, we propose
to transform the subgraph of interest into mrsdf, and apply
mrsdf-specific techniques to obtain tighter bounds.

3. CYCLO-STATIC DATAFLOW GRAPHS
A cyclo-static dataflow (csdf) graph is a directed graph,



where the vertices are called actors and the edges are called
channels. Actors model tasks, channels model data depen-
dencies between tasks. Actors may fire, which models the
execution of the task represented by that actor. Execution
of a task requires data to be available on incoming chan-
nels, and produces data on outgoing channels. This data is
modelled by tokens. In a synchronous dataflow graph, the
number of tokens produced onto and consumed from chan-
nels is specified by rates.

In a csdf graph, actors have cyclically varying behaviour:
each actor cycles through a fixed number of phases. The
number of tokens produced onto or consumed from a chan-
nel, as well as the execution time of the actor, depends on
the current phase of the actor. We use the term period to
refer to the number of phases of an actor, and denote the
period of actor v by ϕv. The phase of the actor can be de-
rived from the actor’s firing index in a straightforward way:
the behaviour of the actor during its kth firing is given by
its (k mod1 ϕv)th phase1.

Each actor v has an associated execution time vector,
which we denote by Tv = [t1, . . . , tϕv ] ∈ Nϕv . At the start
of an execution, an actor consumes data from its incom-
ing channels. The completion of the kth execution occurs
tk mod1 ϕv time units after said execution started, and in-
volves the production of tokens onto its outgoing channels.
For the sake of brevity, we write τv(k) to denote the execu-
tion time of the kth firing of actor v.

Each channel vw has an initial, integer number of tokens,
denoted δvw. Furthermore, two vectors are associated with
each channel vw. These vectors are the channel’s production
rate vector, denoted P+

vw = [p+
1 , . . . , p

+
ϕv

] ∈ Nϕv , and con-

sumption rate vector, denoted P−vw = [p−1 , . . . , p
−
ϕw

] ∈ Nϕw .

The kth firing of actor v produces p+
k mod1 ϕv

tokens onto

the channel, whereas the kth firing of actor w consumes
p−k mod1 ϕw

tokens from the channel. We write ρ+
vw(k) and

ρ−vw(k) as respective shorthand notations. If, on each of an
actor’s incoming channels, the number of tokens is at least
the channel’s consumption rate, the actor may start an ex-
ecution and is said to be enabled.

We often need to refer to the total number of tokens pro-
duced or consumed by an actor in one period. We therefore
denote the number of tokens produced onto channel vw in
one period of v by PΣ+

vw =
∑ϕv
i=1 ρ

+
vw(i), and the number of

tokens consumed, in one period of w, from channel vw by
PΣ−
vw =

∑ϕw
i=1 ρ

−
vw(i).

Finally, relative primality of production and consumption
rates plays an important role in the approximation of csdf
graphs (see Section 5). The vector g associates a csdf chan-
nel with the greatest common divisor of the sums of the rate
vectors associated with that channel:

gvw = gcd
(
PΣ+
vw , P

Σ−
vw

)
. (1)

Cyclic dependencies in a csdf graph limit the frequency
at which actors may fire. This frequency depends on the
rates and tokens associated with the channels that compose
these cycles. For a given channel vw, actor w completes, on
average, PΣ+

vw ϕw firings for every PΣ−
vw ϕv completed firings

1We write k mod1 n as a shorthand notation for (k −
1) mod n + 1, with the mod operator defined convention-
ally as: a mod b = a− b

⌊
a
b

⌋
.

of actor v. Let the gain of a channel be defined as:

gainvw =
PΣ−
vw ϕv

PΣ+
vw ϕw

,

and the gain of a path be the product of the gains of the
channels that compose the path.

If the gain of each cycle equals one, then the graph is
said to be consistent [6]. The firing times of actors in a
consistent csdf graph follow a repetitive pattern [2]. If, fur-
thermore, the graph is strongly connected, then the number
of tokens that accumulates on a channel during execution,
is bounded [9].

For a consistent csdf graph, an integer vector q exists such
that, for every channel vw, the following, so-called balance
equation holds:

qv
ϕv
PΣ+
vw =

qw
ϕw

PΣ−
vw . (2)

with the restriction that for each actor v, qv is an integer
multiple of ϕv [2]. Vector q is commonly referred to as the
graph’s repetition vector, and gives rise to the definition of
a graph iteration: in a single graph iteration, actor v fires
precisely qv times. Note that due to the added restriction,
the repetition vector entries are not necessarily relatively
prime.

