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Abstract—Medical image processing systems are typically im-
plemented with a number of independent subsystems that have
time-triggered interfaces. A critical design parameter for these
systems is the latency between the instant that an image is
captured and the instant that the enhanced image is displayed to
the physician. Computation of the end-to-end latency distribution
with existing techniques is often impractical due to the extremely
large number of states that need to be considered.

In this paper we introduce the probabilistic time-triggered
system (PTTS) model. With this model the end-to-end latency
distribution can be computed efficiently. Furthermore, we present
a bound on the time-complexity of our analysis algorithm and a
technique that reduces the state-space at the cost of accuracy.

We demonstrate the applicability of the presented analysis
technique by showing that several system configurations of an
X-Ray application can be quickly explored. This exploration
reveals the parameters which have a significant effect on the
end-to-end latency distribution.

I. INTRODUCTION

With an interventional X-Ray system, a physician makes use
of images captured with an X-Ray imaging device to perform
delicate medical procedures with a catheter inside a patient.
The only visual feedback is provided by the images captured
by the X-Ray device. It is therefore desirable that the latency
between capturing and displaying an image is low enough,
i.e. < 200 ms, to provide sufficient eye-hand coordination.
Furthermore, the variation of the latency, which is called jitter,
must be sufficiently low such that the physician experiences a
constant delay, which improves the eye-hand coordination and
prevents fatigue.

Traditional hard real-time techniques can guarantee that such
latency constraints are never violated. However, the systems that
we consider do allow rare violations of the specified latency
requirement as long as the probability of such a violation
is low and known at design time. This probability cannot be
computed with hard real-time analysis techniques. Furthermore,
treating these systems as hard real-time systems would require
the use of special purpose hardware instead of off-the-shelf
cache coherent multiprocessor systems, which could increase
the design cost significantly. Therefore, it can be desirable to
use off-the-shelf hardware in combination with a probabilistic
model and corresponding analysis techniques.

Medical image processing systems such as interventional
X-Ray systems are nowadays often composed of a number of
independent off-the-shelf subsystems that have time-triggered
interfaces. Examples of these subsystems are the image sensor,

the image enhancement general purpose computer, a graphical
processor unit (GPU) for image composition, and the video
wall for the combination of several displays. The latency
introduced by the individual subsystems can vary significantly
and is measured. Also the end-to-end latency distribution of
the chain of subsystems is measured. Such a measurement
based approach cannot guarantee that rare-events are detected
and that thus a complete latency distribution is observed.

Besides measuring, the end-to-end latency distribution of
a chain of subsystems can be computed using the timed
probabilistic labeled transition system (TPLTS) model [6].
However, the execution time of an analysis algorithm that
computes a complete end-to-end latency distribution can
become prohibitively high as a result of the large number
of states that need to be considered. Therefore, a simulation
based approach has been proposed [9] which has, equivalent
to the measurement based approach, as disadvantage that rare-
events might go undetected and that an incomplete latency
distribution is observed.

In this paper we introduce the probabilistic time-triggered
system (PTTS) model together with an analysis algorithm for
the efficient derivation of the complete end-to-end latency
distribution of time-triggered systems that are composed of
time-triggered subsystems. The PTTS model is suitable for
systems that are composed of a chain of time-triggered
subsystems that are connected by buffers with one location.
These buffers behave like registers. Writes in these buffers are
destructive and reads non-destructive. Furthermore, we will
derive an expression for the time-complexity of our analysis
algorithm. This expression indicates in which case the execution
time of our analysis algorithm will become unacceptably high.
For these cases we propose a technique that reduces the state-
space and the execution time at the cost of accuracy by adapting
parameters in the PTTS model.

