
An Improvement of Tree-Rule Firewall for a Large 
Network: Supporting Large Rule Size and Low Delay 

Thawatchai Chomsiri1, Xiangjian He2,*, Priyadarsi Nanda2, Zhiyuan Tan3 

1
Research Center of Information Technology for the Future (ITF), 

Department of Information Technology, Faculty of Informatics 
Mahasarakham University, Thailand 

2
Center for Innovation in IT Services and Applications (iNEXT), 

School of Computing and Communications, Faculty of Engineering and Information Technology 
University of Technology Sydney, Australia 

3 Services, Cyber security and Safety Research Group, Faculty of Electrical Engineering, Mathematics and Computer Science, 
University of Twente, Netherlands 

 

*Contact: Xiangjian.He@uts.edu.au 
 
 
 

Abstract— Firewalls are important network devices which 
provide first hand defense against network threat. This level of 
defense is depended on firewall rules. Traditional firewalls, i.e., 
Cisco ACL, IPTABLES, Check Point and Juniper NetScreen 
firewall use listed rule to regulate packet flows. However, the 
listed rules may lead to rule conflictions which make the firewall 
to be less secure or even slowdown in performance. Based on our 
previous research works, we proposed the Tree-Rule firewall 
which does not encounter such rule conflicts within its rule set 
and operates faster than the traditional firewalls. However, in big 
or complex networks, the Tree-Rule firewall still may face two 
main problems. 1. Firewall administrators may face difficulty to 
write big and complex rule. 2. Difficulty to select appropriate 
attribute column for the Root node. In this paper, we propose an 
improved model for the Tree-Rule firewall by extending our 
previous models. We offer the use of combination between IN 
and OUT interfaces of the firewall to separate a big rule to many 
small independent rules. Each separated rule then can be 
managed in an individual screen. Sequence of verifying 
attributes, i.e., Source IP, Destination IP and Destination Port 
numbers, can be ordered independently in each separated rule. 
We implement the two main schemes on Linux Cent OS 6.3. We 
found that the improved Tree-Rule firewall can be managed 
easily with low processing delay.      

Keywords— Firewall, Tree-Rule firewall, Network Security, 
Large Rule Size, Low Delay 

I.  INTRODUCTION 

The firewalls were invented since 1990s [1] and have been 
developed to operate more secure and faster. From the first era 
of the firewalls until today, they still regulate packet based on 

a listed rule. The listed rule is the set of rule sequence which 
consists of a condition and action. If incoming packets' 
information, i.e., Source IP, Destination IP and Destination 
Port, are matched with the condition, the packets will be  
accepted else, denied followed by an action specified in the 
rule. In the listed rule set of traditional firewall, there may be 
shadowed rules [2] or redundant rules which can make 
firewall operate slower because the firewall will waste its 
operational time to verify against these rules. Moreover, 
shadowed rules can cause security problems because 
protection rules can be shadowed by other rules above. These 
problems of traditional firewalls have been identified and 
published in our previous research [3]. In [4], we proposed the 
new type of firewall called the 'Tree-Rule firewall', and proved 
that it can offer less rule conflict and can operate faster than 
the traditional firewall. However, the first version of Tree-
Rule firewall [4] works as a packet filtering firewall not a 
stateful firewall. Consequently, we then proposed a stateful 
mechanism [5] providing more security for the networks. We 
also proposed the "Hybrid Tree-rule firewall" [6] which could 
reduce processing time in verifying packets. The Hybrid Tree-
rule firewall applies the concepts of Tree-rule firewall in 
designing conflict-free rules and the concepts of traditional 
firewall in decision making. However, for a large network 
which consists of many servers, opened ports, user groups, 
and network branches, the Tree-Rule firewalls shown in 
[4][5][6] requires a big set of rules too. Therefore, in this 
paper, we will propose solutions for these problems. We firstly 
introduce background, previous works, and problems in 
Section II. We then explain the details of our approach in 
Section III. In Section IV, we provide implementation of our 
proposed scheme and conduct several experiments. Finally, 



we conclude this paper in Section V along with future 
directions for our research.     