Furthermore, a minimal integer vector s exists, such that,
for each actor v, the following, so-called flow conservation
equation holds:

suv
ϕv

PΣ−
uv =

svw
ϕv

PΣ+
vw ∈ N. (3)

Vector s is commonly referred to as a P-semiflow in the con-
text of Petri Nets [19]. In the context of dataflow graphs, we
refer to it as flow normalisation vector. The flow normali-
sation vector gives the ratio between the number of tokens
that flows through channels in a single iteration.

We combine the repetition and flow normalisation vectors
into the following constant, which we denote N :

N =
qvP

Σ+
vw

ϕv
svw. (4)

If we multiply the rate vectors associated with a chan-
nel with the corresponding entry in the flow normalisation
vector, then an integer k exists such that in k iterations, pre-
cisely N tokens “flow through” each channel in the graph.
We use the constantN as a scaling factor in the construction
of the single-rate approximations, as outlined in Section 5.

We conclude this section with an illustration of the struc-
tural invariants, using an example csdf graph, depicted in
Figure 2. Each of the two actors in the graph has a period
of 2. A repetition vector q that satisfies the balance equa-
tions is given by qv = 4, qw = 6. The smallest integer vector
s that satisfies the flow conservation equations is given by
svv = 3 and svw = swv = 2. As a result, the constant N for
the graph equals 12.

4. THE PREDECESSOR FUNCTION
A csdf graph is an example of a discrete event system [4,

12]. In such a system, the firing times of actors are interde-
pendent; an actor can not start a firing before the actors it
depends on have fired (at least) a given number of times. In
synchronous dataflow, these dependencies are given by the
graph’s channels, and the details of a dependency of an actor
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Figure 2: An example of a consistent CSDF graph.

can be determined from the annotations (rates and tokens)
on the incoming channels of that actor.

These dependencies may be elegantly described by a set
of recurrent equations. We write tw(k) to denote the com-
pletion time of the kth firing of actor w. The dependency of
tw(k) on the completion time of connected upstream actors
then satisfies:

tw(k) = max
vw
{tv(k − γ(k))}+ τw(k). (5)

That is, w starts its kth firing as soon as each predecessor v
has completed (k−γ(k)) firings. Actor w needs an additional
τw(k) time units to complete this execution. Note that we
take the maximum over all incoming channels of w in the
graph, and omit the quantification of vw in the equation,
for convenience.

Equation (5) is commonly named a dater equation [12],
as it defines the times at which actors fire. Function γ(k)
is called the shift function [4]. If γ(k) is a constant integer,
then (5) is a so-called shift-invariant system2. For shift-
invariant discrete event systems, many analysis techniques
are available [5, 12].

For dataflow systems, the shift function that is associated
with a channel vw captures the fact that a certain, minimal
number of tokens must have been produced by a producing
actor, before the consuming actor can start its next execu-
tion. We therefore rewrite (5) into the following, slightly
more convenient form:

tw(k) = max
vw
{tv (πvw(k))}+ τw(k), (6)

where πvw(k) is the predecessor function, which gives the
number of firings predecessor v must have completed, such
that enough tokens are available to let actor w start its kth

firing. Note that πvw must be non-decreasing to obey the
semantics of a dataflow graph: dataflow channels represent
unbounded fifo buffers, and to guarantee functional cor-
rectness, tokens may not “overtake” each other [14]. The
predecessor function must thus be such that the order in
which tokens are consumed does not violate the order in
which tokens are produced.

There is a strong correspondence between different classes
of sdf graphs and the form of the associated predecessor
function [6, 7]. Multi-rate and cyclo-static sdf graphs cor-
respond to so-called periodically shift-varying systems [6],
and an hsdf graph may be represented by a shift-invariant
system (and vice versa). The number of tokens on an hsdf
channel is then simply equal to the amount of shift in the
associated predecessor function [6, 8].

