Efficient Language Implementation with ALIA4J and
EMFText

Forum Demonstration

Christoph Bockisch
Software Engineering group
University of Twente
P.O. Box 217
7500 AE Enschede, the Netherlands
c.m.bockisch@cs.utwente.nl

ABSTRACT

Developing extensions to general-purpose langauges or domain-
specific languages with support for new kinds of abstractions
is an ongoing trend. Modern language workbenches, such as
EMFText of Xtext, support this trend and facilitate imple-
menting langauges in terms of transformations from the new
language into an established (intermediate) language. Often,
however, the implementation of one element in the source
language becomes scattered and tangled in the target lan-
guage, which makes transformations complex. Furthermore,
even though many languages share core concepts, current
approaches do not support sharing transformations that
implement their semantics; the only possibility of re-using
transformations from a language is to extend it syntactically.
We have identified dispatching as fundamental to most
abstraction mechanisms. With the ALIA4J approach, we
provide a meta-model of dispatching to act as rich and ex-
tensible intermediate language that allows more direct trans-
formation. The semantics of core language concepts can
be modularly implemented as extension of the meta-model.
For the execution of the intermediate language, we provide
both platform-independent and platform-dependent Java
Virtual Machine extensions, the latter of which even allows
the modular implementation of machine code optimizations.
In this demo, participants get an overview of advanced
dispatching and the ALIA4J approach. By the example of
a language for text-based adventure games, they will see
the usage of ALIA4J as back-end for a language developed
in EMFText. Finally, the implementation of new atomic
language concepts and their optimization is demonstrated.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Run-time
environments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AOSD’13 Companion, March 24-29, 2013, Fukuoka, Japan.

Copyright 2013 ACM 978-1-4503-1873-0/13/03 ...$15.00.

Andreas Sewe
Software Technology group
Technische Universitat Darmstadt
Hochschulstr. 10
64289 Darmstadt, Germany

sewe@st.informatik.tu-darmstadt.de

Keywords

Advanced dispatching, language implementation, modular
optimization

1. PRESENTATION HISTORY

An earlier version of this demo has been presented at the
SPLASH conference in 2012 [4]. The demo builds on material
that has been used in:

e the academic course “Advanced Programming Con-
cepts” (University of Twente, the Netherlands) in 2011
and 2012,

e the tutorial “Efficient Implementation of Efficient (Do-
main-Specific) Languages” held at the Brazilian Confer-
ence on Software: Theory and Practice (CBSoft) 2010,
and

e the journal paper: C. Bockisch, A. Sewe, H. Yin,
M. Mezini, and M. Aksit. An in-depth look at ALIA4J.
Journal of Object Technology, 11(1):1-28, Apr. 2012.

2. DEMONSTRATION OVERVIEW

New programming languages are designed frequently, mostly
for two reasons. Firstly, designers seek to improve modularity
and other qualities of general-purpose languages. Secondly,
domain-specific languages (DSL) are designed to simplify
programs in certain business domains. In both cases, the
typical approach is to compile the programs into the interme-
diate code of an established language like Java. Even though
many new languages share several concepts, few approaches
exist to let them share their implementation.

The main means, by which programming languages pro-
vide modularity, respectively by which DSLs are embedded
into a host language, is polymorphism. That means, cer-
tain locations in the program code, so-called call sites, are
late-bound to functionality. Several implementations of a
functionality are statically known to be applicable at the
call site; which concrete functionality is executed at run-
time, is determined based on the dynamic program state
when the call is executed. It is possible to add new variants
to call sites, override existing functionality or extend the
functionality. Dispatching is the technology of choosing the
appropriate implementation variant at runtime, when a call
site is executed.

2.1 Addressed Problems

Typically, implementations of new languages build on the
back-ends of established languages, re-using the implemen-
tation of the concepts native to that intermediate language.
But not all concepts of the new languages map directly to
the established intermediate language (e.g., Java bytecode),
which was tailored to a different source language (e.g., Java).
This task is further complicated when one element in the
source program affects the behavior of multiple elements in
the intermediate representation (requiring so-called local-to-
global transformations).

Compiler frameworks assist in generating low-level code,
and even enable to re-use non-trivial code generation logic.
Open compilers for aspect-oriented languages, such as the
AspectBench Compiler [2] or JastADD [8], even support
modularizing local-to-global transformations. But these tech-
nologies require the new language to be a syntactic extension
of an existing one. Moreover, the knowledge about the source
language concepts is lost during the transformation and can-
not, e.g., drive specific virtual-machine-level optimizations.