II. BACKGROUND, PREVIOUS WORKS AND PROBLEMS 

A. Background and Previous Works  

Many researchers have studied conflicts within rule list of 
the traditional firewall (listed-rule firewall). Occurrence of 
shadowed rules and redundant rules have been presented in 
[2][7]. Many research findings presented in [2][7][8] suggest 
schemes to remove these bad rules. The Binary Decision 
Diagrams (BDDs) [9], Constraint Logic Programming (CLP) 
[10], and Fireman Toolkit [11] analyse and get rid of rule 
conflicts within rule set in listed-rule firewall. The 
methodology in [12] proposed to use 'jump' command in 
IPTABLES to decrease rule conflicts and increase IPTABLES 
firewall speed. These studies are evidences indicating that the 
traditional firewalls have many problems because they  
depend on the listed rule. We have studied and found a real 
cause of these problems, and suggested an idea to avoid the 
problems by using the Tree-Rule firewall [3] [4].  

The Tree-Rule firewall not only use tree structure for its 
rule but it also decide packets based on such tree structure too. 
The tree structure of rule in a user's view provide an ease of 
design without rule conflict. This has been proved in [3][4] 
already. Also, the tree structure of rule provides fast packet 
processing decision because its big order "O" of packet 
decision time consumption is in the logarithm term (see [4]). 
However, in the rule designing aspect, we found that both 
listed-rule firewall and Tree-Rule firewall have problems with 
large rule size.  

B. Problems of  Tree-rule firewall on a large network 

A large network is defined as a network which has many 
servers, many user groups (e.g., normal users, database 
users, and admin users), many network zones or branch 
offices placed distributively as presented in Fig 1 below. 
Each server opens many service ports, and local users can 
access to internet using those ports. As the size of network 
grows, the rule tree within Tree-rule firewall also grows 
accordingly. 

1) Big Rule Tree: The growth of rule tree will not be 
increased in a horizontal direction (width direction) because a 
number of attribute (header column for rule tree, i.e., Source 
IP address, Destination IP address and Destination Port) was 
fixed by firewall administrators / designers since the first node 
of the rule tree has been created. Therefore, the rule tree will  
grow vertically; for example, the growth of rule tree can cause 
an increase number of line within the Root node as presented 
in Fig 2, while number of nodes in second and third column 
increases as well. In the previous version of our Tree-Rule 
firewall, firewall editor (GUI software) shows a scroll bar in 
the right hand side of design screen if height of rule tree 
becomes greater than height of the screen. Firewall 
administrators (firewall rule designer) can drag the scroll bar 
up and down to modify or manage the rule. However, as the 
rule size becomes very large, firewall administrators have to 

scroll up and down many times to see across a page. This can 
bring inconvenience to firewall administrators so much. 

 

 
 

Fig 1. An example network 

      

Fig 1 presents an example of medium size network which 
correspond to the rule tree shown in Fig 2. The rule tree in Fig 
2 can be displayed in one screen. However, if the complexity 
or size of network is increased, the rule will be bigger than the 
screen.   

 
 

Fig 2. Rule tree corresponding to the network in Fig 1 

 

Note: We will use a network example shown in Fig 1 and a 
rule tree shown in Fig 2 for demonstrating an optimization 
method and its details are presented in the next sections. 



2) Column ordering: As we mentioned in the previous sub 
section, the rule size is bigger than the screen is not the only 
one problem but another problem is that the large network can 
cause difficulty for selecting an appropriate attribute for the 
Root node (including other rest columns). First of all, we 
would like to give details about selecting an appropriate 
attribute for the Root node.  