The organization of this paper is as follows. In Section II
we discuss alternative analysis approaches for time-triggered
systems. In Section III we define the PTTS model. In the
subsequent section, we present a didactic example that provides
the intuition behind our technique. A detailed description of our
analysis algorithm is given in Section V. A technique to reduce
the execution time of our analysis algorithm is discussed in
Section VI. We demonstrate the applicability of the PTTS model
for an interventional X-Ray system in Section VII. Finally we
state the conclusion in Section VIII.
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II. RELATED WORK

Time-triggered systems, in which tasks are scheduled strictly
periodically, have been studied extensively by Kopetz [3],
[4]. In his approach the schedule of the tasks is computed
at design-time using the worst case execution times (WCETs) of
tasks. The computed schedule should respect the precedence
constraints between the tasks, as well as the throughput and
end-to-end latency constraint of the task graph. Satisfaction of
the precedence constraints guarantees functional deterministic
behavior of the task graph, i.e. the results computed by the
tasks are independent of the execution time of the tasks as
long as the execution times are not larger than the WCETs
assumed at design time. The most important difference with
the work presented in this paper is that we do not make use
of WCETs but make use of execution-time profiles (ETPs) [1]
to characterize the execution time of the tasks. The ETPs are
probabilistic characterizations of the execution times by means
of probability mass functions (PMFs). As a result we do not
want to compute a periodic schedule at design-time, because
it will be overly pessimistic. Another consequence is that the
execution of the systems that we consider in this paper is
not functionally deterministic, because we allow that data is
overwritten before it is read, depending on the execution times.

A deterministic time triggered model is proposed by Hen-
zinger [2], which relies on a global clock and WCETs in order
to compute permissible schedules. Our model does not use
WCETs and we derive the distribution of the end-to-end latency
and the probability of a data-race instead of giving a guarantee
that the system is functionally deterministic and adheres to
hard real-time constraints.

The TPLTS [6] model is suitable for the analysis of probabilis-
tic time-triggered systems. This model can be automatically
derived from a description of a system in the POOSL lan-
guage [10]. A TPLTS model can be converted into a Markov
chain for which exact analysis techniques exist [5], [7]. It
should be noted that the obtained results are in general only
valid for infinitely long intervals of time. A well known
problem is that the number of states in these Markov chains is
often so large that exact analysis is impractical. Therefore,
approximation techniques based on simulation have been
proposed that do not consider all states [9]. In these proposals
the TPLTS model is simulated until estimators indicate that it
is likely that a sufficiently large part of the state space has
been considered and sufficiently accurate results are obtained.
However, usually no indication is provided whether the obtained
results are an over-approximation or an under-approximation of
the throughput and the latency nor, is there a bound provided
on the accuracy of the obtained analysis results. An important
difference is that our PTTS model is only suitable for the analysis
of a subset of the systems that can be analyzed with the TPLTS
model, i.e. systems that can be modeled as a chain of time-
triggered subsystems. This restriction enables the calculation of
the arrival times of the data for a subsystem without considering
the interaction with all the other subsystems. As a result, the
state-space is reduced and the time-complexity of the analysis
algorithm is decreased. Furthermore, we show that for the

(d, o, f)

Fig. 1: A PTTS component

considered class of time-triggered systems the probability of a
data-race can be defined for a bounded interval of time.

Another model is scenario aware dataflow (SADF) [8] which
extends synchronous dataflow (SDF) with stochastic scenarios
in order to model the dynamic behavior and variable execution
times of applications. However, SADF lacks the expressiveness
to model the time-triggered interfaces. The production and
consumption rates of actors in the SADF model should be
consistent. In our model the production rates of different
subsystems may differ and our analysis algorithm is able to
quantify the amount of data duplication or destruction.

It should be noted that the mentioned models (TPLTS, SADF
and SDF use graphs to model the topology of the application.
The PTTS model is restricted to a chain topology where the
application consists of a chain of time-triggered subsystems.
Although, for the purposes of a latency analysis, it is possible
to extract such a chain from a graph topology, it falls outside
of the scope of this paper and is therefore not elaborated.

III. PTTS MODEL DEFINITION

In this section we define the PTTS model. The PTTS model
consists of components with one input port and one output
port. Such a component is depicted in Figure 1.

The input port of a component is a buffer with one location,
which is read out time-triggered. More precisely the instant at
which the component reads a container with data is determined
by a timer and not by the arrival time of data containers at
the input port. The buffer at the input port has non-destructive
read and destructive write semantics. Therefore, if no new
container has arrived on the input port at the sampling moment,
the previously arrived container is read again from the input
port. If multiple containers arrive at the input port between two
sampling instants, then the container is processed that arrived
last.