This demonstration targets designers and implementers of
programming languages expressible as a dispatching problem,
which is frequently possible as we have shown for predicate
dispatching [9] (e.g., JPred [14]), pointcut-advice [13] (e.g.,
AspectJ [12]), inter-type member declarations (e.g., AspectJ
[12]), policy enforcement (e.g., ConSpec [1]), as well as a
domain-specific language extension enforcing the Decorator
pattern.

2.2 Technology of Our Solution

The ALIA4J! architecture realizes our approach to im-
plementing programming languages with advanced dispatch-
ing. At its core sits a meta-model of advanced dispatching
declarations, called LIAM, and a framework for execution
environments that handle these declarations, called FIAL.
LIAM hereby defines a language-independent meta-model
of atomic concepts relevant for dispatching. For example,
dispatch may be ruled by predicates which depend on values
in the dynamic context of the dispatch. When mapping the
concrete advanced-dispatching concepts of an actual pro-
gramming language to it, LIAM either has to be refined
with the language-specific semantics or suitable, existing
refinements have to be re-used. The dispatch declarations
defined in terms of this meta-model, are partially evaluated
by the FIAL framework and automatically re-written into
an execution model for the dispatch sites in the program.

Furthermore, we provide multiple execution environments
conforming to our execution model: a portable implementa-
tion based on interpretation (NOIRIn), a portable implemen-
tation performing bytecode optimization (SiRIn), a virtual-
machine-integrated implementation applying dynamic native-
code optimization (STEAMLOOMALIA) etc. In all cases the
execution semantics for atomic language concepts have been
implemented modularly in ALIA4J in terms of plain-old Java.
Moreover, bytecode-level and dynamic native-code-level op-
timizations are implemented modularly as well.

We have realized several existing and one new program-
ming language using the ALIA4J architecture, showing that
the dispatching mechanism is sufficient to realize a multi-
tude of different languages and paradigms. Overall, ALIA4J

!The Advanced-dispatching Language Implementation Ar-
chitecture for Java. See http://www.aliadj.org/.

Figure 1: A dispatch site’s execution model.

contains more than 75 re-usable language concepts, which
we have developed while realizing the above mentioned lan-
guages. Most of these concepts are used in more than one
language realization. The concept implementations can be
used out-of-the-box and the majority of them offers at least
bytecode-level optimizations.

2.3 Uniqueness in Design and Implementation

From the whole disptching declarations, at runtime our
framework generates one execution model for each dispatch
site in the program. Thereby it implicitly creates dispatching
declarations for the Java operation (such as a method call
or field access) underlying each dispatch site. Therefore,
this default operation and additional operations specified by
dispatching declarations are expressed uniformly, and it is
possible to reason about them jointly.

The execution model of a dispatch site is also called its
dispatch function and is represented as a graph that forms
a binary decision diagram (BDD) [6]. This graph has an
explicit root node and its inner nodes represent the decisions
to be made during dispatching. Decisions are defined in
terms of so-called atomic predicates. Each node representing
a decision has two directed, out-going edges, one for each
possible outcome of the atomic predicate. The leaf nodes of
this graph ultimately store descriptions of how to perform
actions as result of the dispatch.

When a dispatch site is encountered at runtime, its dis-
patch function is evaluated, beginning at the root node. For
a decision node, first the corresponding atomic predicate is
evaluated in the current execution context. Depending on
the outcome, one of the edges is traversed and the next node
is evaluated until eventually a leaf node is reached. For a
leaf node, the execution environment performs the actions
that it specifies. Figure 1 shows an example of a dispatch
function in which z; and x2 represent atomic predicates, and
y1 and y2 represent descriptions of actions.

The atomic predicates and the descriptions of actions are
elements from the LIAM meta-model. Thus, the intermedi-
ate representation and the execution model share the same
atomic concepts. In ALIA4J, there are three ways of modu-
larly implementing the semantics of such atomic language
concepts and optimizations thereof. As our architecture em-
ploys factories for creating instances of LIAM meta-entities,
the different implementations can be chosen flexibly and
transparantly to the client.

1. The most abstract way is implementing a plain Java
method that realizes the semantics of an atomic lan-
guage concept through interpretation. This allows easy
experimentation and is targeted at designers of the
semantics of language concepts.

2. Control over the generated code is gained by implement-
ing a Java method that compiles the concept to Java
bytecode, allowing context-dependent bytecode gener-
ation; this allows language implementers to improve
runtime performance in a portable way.

3. The most control is gained by implementing a method
that compiles the concept to machine code. While
losing platform-independence, this allows to achieve
optimal runtime performance.