The interchangeability between a synchronous dataflow
graph and a set of dater equations allows transformations
of an sdf graph to be stated in terms of algebraic manip-
ulations of the predecessor function. Transforming an sdf

2A shift-invariant system is the discrete analogue of a time-
invariant system
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Figure 3: A graphical representation of a single pe-
riod of the predecessor functions of channels vw and
wv of the example CSDF graph from Figure 2.

graph into hsdf thus corresponds to rewriting (6) into a
shift-invariant form. A mathematical characterisation of the
predecessor function associated with a channel involves the
channel’s production and consumption rates, and its initial
number of tokens. Consider the following function ∆vw,
which gives the number of tokens on a channel vw, as a
function of the number of firings of the actors connected by
that channel:

∆vw(i, j) = δvw +

i∑
l=1

ρ+
vw(l)−

j∑
l=1

ρ−vw(l). (7)

The general form of the predecessor function associated
with a channel in a synchronous dataflow graph may be
expressed in terms of (7), in the following way:

πvw(k) = min {m|∆vw (m, k) ≥ 0} , (8)

which says that the minimal number of firings of actor v
that must precede the kth firing of actor w is such that
a minimum, non-negative number of tokens is available on
channel vw.

An alternative formulation that is semantically equivalent
is:

πvw(k) = max {m|∆vw (m, k) < 0}+ 1, (9)

which says that the required number of firings of actor v is
the first firing after its latest firing that does not enable the
kth firing of actor w.

The graph of a predecessor function of a csdf channel
is periodic and follows a staircase-like pattern. Figure 3
depicts the predecessor functions of two of the three channels
of the graph shown in Figure 2.

4.1 Computing the predecessor function
The two formulations of the predecessor function given

in the previous section are not very suitable for computing
the predecessor of a given firing. We therefore rewrite (8)
and (9) into a more suitable form, using the following iden-
tities: ⌈ n

m

⌉
= min

{
k
∣∣∣ km ≥ n} , (10a)⌊ n

m

⌋
= max

{
k
∣∣∣ km ≤ n} , (10b)⌈ n

m

⌉
=

⌊
n+m− 1

m

⌋
. (10c)
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Let m = m′ϕv + i, with m′ =
⌊
m
ϕv

⌋
. Using this substi-

tution, we may rewrite the min-formulation of (8) into the
following form:

πvw(k)

= min

{
m′ϕv + i

∣∣∣∣m′PΣ+
vw + ∆vw (i, k) ≥ 0

}
= min

i<ϕv

{
min

{
m′
∣∣∣∣m′PΣ+

vw ≥ −∆vw (i, k)

}
ϕv + i

}
(10a)
= min

i<ϕv

{⌈
−∆vw (i, k)

PΣ+
vw

⌉
ϕv + i

}
.

(11)

Determining the number of times an actor v must fire to
produce sufficient tokens onto channel vw, such that actor
w can fire k times, involves iterating the phases of v. Com-
puting the predecessor function πvw(k) may thus be done in
time proportional to ϕv.

In a similar fashion, we may rewrite the max-formulation
of (9) into:

πvw(k)− 1

= max
i<ϕv

{
max

{
m′
∣∣∣∣m′PΣ+

vw + ∆vw (i, k) < 0

}
ϕv + i

}
(10b)
= max

i<ϕv

{⌊
−1−∆vw (i, k)

PΣ+
vw

⌋
ϕv + i+ 1

}
(10c)
= max

i<ϕv

{⌈
−∆vw (i, k)

PΣ+
vw

⌉
ϕv + i

}
− ϕv.

(12)

4.2 Equivalent HSDF graphs
Using the predecessor function, we may transform a (con-

sistent) csdf graph into an equivalent hsdf graph, where
equivalence pertains to the graphs’ self-timed schedules. For
such an equivalent hsdf graph, we need to compute the
precedence relations between the invocations of communi-
cating actors [2]. The predecessor function gives precisely
those relations: the last token consumed by the kth firing of
actor w is produced by firing πvw(k) of actor v, and hence
the equivalent hsdf graph contains edges from hsdf actor
vπvw(k) mod1 qv to hsdf actor wk mod1 qw . The number of
tokens on such an edge signifies the number of graph itera-
tions that separate the production and consumption of the
last token.

An example of such an hsdf graph representation is given

in Figure 4. For the sake of clarity, the figure depicts the
equivalent hsdf graph in an unrolled fashion, with all chan-
nels (except those that correspond to the self-loop of v)
pointing from left to right.

The throughput of the csdf graph of Figure 2(a) is equal
to the throughput of its equivalent hsdf graph, which is
the inverse of the latter graph’s maximum cycle ratio [5,16].
The graph’s maximum cycle ratio equals 16 and is attained
by its critical cycle, shown in red.