Each component is characterized by three parameters d, o,
and f. Here d defines the period at which the time-triggered
input port triggers, o is the initial offset when the input port is
triggered for the first time, and f is the ETP. The ETP is a PMF
that characterizes the latency of a component, i.e. the interval
between the triggering of the input port of the component and
that data is produced at its output port. The PMF is defined
at discrete points. The use of a PMF instead of a probability
density function (PDF) simplifies the explanation of our end-
to-end latency distribution calculation algorithm, whereas the
algorithm would remain conceptually similar if PDFs would
be used instead. Multiple containers can be under processing
at the same point in time, in other words, the model allows
auto-concurrency. That a later triggering of the component can
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Fig. 2: A chain of PTTS components

result in an earlier production than an earlier triggering, i.e.
out of order production, is not problematic because we only
derive the temporal behavior and not the functional behavior
with the PTTS model. The ETP can be obtained by measurement
of the latency of a component in isolation.

Components in the PTTS model can correspond, for example,
with a CCD in a video system that is triggered at 24 frames
per second (FPS), or a GPU that transfers a new image from
video memory to a monitor at 60 FPS. It is also possible that a
component corresponds to a task graph executing on multiple
processors, but the PTTS model abstracts from this.

PTTS components are connected in a chain. The output of
all but the last component is connected to its successor, e.g.
C0 is connected to C1. A chain of N components is denoted
as 〈C0, C1, . . . , CN−1〉. An PTTS chain is described as a list
of tuples, where each tuple (di, oi, fi) specifies the parameters
of the component Ci. An example of a PTTS chain is shown
in Figure 2.

The analysis algorithm presented in Section V derives
the probability distribution that characterizes the end-to-end
latency of a chain of components. With the same algorithm
we determine the probability that a container is overwritten
before it is read, i.e. the probability that data loss occurs. The
end-to-end latency is defined as the difference between the
production moment of a container with data by component
CN−1 and the arrival moment of the corresponding container
at the input of component C0. This corresponding container
resulted in the production of the container by CN−1.

IV. BASIC IDEA

In this section we present the basic idea behind our end-to-
end latency distribution analysis algorithm using an example.
This analysis algorithm will be presented in detail in Section V.

As an example we use the PTTS chain shown in Figure 2.
The model in Figure 2 can be described with the chain
〈(200 ms, 0 ms, f0), (58 ms, 30 ms, f1), (56 ms, 8 ms, f2)〉. In
this example the ETPs of the latency parameters f0, f1, and
f2, in which t ∈ N0, are given in Eq. (1), Eq. (2) and Eq. (3)
respectively. These functions define a discrete homogeneous
PMF over the given intervals and describe the ETP.

f0(t) =

{
1

100 , t ∈ [50, 149]

0, otherwise
(1)

f1(t) =

{
1
30 , t ∈ [25, 54]

0, otherwise
(2)

f2(t) =

{
1, t = 5

0, otherwise
(3)

A system described by the PTTS model has a hyper-period
which is defined as the time after which the same pattern
of triggerings will occur. Each triggering of a component in
a hyper-period has a unique set of offsets to the triggerings
of other components. For example, the offset between the
first triggering of C0 and the subsequent triggering of C1 is
30 ms, but the offset between the second triggering of C0

at t = 200 ms and the subsequent triggering of C1 at t =
204 ms is 4 ms. The same triggering pattern is repeated in every
subsequent hyper-period. Given the periods of the components
we can derive the hyper-period of the system by calculating
the least common multiple (LCM) of all the periods of the
components with Eq. (4).

h = lcm
0≤i<N

(di) (4)

The hyper-period for the PTTSs model in Figure 2 is
LCM(200 ms, 58 ms, 56 ms) = 40 600 ms. As a consequence,
if there is a triggering of a component at time t = 0 ms then
there are also triggerings with the same end-to-end latency
distribution of the same component at time t = o0+k·40 600 ms
with k ∈ N0 and where o0 is the initial offset of component C0.
As a consequence it is sufficient to consider the interval of a
single hyper-period during analysis. A part of the hyper-period
of this example is depicted in Figure 3.