Our framework furthermore implements an infrastructure
for dynamic deployment of dispatching declarations. Even
for this dynamic deployment operation, differently efficient
implementations exist. The platform-independent SiRIn
execution environment, for example, uses the class redefi-
nition feature from the Java Virtual Machine Tools Inter-
face (JVMTI); the STEAMLOOMALIA execution environment
provides a more efficient, though platform-dependent, im-
plementation [3]. The provided infrastructure also treats all
the delicate interactions between dynamic deployment and
Java’s dynamic class loading.

2.4 Interesting Details

The STEAMLOOMALIA JVM extension, which enables the
machine code optimization, is an extension of the Jikes
Research VM (RVM), a high-performance Java VM. It can
bypass bytecode generation for LIAM entities to directly
generate native machine code for them, using the two JIT
compilers of the Jikes RVM, the baseline compiler and the
optimizing compiler. The generation can access all VM
internals and rich information about the generation context
to produce the most specific machine code.

The implementation of a concept’s semantics and optimiza-
tion is modular. Implementations of different strategies can
even co-exist; the best strategy is picked at runtime. This
is very useful to implementers of optimizations who can use
the—Tless efficient but by definition correct—implementation
produced by the language designer as a test oracle. Over-
all, we provide re-usable implementations of more than 75
atomic language concepts, the majority of which offers at
least bytecode-level optimizations.

We use an extensive integration test suite to ensure the
high quality of ALIA4J. The integration tests use our in-
termediate representation as interface; thus, all FIAL-based
JVM extensions are subject to the same test suite, which en-
sures compatibility between different execution environments.
Almost all of the 4,083 tests are systematically generated to
cover all relevant variations of dispatch sites and LTAM enti-
ties. Our build process is fully automated with the Maven
build manager and our integration test suite is automatically
executed using the Jenkins continuous integration server.

Over the past years, four PhD projects and more than
20 master and bachelor student projects have contributed
to ALIA4J. The technologies applied in ALIA4J are pre-
sented in more than 10 peer-reviewed journal, conference,
and workshop papers.

2.5 Relevance to the Community

The AOSD conference has a tradition in gathering in-
novative research on programming languages for increased
modularity, including, both, new language concepts and new
optimization techniques. This demo targets designers and
implementers of programming languages which are express-

ible as a dispatching problem. In particular, the demo is
relevant for two groups:

1. Designers who want to focus on designing a source
level-language and who want to quickly prototype an
implementation of their language. While ALIA4J al-
lows language designers to implement the semantics of
their own language concepts purely with Java means,
possibly existing optimizations of pre-implemented lan-
guage concepts are automatically re-used, as well.

2. Optimizers who want to implement sophisticated, pos-
sibly dynamic, optimizations for established language
concepts. For this purpose, ALIA4J can expose the
internals of Java bytecode or Java Virtual Machines,
which are normally hidden from language implementers.
Since optimizations can be implemented modularly all
languages using an optimized concept benefit.

2.6 Integration with Language Workbenches

The ALIA4J approach is suitable for implementing lan-
guages which are either extensions of the general-purpose
language Java, or domain-specific languages (DSL) which in
some way control the execution of an underlying Java pro-
gram. To showcase the process of developing a language with
ALIA4J, we choose the second case in this demonstration.
We will show the development of a small DSL for defining
text-adventure games. A simple, generic game engine acts as
underlying base program. This engine reads user commands
from the console, tracks the position of items, persons, etc.
and allows simple interactions between them.

The DSL whose implementation will be demonstrated is for
specifying adventures that can be played. Besides, defining
the layout of the world, and the items and persons that
exist in it, the DSL also facilitates to define the influence
of items on the world. For instance, certain items can,
when used by a person, render that person invisible. Such
effects are implemented by changing the behavior of the
basic commands provided by the engine. In the example of
turning a person invisible, the behavior of the “look about”
command it changed to not print out the names of invisible
persons.

In this demo, we will explain this language in detail and
show the implementation of the grammar and parser in the
EMFText language workbench [11]. We will show how to
compile a DSL in our ALTIA4J approach by demonstrating the
development of a component that transforms the abstract
syntax tree (produced by the EMFText parser) into our
LIAM meta-model. The resulting dispatching declarations
influence the execution of the game engine.

2.7 Related Work

Several alternative execution environments exist that can
be suitable backends for implementing aspect-oriented lan-
guages. Examples are Nu [7], Reflex [16], deIMDSOC [15],
or JAMI [10]. From the existing alternatives, ALIA4J offers
the most fine-grained abstractions and, thus, facilitates the
highest degree of re-use in language implementations. Fur-
thermore, ALIA4J is the only approach that allows language
implementers to modularly implement different optimization
strategies for atomic language constructs. These different
strategies can be freely interchanged in the execution environ-
ment in a way that is transparent to the executed program.