 
 Selecting an appropriate attribute for the Root node (first 
column) can help us to design firewall rule easily. For 
example, in a network which emphasizes to provide servers' 
services, we should select the Destination IP Address to be the 
Root Node (see Fig 2) because it is easy to imagine that "What 
servers we have got?" (e.g. 'Dest IP' column in Fig 2), "What 
ports each server has to open?" (e.g. 'Dest Port' column in Fig 
2), and "Who can access these ports?" (e.g. 'Source IP' column 
in Fig 2). For another example, in the network which consists 
of many user groups and focuses on a concept what ports on 
the internet each user group can access to, it will be fine if we 
choose Source IP address to be the Root node. In this case, the 
second column should be Destination Port. This is because we 
can imagine the local users as source IP addresses, and then 
imagine ports which they want to go (i.e., port 80 for 
connecting to web servers on the internet).    

 In some cases that mix between two cases as we explained 
above, for example, the network which has many group of 
users and has many kinds of server in DMZ. It is difficult for 
firewall administrators to select an appropriate attribute for the 
Root node. In the next section, we will propose the solution 
for this case. We also propose a solution for the big rule size 
as well. 

III.  OUR APPROACH 

We solve the two main problems which we mentioned in 
Section II by using the following methods: 

a. Using combination of ‘in’ and ‘out’ interfaces on 
separate design pages 

b. Using independent column ordering for each separate 
design page  

 

However, before explaining these schemes, we will adjust 
(optimize) the rule tree first because this optimization can 
improve the rule tree to be more compact. We will optimize 
the rules by using 'single action', 'single value', and 'IP address 
& port name'. 

Using a single action is the method that the rule designers 
must create rule and for only one action. The action can be 
only Accept, or can be only Deny presented in Fig 3.  

Firewall will have a 'default policy' which means that if 
any incoming packet cannot be matched with the rule, it will 
be decided by the default policy. Examples of a default policy 
are 'Implicit Deny' of Cisco ACL (Cisco's Implicit Deny has 
been set to be Deny permanently and cannot be changed), 
IPTABLES' default policy (we can change its default policy to 
be Accept or Deny). In the case of the Tree-Rule firewall, 

firewall designers can set the default policy to be Accept or 
Deny; however, we recommend Deny because it will then 
make the network more secure without allowing unknown 
packets. With the 'single action' method, an action for each 
rule path will be same, and rule tree will be slightly decreased 
(see Fig 3 compare with Fig 2). 

 
Fig 3. Using a single action 

 

 

 

Fig 4. Using a single value 



Using a single value will allow firewall rule designers to 
input a single IP address or a single port number in the line 
within a node instead of specifying IP address range or port 
range. This method allows a single number in case that the 
starting number and the ending number are same, i.e., specify 
'200.1.1.2' instead of '200.1.1.2-200.1.1.2' as can be seen in 
Fig 4. With this method, number of character within rule tree 
will be decreased and rule designer can understand the rule 
easier. However, in firewall's memory, a data structure 
corresponding to the rule still will be in the range of number 
while the GUI can interact with designers using a single 
number. 

Using an IP address name and a port name is the method 
that allows naming for the IP address (es) and port (s) in order 
to add them into the rule tree. For example, we can define the 
name 'Web Server' as an IP address number 200.1.1.2, and we 
can define the name 'UserGroup1' as the IP address range 
200.1.2.2 - 200.1.2.100 (see Fig 5). 

 

 

Fig 5. Using an IP address & port name 

 

Using an IP address name and a port name will provide 
easy way for firewall rule designers to understand the rule. 
The GUI of firewall rule editor can display the rule in both 
modes (number and name) up to firewall rule designers. They 
can switch to the 'name mode' and switch back to the 'number 
mode' by clicking on a menu or using short keys easily to 
make sure that the rule they design is correct.    

Many such methods similar to the ones explained above 
can minimize a rule size and help rule designers to manage 
rule tree easily. However, these methods are not the highlight 

of this paper. Apart from this, we propose a scheme to reduce 
the rule size significantly which is the main focus of our 
paper. Our proposed scheme also gets rid of the problem about 
selecting appropriate attribute for the Root node too. 