One way to derive the end-to-end latency is to follow a
container from the input of the PTTS model to the output of
the PTTS model. We follow a container in the state space by
stepwise expanding the state where the container is produced
and follow it as it passes through the PTTS chain. For example,
assume that the input port of C0 is triggered at 0 ms. From the
ETP f0 we conclude that the latency introduced by component
C0 is between 50 ms and 149 ms. Suppose now that for this
particular triggering the latency introduced by C0 is 120 ms,
then a container is produced by component C0 at t = 120 ms.
This container will stay in the input buffer of component C1

till the input port of this component is triggered. Component
C1 has a period of 58 ms and the first triggering of its
input port happens at t = 30 ms because its offset is 30 ms.
Therefore, after C0 has produced a container at 120 ms, the
third triggering of C1 will consume the container because
min{x ∈ N0|30 + x · 58 ≥ 120ms} = 2. In a similar manner
we can find when C2 consumes the containers produced by
C1 and at which moments in time C2 produces its output
containers. This way we can simulate what the end-to-end
latency is for the triggering of C0 that originates at 0 ms and
for one particular latency per component.
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In order to obtain an impression of the end-to-end latency
distribution by means of simulation, we would have to simulate
all possible triggerings of all components for many possible
latencies of the individual components. A problematic aspect of
such an approach is that such a simulation takes long, because
many cases needs to be considered. Furthermore, no bounds
are defined on how accurate the end-to-end latency distribution
obtained by simulation approximates the latency distribution.
Therefore, it can be preferable to derive the end-to-end latency
distribution by means of an analytical approach instead of
simulation. Such an analytical approach can exploit the fact
that not all possible latencies of the components need to be
considered but that an interval of possible latencies results in
the same end-to-end latency.

The sampling moments of each component Ci is defined
by its period and offset, di and oi respectively. Given these
sampling moments and the ETP of a component we can derive
the intervals in which containers are produced by a component.
These intervals are then further divided in subintervals based
on the sampling moments of a consuming component. For
each of these subintervals we can derive the probability that a
container is produced. From this we can derive for combinations
of triggering moments of two subsequent components in the
PTTS model the probability that a specific triggering of the
component that produces the container is sampled by a specific
triggering of the component that consumes the container.

In Figure 3 the triggerings of the components are indicated
by arrows (→). The same figure shows with rectangles in which
interval of time a container is produced by a specific triggering.
From these rectangles we can derive which triggering of a
subsequent component in the chain is potentially consuming
the container. With each fraction of a rectangle, a probability
is associated that defines the probability that a container is
produced in the corresponding interval of time. Given these
probabilities, we can derive the probability that a container
produced by a triggering of a component, is consumed by a
specific triggering of a consecutive component.

More precisely, the probabilities are determined for our PTTS
example as follows. When C0 activates at 0 ms we know from
its ETP that the latency of this component lies between 50 ms
and 149 ms. Given this information we can determine which
triggerings of C1 might sample the output of the first triggering
of C0. From the trace in Figure 3 we can conclude that the
triggerings of C1 at 88 ms, 146 ms, and 204 ms might sample
the output of the first triggering of C0. Furthermore, we can
also calculate for each of these triggerings the probability
that a particular triggering of C1 will sample the output. This
can be achieved by computing the sum of probabilities of C0

for the interval that a specific triggering a C1 consumes a
container and that is produced by a specific triggering of C0.
For example: the triggering of C1 at 146 ms samples the output
that is produced by C0, triggered at 0 ms and which produces
it output between 89 ms and 146 ms. The probability that this
triggering of C1 consumes the container that is produced by
C0 is therefore:

∑146
t=89 f0(t) = 58

100 .

Ti
m

e

C0 C1 C2

40.400

40.200

450

0

50

100
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200
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300
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D
0
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1

F
0

Fig. 3: Part of the trace in one hyper-period of the PTTS in
fig. 2

When we have calculated the probabilities for this component
we have to do the same for the subsequent component in the
chain. In this example we therefore perform three probability
calculations by means of summation, one for each of the
triggerings at 88 ms, 146 ms and 204 ms. This analysis is
repeated for each component in the chain till we reach the
end of the chain. Furthermore, these steps are repeated for all
triggering of C0 in the hyper-period.