5. APPROXIMATING CSDF BY HSDF
The approach that we take to transforming a csdf graph

into an approximating hsdf graph involves two main steps.
As a first step, we derive linear bounds on the predecessor
function associated with each channel in the csdf graph.
Here we differ from existing approaches: where bounds are
conventionally constructed based on operational semantics
(i.e., firing schedules), we take the mathematical character-
isation, from which these operational semantics follow, as a
starting point. We use basic integer arithmetic to derive a
lower linear bound from the min-formulation, given by (11),
and derive an upper bound, in a similar fashion, from the
predecessor function’s max-formulation (12).

These linear bounds change the discrete system into a
continuous one, also called fluid by some authors [3]. This
continuous system is not shift-invariant, as vertices fire at
different rates. Such a system may still be analysed by for-
mulating and solving a linear program [11]. However, we
take an extra step to transform the system into one that
is shift-invariant. This step involves changing the system’s
counting units.

As a result of this final step, the system may be repre-
sented by an hsdf graph. As such, existing, well-known
analysis techniques may be applied, and analysis results ob-
tained for the hsdf graph can naturally be translated back
to the csdf graph.

5.1 Prelude
The derivation of linear bounds on the predecessor func-

tion involves computing the maximum and minimum of the
following set: {

km

n
−
⌈
km− d
n

⌉ ∣∣∣∣ k ∈ Z
}
, (13)

with constants m,n ∈ N and d ∈ Z. Using basic integer
arithmetic, this set may be reformulated as:{

d− (d− km) mod n

n

∣∣∣∣ k ∈ Z
}
. (14)

Minimum and maximum values of this set are attained
at the respective maximum and minimum possible value of
(d− km) mod n. The minimum of the set thus satisfies:

min
k∈Z

{
km

n
−
⌈
km− d
n

⌉}
=
d− (n− gcd(m,n) + d mod gcd(m,n))

n

=
gcd(m,n)

⌈
d+1

gcd(m,n)

⌉
n

− 1,

(15)



and the maximum value of the set is given by:

max
k∈Z

{
km

n
−
⌈
km− d
n

⌉}
=
d− d mod gcd(m,n)

n

=
gcd(m,n)

⌊
d

gcd(m,n)

⌋
n

.

(16)

In the remainder of this section, identities (15) and (16)
are used to derive linear bounds on the csdf predecessor
function.

5.2 Bounding the Predecessor Function
The predecessor function associated with a csdf channel

follows a repetitive staircase pattern. Tight upper and lower
linear bounds may be constructed by choosing an appropri-
ate slope and intercept. These linear bounds thus have the
following form:

πup
vw(k) = αvwk − βup

vw (17a)

πlo
vw(k) = αvwk − βlo

vw. (17b)

The (average) slope of the staircase pattern is given by
the ratios of the repetition vector entries associated with
the actors connected by the channel, in the following way:

πvw(k +mqw)− 1

= max
i<ϕv
j<ϕw



(
k′ +m qw

ϕw

)
PΣ−
vw −∆vw (i, j)

PΣ+
vw

− 1

ϕv + i


(2)
= max

i<ϕv
j<ϕw

{(⌈
k′PΣ−

vw −∆vw (i, j)

PΣ+
vw

⌉
+m

qv
ϕv
− 1

)
ϕv + i

}
= πvw(k) +mqv − 1.

We thus set the slope of the linear bounds on the channel’s
predecessor function to αvw = qv

qw
.

Computation of the intercepts, βup and βlo, requires more
effort. These intercepts should be chosen such that the lin-
ear bounds are tight, i.e., the minimum error between the
predecessor function and its linear bound must be zero.

5.2.1 Constructing an upper bound
We construct a tight linear upper bound by choosing βup

such that, for all k ∈ N, we have πup
vw(k) ≥ πvw(k), and for

at least one k, πup
vw(k) = πvw(k). This is achieved by setting

βup to:

βup
vw = min

k
{αvwk − πvw(k)} . (18)

Computing βup
vw using the above formulation may take

considerable time, as the length of a single period of the
predecessor function depends on the numerical values of the
production and consumption rate vectors of vw. The fol-
lowing rewriting steps reduce the complexity of this com-
putation to one that depends solely on the lengths of the
production and consumption rate vectors. As a first step,
we expand (18) into:

βup
vw − ϕv + 1

= min
k

{
qv
qw
k −max

i<ϕv

{⌈
−∆vw (i, k)

PΣ+
vw

⌉
ϕv + i

}}
= min

k

{
min
i<ϕv

{(
kPΣ−

vw

ϕwP
Σ+
vw

−
⌈
−∆vw (i, k)

PΣ+
vw

⌉)
ϕv − i

}}
.
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Figure 5: Tight linear lower and upper bounds on
the predecessor functions of Figure 3.