A detailed comparison to related work can be found in our pa-
per: C. Bockisch, A. Sewe, H. Yin, M. Mezini, and M. Aksit.
An in-depth look at ALIA4J. Journal of Object Technology,
11(1):1-28, Apr. 2012.

2.8 Description of the Demo Content

The demo contains an explanation of the predicate dis-
patching and aspect-oriented programming paradigms, which
have shaped the ALIA4J approach, followed by an introduc-
tion to ALTA4J’s meta-model and its execution semantics.
By the example of a domain-specific language for defin-
ing text-based adventure games, it is demonstrated how an
EMF Text-based language implementation can use ALIA4J
as an execution back-end. The participants will see how
the example language is transformed into ALIA4J’s interme-
diate representation by re-using provided atomic language
concepts; and how to implement the execution semantics
of new, specific language concepts. The concepts will be
implemented in a platform-independent, high-level way and
supplanted by bytecode and machine code optimizations.

3. ACKNOWLEDGMENTS

We would like to thank everyone who has contributed
to ALIA4J in the past few years (in alphabetical order):
Matthew Arnold, Remko Bijker, Tom Dinkelaker, Sebastian
Eifert, Sarah Ereth, Pascal Flach, Michael Haupt, Michael
Hausl, Jannik Jochem, Sebastian Kanthak, Michael Krebs,
Andre Loker, Markus Maus, Suraj Mukhi, Heiko Paulheim,
Nico Rottstadt, Christian Riidiger, Jan Sinschek, Kai Stroh,
Zied Trabelsi, Nathan Wasser, and Martin Zandberg. This
work was supported by the Center for Advanced Security Re-
search Darmstadt (http://www.cased.de/www.cased.de).

4. REFERENCES

[1] I. Aktug and K. Naliuka. ConSpec: A formal language
for policy specification. In Proceedings of REM.
Elsevier Science Publishers B. V., 2008.

[2] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins,
J. Lhoték, O. Lhotédk, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. abc : An extensible
AspectJ compiler. In Transactions on Aspect-Oriented
Software Development I, number 3880 in Lecture Notes
in Computer Science, pages 293-334. Springer Verlag,
Berlin/Heidelberg, Germany, 2006.

[3] C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini.
Adapting virtual machine techniques for seamless
aspect support. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 2006.

[4] C. Bockisch and A. Sewe. The alia4j approach to
efficient language implementation. In Proceedings of the
8rd annual conference on Systems, programming, and
applications: software for humanity, SPLASH ’12.
ACM, 2012.

10

[5] C. Bockisch, A. Sewe, H. Yin, M. Mezini, and M. Aksit.
An in-depth look at ALIA4J. Journal of Object
Technology, 11(1):1-28, Apr. 2012.

[6] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers, C-35, 1986.

[7] R. Dyer and H. Rajan. Supporting dynamic
aspect-oriented features. ACM Transactions on
Software Engineering and Methodology (TOSEM),
20(2):7:1-7:34, 2010.

[8] T. Ekman and G. Hedin. The JastAdd system —
modular extensible compiler construction. Elsevier
Science of Computer Programming, 69(1-3):14-26,
2007.

[9] M. Ernst, C. Kaplan, and C. Chambers. Predicate

dispatching: A unified theory of dispatch. In

Proceedings of ECOOP. Springer Verlag, 1998.

W. Havinga, L. Bergmans, and M. Aksit. Prototyping

and composing aspect languages: using an aspect

interpreter framework. In Proceedings of the European

Conference on Object-Oriented Programming, pages

180-206, Berlin/Heidelberg, Germany, 2008. Springer

Verlag.

F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and

C. Wende. Derivation and refinement of textual syntax

for models. In Proceedings of the 5th European

Conference on Model Driven Architecture - Foundations

and Applications, ECMDA-FA ’09, Berlin, Heidelberg,

2009. Springer-Verlag.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of AspectJ.

In Proceedings of the European Conference on

Object-Oriented Programming, pages 327-353,

Berlin/Heidelberg, Germany, 2001. Springer Verlag.

H. Masuhara and G. Kiczales. Modeling crosscutting in

aspect-oriented mechanisms. In Proceedings of ECOOP.

Springer Verlag, 2003.

T. Millstein, C. Frost, J. Ryder, and A. Warth.

Expressive and modular predicate dispatch for Java.

ACM Transactions on Programming Languages and

Systems, 31(2), 2009.

H. Schippers, D. Janssens, M. Haupt, and

R. Hirschfeld. Delegation-based semantics for

modularizing crosscutting concerns. In Proceedings of

the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

pages 525-542, New York, NY, USA, 2008. ACM.

E. Tanter. An extensible kernel language for AOP. In

Proceedings of the Workshop on Open and Dynamic

Aspect Languages, 2006.

(12]