The information in the trace of Figure 3 together with
information about the probabilities is stored in a so-called
latency tree which is shown in Figure 4. Each node in the
tree represents a triggering instant in one hyper-period of a
component in the PTTS. The numbers in the node represent the
index of the component in the chain and the triggering instant
respectively. The value on the edges represent the probability
that the two triggerings of different components are related, i.e.
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1.0

Fig. 4: Latency tree that results from the first two triggerings
of C0
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3, 293
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3, 349
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3, 405

0.58

3, 461

0.29

Fig. 5: Latency tree of Figure 4 after being flattened

the triggering of a component that consumes the container that
is produced as a result of the triggering of the other components.
Lastly, the bottom leaves are a dummy sink component that
represent the end of processing of the last component. For
example, the latency trees in Figure 4 are the results of the
latency analysis of triggerings of C0 at 0 ms and 200 ms.

The end-to-end latency distribution is derived from the
latency tree. The end-to-end latency distribution is found by
following all paths from the root till the leaves of the tree and
multiplying the probabilities along those path. The probabilities
obtained after multiplication are put into a flattened version of
the latency tree. Flattening will be elaborated in Section V. For
example, the flattened latency trees for the first two triggerings
of C0 are shown in Figure 5. Optionally, we could aggregate
all paths in the tree in order to obtain the average end-to-end
latency distribution of the complete system. Figure 6 shows the
end-to-end latency distribution for the PTTS model in Figure 2.

The end-to-end latency distribution of the example, see
Figure 6, has a Gaussian shape. That the end-to-end latency
distribution can also have another shape is demonstrated by
replacing the distribution ETP f0 by the distribution ETP f

′

0

which is defined in Eq. (5). The resulting end-to-end latency
distribution is shown in Figure 7.

f
′

0(t) =


1
10 , t ∈ [50, 58]
1
10 , t = 149

0, otherwise
(5)
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Fig. 6: End-to-end latency distribution of the PTTS model in
Figure 2 using f0
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Fig. 7: End-to-end latency distribution of the PTTS model in
Figure 2 using f

′

0

A. Container Loss

The latency trees can also be used to derive the probability
that a container is overwritten before it is read. This corresponds
in an X-Ray system with an image that is captured by the
X-Ray image sensor but which is not displayed. Because this
can result in hiccups in the video sequence, which is undesirable
and may only occur rarely.

That a container is overwritten before it is read can also
occur in our running example. When we examine the latency
trees for the triggerings at t = 0 and t = 200, we notice
that they share two nodes with each other. The shared nodes
represent the triggering of C2 at t = 288 and the triggering
of the last output node at t = 293. This means that when
the triggering at t = 0 is slow and generates the path in the
latency tree 〈0, 204, 288, 293〉 and the subsequent triggering at
t = 200 is fast and generates the path 〈200, 262, 288, 293〉 that
then the container that is a result of the triggering at t = 0 is
overwritten before it is read by C2, i.e. the data in the container
is lost. This behavior can also be concluded from the trace in
Figure 3 where the data loss might occur at the dashed gray
line at t = 288.

For the latency tree we can also calculate the probability
that a container is overwritten before it is read. This probability
in our running example is equal to the probability that the
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in the previous paragraph mentioned slow and fast trace
happen after each other divided by the number of triggerings
of C0 in the hyper-period. This probability is equal to
(0.03·0.87)·(0.13·0.07)

203 = 1.17 · 10−6. Because in this PTTS
example the triggerings at t = 0 and t = 200 are the
only triggerings that result in a potentially container loss, we
conclude that 1.17 · 10−6 is the probability that the data in a
container is lost during a hyper-period of the system.

V. THE ANALYSIS ALGORITHM

In this section we present the analysis algorithm for the
derivation of the end-to-end latency distribution based on the
principles discussed in the previous section. First we will define
an algorithm that constructs a latency tree, and then flattens this
latency tree to retrieve the distribution of the latency between
the first and the last component in the chain.