For the sake of compactness, we introduce the following
shorthand notation:

ψvw(i, j, k) =

⌈
kPΣ−

vw −∆vw (i, j)

PΣ+
vw

⌉
. (19)

We further reduce the complexity of the computation by
exploiting the periodicity of ∆vw(i, k) in k. Substituting
k′ϕw + j for k gives:

βup
vw + 1

= min
k′

min
i<ϕv
j<ϕw

{(
k′PΣ−

vw

PΣ+
vw

− ψvw(i, j, k′)

)
ϕv − i+ j

qv
qw

}
+ ϕv

= min
i<ϕv
j<ϕw

{
min
k′

{
k′PΣ−

vw

PΣ+
vw

− ψvw(i, j, k′)

}
ϕv − i+ j

qv
qw

}
+ ϕv

= min
i<ϕv
j<ϕw

gvwϕv
⌈

∆vw(i,j)+1
gvw

⌉
PΣ+
vw

− i+ j
qv
qw

 .

Putting everything together gives the following linear pre-
decessor function:

πup
vw(k) =

qv
qw
k

− min
i<ϕv
j<ϕw

gvwϕv
⌈

∆vw(i,j)+1
gvw

⌉
PΣ+
vw

− i+ j
qv
qw
− 1

 .

(20)

A tight linear bound on the predecessor function associ-
ated with csdf channel vw may thus be computed in time
proportional to the product of the periods of actors v and



w, i.e., ϕvϕw. Note that in case the greatest common di-
visor gvw equals one, the bound may be computed in time
proportional to ϕv + ϕw, by separating the terms in i from
the terms in j.

5.2.2 Constructing a lower bound
We may construct a lower bound, in a way similar to the

construction of an upper bound, described above. Rather
than using the max-formulation of the predecessor function,
we now use the min-formulation. For the lower bound, we
compute the intercept βlo

vw using:

βlo
vw = max

k
{αvwk − πvw(k)} , (21)

which we expand into:

βlo
vw

= max
k

{
qv
qw
k − min

i<ϕv

{⌈
−∆vw (i, k)

PΣ+
vw

⌉
ϕv + i

}}
= max

k

{
max
i<ϕv

{(
kPΣ−

vw

ϕwP
Σ+
vw

−
⌈
−∆vw (i, k)

PΣ+
vw

⌉)
ϕv − i

}}
.

Again, by substituting k′ϕw+j for k, and using the short-
hand notation (19), we rewrite this into:

βlo
vw

= max
k′

max
i<ϕv
j<ϕw

{(
k′PΣ−

vw

PΣ+
vw

− ψvw(i, j, k′)

)
ϕv − i+ j

qv
qw

}

= max
i<ϕv
j<ϕw

{
max
k′

{
k′PΣ−

vw

PΣ+
vw

− ψvw(i, j, k′)

}
ϕv − i+ j

qv
qw

}

= max
i<ϕv
j<ϕw

gvwϕv
⌊

∆vw(i,j)
gvw

⌋
PΣ+
vw

− i+ j
qv
qw

 .

This gives the following tight linear lower bound on the
csdf predecessor function:

πlovw(k) =
qv
qw
k

− max
i<ϕv
j<ϕw

gvwϕv
⌊

∆vw(i,j)
gvw

⌋
PΣ+
vw

− i+ j
qv
qw

 .

(22)

5.3 Changing counting units
The system that we derived in the previous section can

not directly be represented as an hsdf graph, because it is
not a shift-invariant system. Shift-invariance signifies that
firing times progress at the same rate. As the rates at which
csdf actors fire are interrelated through the graph’s rep-
etition vector, counting the number of iterations an actor
has completed, rather than its completed firings, yields a
shift-invariant system.