The latency tree is defined as follows. The tuple (i, t, S)
denotes a node in the latency tree, where Ci represents the
ith component in the chain, t represents the instant at which
component i is triggered and S the set of tuples that represents
the children of this node. The tuple s ∈ S that represents
a child of a latency tree node is defined by the tuple (p, y),
where p is the probability that component Ci+1 consumes the
output of Ci, and y is a recursive tuple (i + 1, t′, S′) that
represents the triggering of the subsequent component Ci+1

that consumes a container from Ci at t′.
Before we present the derivation of the latency tree with

recursive functions, we first define some helper functions.
Let the function A(i) define the set of points in time that

the ith component in the PTTS model is triggered:

A(i) = {k | n ∈ N0 ∧k = n · di + oi} (6)

Let u(i, ta, tb) define the function that calculates the prob-
ability that the triggering at ta of component Ci−1 produces
the token that is consumed by Ci, triggered at tb:

u(i, ta, tb) =

tb∑
t=tb−di+1

fi−1(t− ta) (7)

It is sufficient to sum the discrete probabilities from tb−di+1
because at tb − di the previous triggering of Ci takes place
which consumes containers from Ci−1.

The function Q defined in Eq. (8) computes a set of tuples,
where each tuple is defined as (p, y) with y being the recursive
tuple (i+ 1, t, S) . Each tuple corresponds to a triggering of
component Ci+1 for which there is a probability larger than 0
that it samples a container produced by component Ci. This
function accepts two parameters, i and t where i is the index
of the component from which we want to derive the latency
tree. The other parameter t represents the instant at which Ci

is triggered. The function Q uses the function Z, which is
defined in Eq. (9), that will recursively generate the whole
latency tree.

Q(i, t) = {(u(i+ 1, t, a), (i+ 1, a, Z(i+ 1, a))

| a ∈ A(i+ 1) ∧ u(i+ 1, t, a) > 0} (8)

The function Z is defined as follows:

Z(i, t) =

{
W (i, t) if i+ 1 = N

Q(i, t) if i+ 1 < N
(9)

The function Z calls the function Q, that derives the time-
triggered parts of the end-to-end latency distribution till the
end of the chain is reached and then the function W is called
to add the part of the latency distribution that is not consumed
by a consecutive timed-triggered component. The function W
defined in Eq. (10) returns a set of tuples (p, (i, t, S)) for the
last component in the chain of the PTTS model and adds the
latency introduced by this component. It accepts the parameters
i and s that represent the index of the component and the
instant the component is triggered. The function W is defined
as follows:

W (i, t) = {(fi(n), (i, t+n,∅)) | n ∈ N0 ∧ fi(n) > 0} (10)

Given the hyper-period h, the latency tree (or more precisely
the forest of latency trees) is calculated with:

F = {(0, a, Z(0, a)) | a ∈ A(0) ∧ a < h} (11)

The end-to-end latency distribution can be derived from a
latency tree by flattening. The flattening step removes all the
inner nodes in a latency tree and directly connects the root of
a tree with its leaves. The probabilities on the path from root
to the leaves are multiplied in order to derive the end-to-end
probability. We do not directly derive the flattened tree because
we need the intermediate nodes to detect data loss when data
is overwritten before it is consumed.

In some cases there will be several leafs in a latency tree
that represent the same triggering of the last component. This
might happen because two components might have an ETP that
is larger than the interval between triggerings of the subsequent
component. In our example we see that there can be duplicate
leafs in Figure 4 when the tree is flattened. The leafs with
t = 181 and t = 237 will have duplicates when the tree is
flattened and should be aggregated. For each tree that has
multiple leafs that correspond with the same triggering we
aggregate the leafs and compute its probability by summing the
probabilities of the original leafs that share the same triggering
instant.

A. Time Complexity

In this subsection we derive an expression for the time-
complexity of our analysis algorithm. This expression will be
used in Section VI to estimate the effect of a modification of
the periods on the execution time of our analysis algorithm.

The time-complexity of our analysis algorithm is based on
the number of latency trees that have to be derived and the time
it takes to derive a latency tree. The number of latency trees
that have to be derived is equal to the hyper-period divided by
the period of the first component in the PTTS model. The time
it takes to derive a latency tree is proportional to the depth,
i.e. the number of components, and the branching factor in the
latency tree, i.e. how many siblings each node has in the tree.
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The branching factor depends on the width of the ETPs, i.e. the
interval between the best-case and worst-case latency, and the
period of the subsequent component that reads the container
that is produced after those ETPs. For example, the width of the
ETP that is associated with component C0, from the example in
Section IV, is 149 ms−50 ms+1 ms = 100 ms. Component C1

consumes containers from C0 and has a period of 58 ms. This
implies that each node from C0 has between b 10058 c = 2 and
d 10058 e = 3 siblings. In Figure 4 we can see that the first two
triggerings of C0 each have three siblings, and the branching
factor for those two triggerings is therefore three. We therefore
conclude that the time-complexity of our analysis algorithm
can be expressed in the terms of the maximum number of
required operations with Eq. (14).

τ̌(i) = min{t|fi(t) > 0} (12)

τ̂(i) = max{t|fi(t) > 0} (13)

1

d0
· lcm
0≤i<N

(di) ·
N−2∏
i=0

⌈
τ̂(i)− τ̌(i) + 1

di+1

⌉
(14)

Components

Configuration C0 C1 C2

a (66.0, 0, f0) (16.0, 0, f1) (16.0, 0, f2 )
b (66.6, 0, f0) (16.6, 0, f1) (16.7, 0, f2 )
c (66.66, 0, f0) (16.66, 0, f1) (16.67, 0, f2 )
d (66.666, 0, f0) (16.666, 0, f1) (16.667, 0, f2 )

TABLE I: Configurations used to demonstrate the effects of a
reduction of the hyper-period

Configuration Latency trees Analysis time (ms)

a 136 36
b 13861 3041
c 1388611 297620
d 138 · 106 33795549

TABLE II: Execution time of the analysis algorithm for the
configurations in Table I

VI. ANALYSIS TIME REDUCTION

In this section we describe a technique to reduce the
execution time of the analysis algorithm at the cost of accuracy.
The technique is intended for the cases that the hyper-period
is too long, which result in impractically long execution times.

A. Hyper-period Reduction

From Eq. (14) it follows that we can reduce the execution
time of our analysis algorithm by reducing the hyper-period.
In this section we examine how modifying the periods of the
components affects the execution time and accuracy of our
analysis algorithm.
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Fig. 8: End-to-end latency distribution for the configurations
in Table I

The hyper-period of a PTTS can be reduced by adapting the
periods of the components. The effect of such a modification on
the accuracy of the analysis result is hard to predict in general.
However for a number of realistic systems we have observed
that the shape of the latency distribution remains intact. For
example: consider a small system with three components where
the parameters for the components are defined as in Table I.
The configurations a, b, c and d have an increasing hyper-
period, and as a result, an increasing number of latency trees
has to be derived. We have run our analysis algorithm on
these four configurations. In Table II the number of derived
latency trees and the execution time of the analysis algorithm
can be found. From this table we conclude that the execution
time of configuration d is impractically long. Furthermore, in
Figure 8 we have depicted the end-to-end latency distribution
for configuration a, b and c. The shape of the end-to-end latency
distribution is similar, but due to the decreased resolution of the
PMF the amplitude of the configuration with the reduced hyper-
period is higher. We also notice that, due to the dramatically
decreasing hyper-period, the analysis time reduces drastically.
In Figure 9 the cumulative end-to-end latency distribution is
shown. From this figure it can be concluded that the cumulative
latency distribution is almost the same for configuration a, b
and c.

VII. CASE STUDY

In this section we study the influence of parameter changes
on the latency distribution of an image processing chain using
the analysis techniques presented in the previous sections.
Furthermore, we compare the results obtained by simulation
with the exact results obtained by analysis.

The image processing chain we consider in this section
consists of an X-Ray sensor (CCD), a network, an image
processing subsystem, a GPU and a media wall, which also
incorporates another GPU. The chain contains three time-
triggered components namely the X-Ray sensor and the two
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Fig. 9: End-to-end cumulative latency distribution for the
configurations in Table I
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Fig. 10: Definition of the ETP for f0 that is used in the case
study

GPUs. The PTTS model is defined by the chain 〈 C0, C1, C2 〉.
To study the effect of the parameters on the end-to-end

latency distribution we consider the three system configurations
of Table III. The applied ETPs can be found in Figure 10,
Eq. (15) and Eq. (16).

f1(t) =


9
10 , t = 11
1
10 , t = 12

0, t /∈ [11, 12]

(15)

f2(t) =

{
1, t = 8

0, t 6= 8
(16)