Such a change in counting is obtained by scaling the do-
main and codomain of (20) and (22). We apply the following
affine transformation to each predecessor function:

π̇vw(k) =
1

qv
πvw (kqw) . (23)

This gives the following predecessor functions:

π̇up
vw(k)

= k − min
i<ϕv
j<ϕw

gvwϕv
⌈

∆vw(i,j)+1
gvw

⌉
qvP

Σ+
vw

− i+ 1

qv
+

j

qw

 ,
(24)

π̇lo
vw(k)

= k − max
i<ϕv
j<ϕw

gvwϕv
⌊

∆vw(i,j)
gvw

⌋
qvP

Σ+
vw

− i

qv
+

j

qw

 .
(25)

These predecessor functions are time-invariant, but not
shift-invariant, as the intercept in (24) and (25) is in general
not an integer. To cope with this, we scale the shift by a
constant factor. This is analogous to multiplying the number
of tokens on each channel in an hsdf with the same factor.
Multiplying each channel’s number of tokens by a factor f
scales the cycle ratio of each cycle (and thus the graph’s
maximum cycle ratio) by a factor of 1

f
. Multiplication with

the factor N gives the following linear upper bound:

π̈up
vw(k) = k −

svw min
i<ϕv
j<ϕw

{
gvw

⌈
∆vw(i, j) + 1

gvw

⌉
− (i+ 1)PΣ+

vw

ϕv
+
jPΣ−

vw

ϕw

}
.

Note that the min-term in this expression is indeed an
integer, by definition of the flow conservation vector, (3). In
a similar fashion, we derive the following linear lower bound:

π̈lo
vw(k) = k −

svw max
i<ϕv
j<ϕw

{
gvw

⌊
∆vw(i, j)

gvw

⌋
− iPΣ+

vw

ϕv
+
jPΣ−

vw

ϕw

}
.

(26)

5.4 Single-Rate Approximations
The predecessor functions constructed in the previous sec-

tion give rise to two sets of dater equations, each of which
forms a shift-invariant system. As a final step, we need to
replace each actor’s execution time vector by a scalar. A
pessimistic system is obtained by replacing each execution
time vector by its maximum, and, similarly, by replacing
said vectors by their minima, we obtain an optimistic sys-
tem:

t̂w(k) = max
vw

t̂v (π̈up
vw(k)) + max

i
τw(i) (27a)

ťw(k) = max
vw

ťv
(
π̈lo
vw(k)

)
+ min

i
τw(i). (27b)

These sets of dater equations may be represented by hsdf
graphs [4,8,12]. As an example, Figures 6(a) and 6(b) depict
the optimistic and pessimistic hsdf graph approximations of
the example csdf graph from Figure 2(a).

Actors in the resulting hsdf graph represent partial itera-
tions. This is due to the change in counting units, which was
necessary to obtain shift-invariance. The relation between
the number of hsdf actor firings and the number of firings
of the corresponding csdf actor depends on the repetition
vector entry associated with the actor: qv firings of csdf
actor v correspond to N firings of hsdf actor v.

For example, 3 firings of actor v in the pessimistic hsdf
graph of Figure 6(b), correspond to a single firing of csdf
actor v in Figure 2(a). Using this correspondence, we can
derive a schedule for a csdf graph from the schedule of its
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Figure 6: Optimistic and pessimistic single-rate ap-
proximations derived from the CSDF graph from
Figure 2.

pessimistic (or optimistic) hsdf approximation. Likewise,
we can compute bounds on the throughput of a csdf graph
by computing the throughputs of the two hsdf approxima-
tions, and multiplying these by N . For the optimistic hsdf
graph of Figure 6(a), we find that the throughput (which is
the inverse of the graph’s maximum cycle ratio) equals 4

6
,

the critical cycle being vwv. For the pessimistic hsdf graph,
the critical cycle is again vwv, but now limits the through-
put to 5. Analysis of the approximations thus gives that the
throughput lies between 12 · 4

6
= 8 and 12 · 5 = 60 (recall

that the exact throughput of the graph, computed from its
equivalent hsdf graph, equals 16).

Note that, unlike the pessimistic bound, the optimistic
throughput bound pertains to the model, not to the modelled
application. In this sense, the optimistic bound primarily
gives an indication of the error of the estimated through-
put; if this error is (too) large, an exact transformation into
a larger graph, which exposes interactions between individ-
ual phases of the csdf actors, may give a more accurate
estimation [7].

5.5 Complexity of the Transformation
The transformation produces an hsdf graph that has the

same size as the original csdf graph. Each csdf actor is
transformed into an hsdf actor that has as a scalar execu-
tion time, which is either the minimum or the maximum of
the execution time vector of the csdf actor. The complexity
of transforming the csdf actors is thus O(|V |ϕmax), where
ϕmax is the maximum actor period, taken over all csdf ac-
tors.