Components

Configuration C0 C1 C2

d (66.6, 0, f0) (16.6, 0, f1) (16.7, 0, f2 )
e (66.6, 0, f0) (16.6, 0, f1) (16.6, 0, f2 )
f (66.4, 0, f0) (16.6, 0, f1) (16.7, 0, f2 )

TABLE III: Configurations for the PTTS model defined in
Figure 2

Analysis tool Time (ms)

Analytical 30
Simulation (100 iterations) 98
Simulation (1000 iterations) 749
Simulation (10000 iterations) 11372

TABLE IV: Analysis time
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Fig. 11: Comparison of the end-to-end latency distributions for
configuration e

We compare the latency distribution for configuration e,
which is obtained by simulation, with the exact results. We
have measured the end-to-end latency distribution by simulation
for 100, 1000 and 10000 iterations. A comparison with the
exact distribution is shown in Figure 11. It can be observed that
the simulation results approximate the exact results accurately
when a large number of iterations is simulated. The number of
iterations that results in a sufficiently accurate approximation
is however not known in advance. In Table IV we measured
the time that our analysis algorithm took and the time that the
simulations took. The table shows that the analytical approach
is much faster than the simulation, even when the simulation
only does 100 iterations. A comparison of the end-to-end
latency distributions of the configurations d, e and f is shown
in Figure 12. Similar end-to-end latency distributions have been
obtained with the POOSL simulator SHEsim. A comparison
with the execution time of an exact analysis algorithm for a
POOSL model was not possible because an implementation is
not yet available [6].

Also the offsets can have a significant affect on the end-to-
end latency distribution. We demonstrate this for configuration e
from Table III in which we select different offsets for C2. The
obtained analytical results are shown in Figure 13. From this
figure we can conclude that the offsets have a significant influ-
ence on the end-to-end latency. Another important observation
that we can make from this figure is that the end-to-end latency
distribution does not increase monotonically with regard to
the offset. For example, the lowest latency as well as the
highest latency can occur when the offset is 80. However,
when we examine the cumulative probability at 160 ms we
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Fig. 12: End-to-end latency distribution for different configura-
tions of the X-Ray application in the case study
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Fig. 13: Cumulative end-to-end latency distribution for config-
uration e with varied offset for C1

see that the cumulative probability of the distribution with
offset 80 is higher than for the other two offsets. This indicates
that although the end-to-end latency can be higher when the
offset is 80, also the probability that it is below 160 ms is also
the highest for the three considered offsets. Due to the non-
monotonic behavior it can be required that for many offsets
the latency distribution needs to be computed before an offset
is found that results in a latency distribution which adheres to
the temporal requirements of the system.

VIII. CONCLUSION

In this paper we introduced the PTTS model for analyzing the
latency distribution of real-time systems that consist of a chain
of subsystems with time-triggered interfaces and a probabilistic
delay. This type of systems is found in, for example, the
medical image processing domain where the end-to-end latency
distribution is an important design parameter. Furthermore, we
presented an analysis algorithm for the computation of the end-
to-end latency distribution. The algorithm allows the derivation

of a complete end-to-end latency distribution, i.e. without
overestimation or underestimation of the distribution. This
guarantees that rare events such as data-races will be detected.
Such a data-race can result in an image being overwritten in
a buffer before it is displayed. We have shown that for the
considered type of time-triggered systems we can compute the
probability of a data-race in a bounded interval of time.

A useful feature of the PTTS model is that the size of the
state-space can be computed, which enables the derivation of
an expression for the time-complexity of our analysis algorithm.
This expression indicates in which cases the execution time
of our analysis algorithm will become unacceptably high. For
these cases we propose a technique that reduces the state-space
and the execution time of our analysis algorithm at the cost of
accuracy by adapting parameters in the PTTS model.

We have compared the accuracy and execution time of our
analysis approach for an X-Ray system with results obtained
by simulation. The results indicate that the execution time of
our analysis algorithm is lower while the computed latency
distribution is exact. Furthermore, we studied the effects of
parameter changes on the end-to-end latency distribution. The
results show that parameter changes can have non-monotonic
effects on the latency distribution and that these effects can
be substantial. The presented analysis algorithm can be an
attractive option for a fast exploration of different system
configurations. With this exploration, system parameters can
be found for which the latency distribution adheres to the
temporal requirements.
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