Each channel in the csdf graph is transformed into a sin-
gle channel in the resulting hsdf graph. This involves com-
puting a scaled linear bound on the channel’s predecessor
function, as is described in the previous section. The com-
putation of the intercept of this linear bound has the high-
est cost in this step; it requires iterating the phases of the
actors connected by the channel and hence has complexity
O((ϕmax)2).

As a result, the complexity of the entire transformation
is O(ϕmax(|V | + ϕmax|E|)). As the size of the input is
O(ϕmax(|V | + |E|)), the complexity of the transformation
is polynomial in the size of the csdf graph.

5.6 Symbolic tokens
In the context of sdf graphs, an important optimisation

problem is the minimisation of the number of initial tokens,
under a throughput constraint. In this problem, the number
of initial tokens on a channel is denoted by a variable. When
transforming a csdf graph into a single-rate approximation,
the intercept of the linear bound depends on the number of
initial tokens. This dependency is non-linear if the divisor
gvw of a channel vw is greater than one.

In order to construct a single-rate approximation in which
a channel’s initial tokens remain variable, an assumption on
these initial tokens must be made. We may factor out the
initial tokens δvw of a channel vw, if the following congruence
relation is satisfied:

δvw ≡ rvw (mod gvw), (28)

with 0 ≤ rvw < gvw. In the following section, we illustrate
how the choice of the remainder rvw affects the optimisation
problem.

6. ESTIMATING BUFFER CAPACITIES
In this section, we show how the optimistic and pessimistic

single-rate approximations of a csdf graph can be used
to compute necessary and sufficient buffer sizes under a
throughput constraint. As a case study, we use a model
of an MP3 playback application, which has served as a case
study in several other studies as well [20,21].

The application consists of three tasks, each of which is
modelled by a single csdf actor: Actor MP3 models an MP3

decoder that processes a 48 kHz variable bitrate MP3 file,
and the sample rate converter (modelled by actor src) con-
verts this to a 44.1 kHz stream to match the frequency of the
digital-to-analog-converter, which is modelled by the actor
labelled dac. Communication channels between the tasks
are fifo buffers; their finite capacity is modelled by a re-
verse channel, with a number of initial tokens equal to the
buffer’s capacity. To leave these buffer capacities unspec-
ified, the number of tokens on these reversed channels are
expressed symbolically. The model is depicted in Figure 7.

The worst-case execution time of the ten different phases
of the sample rate converter task are (in order): 136577,
133824, 133760, 133750, 133748, 133863, 133844, 133955,
133882, and 133862 clock cycles. The MP3 decoder task
has a worst-case execution of 1603621 clock cycles, and the
digital-to-analog-converter samples its input periodically ev-
ery 5000 clock cycles. The latter gives a minimal required
throughput; in order not to stall the dac actor, data should
arrive in time. Because the repetition vector entry of the
dac actor is 5292, the cycle time of the graph should thus,
at most, be 5000 · 5292.

The throughput of the graph depends on the capacity of
the two buffers between the three tasks, i.e., the variables
d1 and d2. If we approximate these buffer sizes required to
reach the desired throughput, using the techniques from [20],
we find that d1 must be at least 1536 and d2 must be at least
90. The analysis does not provide an error margin. Exact
analysis, using the SDF3 tool [18], reveals that d1 = 1152
and d2 = 65 are the optimal choices for the buffer capacities.

If we apply the transformation presented in this paper,
then we need an additional constraint on d1, since the sums
of the production and consumption rate vectors associated
with the channels connecting MP3 and src are not relatively
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prime. This constraint is given as the following congruence
relation:

d1 ≡ r1 (mod 96). (29)

With this constraint, the term d1 − r1 may be factored
out of the rounding functions (floor and ceiling) that occur
in the linear bounds. By furthermore exploiting the fact that
the rates on the channels connecting MP3 and src are con-
stant, the pessimistic predecessor function with the channel
marked with d1 tokens can be simplified into:

π(k) = k − 147 min
i<10

{
96

(⌈
d1 + 48i+ 1

96

⌉
− i+ 1

2

)}
= k − 147 min

{⌊ r1

96

⌋
+

1

2
,

⌊
r1 + 48

96

⌋}
+ d1 − r1

= k − 147
(
d1 − r1 + 48

⌊ r1

48

⌋)
= k − 147 (d1 − r1 mod 48) ,

and the optimistic predecessor function can be rewritten into
the same expression:

π(k) = k − 147 max
i<10

{
96

(⌊⌊
r1
48

⌋
+ i

2

⌋
− i

2

)
+ d1 − r1

}
= k − 147 (d1 − r1 mod 48) .

The optimistic and pessimistic single-rate approximations
are depicted in Figure 8. The scaling factor N used in the
transformation equals 846720. Since the maximum allowed
cycle time of the csdf graph is 5000 · 5292, the maximum
cycle ratio of the single-rate approximations must not be
larger than 5000·5292

846720
= 125

4
.

The minimum required size of the buffers can be obtained
from the cycle ratios of the two cycles. The cycle ratio of

the buffer between src and dac equals:

λ =
136577 + 5000

160(d2 − 44)
≤ 125

4
.

The minimum integer value of d2 that satisfies this is 73.
For the buffer between MP3 and src, we need to consider

two possible choices for r1, namely r1 = 0 and r1 = 48.
Regardless of our choice, the constraint under which we op-
timise d1 is the same:

λ =
1603621 + 136577

147(d1 − 1104)
≤ 125

4
.

The minimum value of d1 that satisfies this constraint is
d1 = 1482.82. Under the constraint that r1 = 0, the smallest
integer value of d1 is 1536, whereas if we take r1 = 48,
we find d1 = 1488. The minimum capacity for the buffer
between the MP3 task and the src task is thus 1488.

The computed buffer capacities are derived from the pes-
simistic hsdf graph. That is, they are sufficient ; with the
computed capacities, the actual throughput may be better
than required, but not worse. If we conduct the same anal-
ysis on the optimistic hsdf graph approximation, depicted
in Figure 8(a), then we obtain necessary buffer sizes.

For the optimistic case, the constraints on the cycle ratios
are slightly different. Again, regardless of our choice for r1

(either 0 or 48), we have:

λ =
1603621 + 133748

147d1
≤ 125

4
.

The minimum (real) value of d1 that satisfies the constraint
is 378.2. If we choose r1 = 0, we obtain the minimal integer
value that satisfies the constraint: d1 = 384.

For the other buffer, we have:

133748 + 5000

160(d2 + 9
10

)
≤ 125

4
,

which gives as a minimal integer value d2 = 27.
The necessary and sufficient buffer capacities lie quite far

apart. This is due to the fact that in single-rate (hsdf)
graphs, throughput is composable, whereas this is not the
case in multi-rate or cyclo-static sdf graphs. In the single-
rate approximations, the throughput of two adjoint cycles
is the minimum of the throughputs of the individual cycles,
whereas generally, in an sdf graph, the throughput of two
adjoint cycles may be lower than the throughputs of the
individual cycles.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a method to approximate a

cyclo-static synchronous dataflow (csdf) graph by two ho-
mogeneous or single-rate dataflow graphs. Whereas exist-
ing approaches derive from the operational semantics of a
csdf graph (i.e., the graph’s execution schedule), we take
a functional approach: we capture the temporal behaviour
of a csdf graph in a set of so-called predecessor functions,
from which the operational semantics follow. The presented
transformation generalises and improves upon earlier work
done on mrsdf graphs [6]. Analysis results computed for
the single-rate approximations provide bounds on the exact
results obtained on the csdf graph.

The transformation has polynomial time complexity, and
produces hsdf graphs that have the same size as the csdf
graph. Given that polynomial-time algorithms exist for the



analysis of hsdf graphs, the transformation offers a rough
but quick estimation of the performance characteristics of a
csdf graph. To our knowledge, our approach is still the only
one to also provide optimistic bounds. This quantifies the
degree of over-dimensioning that is due to the conservative
bound.

We give an application of these single-rate approximations
to the well-known problem of optimising buffer capacities
under a throughput constraint. We furthermore illustrate
how congruence relations on buffer capacities are involved
in solving this problem.

In future work, we plan to integrate approximate analyses,
such as presented in this paper, with exact (partial) trans-
formations such as outlined in [7]. Such an integrated ap-
proach should lead to an incremental analysis of sdf graphs,
where inaccurate analysis results, obtained from single-rate
approximations, are improved in a stepwise fashion. The
presented mathematical characterisation, in the form of pre-
decessor functions, and its approximation, provides an essen-
tial basis for the targeted approach.
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