A. Using combination of ‘in’ and ‘out’ interfaces 

We can divide an original big rule tree to many small rule 
trees working independently from each other. This means that 
we will get many screens of rules, and these rules will have no 
conflict with other rules in other screens. This separation can 
be done using combination between ‘in’ and ‘out’ interfaces. 
For example, the network in Fig 1 which has three network 
interface (eth0, eth1, and eth2) can combine its pair of two 
network interface cards together and can be presented as:       

 eth0 -> eth1  

 eth0 -> eth2 

 eth1 -> eth0 

 eth1 -> eth2 

 eth2 -> eth0 

 eth2 -> eth1 

 

The 'ethX -> ethY' notation is used to indicate incoming 
packets to the firewall using ethX, and going out from the 
firewall using ethY. In this example, we can call the 'eth0 -> 
eth1' combination as the 'Internet -> DMZ' combination 
because they are of same meaning (see Fig 1). Other cases can 
be explained in a similar ways. We use a Tab control in our 
GUI firewall rule editor to separate a design screens as shown 
in Fig 6, Fig 7, Fig 8 and Fig 9.  

 

 

Fig 6. 'Internet -> DMZ' separated design screen 

 

 

 

 

Fig 7. 'DMZ -> Internet' separated design screen 

 



 

Fig 8. 'Local -> Internet' separated design screen 

 

 

 

Fig 9. 'Local -> DMZ' separated design screen 

 

The Fig 6 is a design screen of the 'eth0 -> eth1' 
combination. The rule displayed on Fig 6 will be 
corresponding to policy which will regulate packets originated 
from internet and destined to DMZ. If we consider the rule in 
Fig 4 or Fig 2, and compare with rules in Fig 6, 7, 8, and 9, we 
can see that the rule in separated design screen (Fig 6, 7, 8, 
and 9) are obviously smaller than the original rule. For 
instance, the rule in Fig 6 (Internet -> DMZ) will have only 
line and node which are corresponding to packet direction. As 
we can see the Root node ('Dest IP' column) of Fig 6, the lines 
inside Root node represent only IP addresses of servers 
situated in DMZ. Also, we can see that a number of nodes 
within the 'Source IP' column (Fig 6) has been reduced 
significantly. This is because the packets corresponding to the 
'eth0 -> eth1' must be originated from internet.     

Some separated rules will have very small size such as the 
rule in Fig 7 which is used to regulate packets originating from 
the DMZ and destined to internet. It can be possible that some 
separated design screens have no rules. This is because 
packets travelling in some directions cannot be allowed, such 
as packets in the Internet->Local (eth0->eth2) direction. This 
prevention can protect users' computers in the Local Network 
from hackers in internet. 

Therefore, with this scheme (combination between ‘in’ and 
‘out’ interfaces), a big rule can be divided into several small 
rules which provide an easy way for firewall rule designer to 
manage firewall rules. 

B. Using independent column ordering for each separate 
design page  

According to the problem we mentioned in Section II on 
difficulty to select an appropriate attribute for the Root node, 
we can solve the problem by providing the new version of rule 
editor GUI which allows firewall rule designer to determine a 
sequence of attribute columns in each separated design screen 
independently. For example, firewall rule designer set the 
sequence of attribute column in Fig 6 to be 'Dest IP', 'Dest 
Port',  and 'Source IP' respectively while the sequence in Fig 7 
was differently set to be 'Source IP', 'Dest Port' and 'Dest IP' 
respectively. 

In fact, by analysing this scheme, we can find that the 
sequence of attribute columns can be adjusted because of 
combination between ‘in’ and ‘out’ interfaces and separating a 
rule.   

IV.  IMPLEMENTATION AND EXPERIMENTATION 

Similar to our previous schemes [4] [5], we implement the 
proposed schemes based on the Netfilter [13][14][15] module. 
We hook packets' events using a technique presented in [16] 
by calling the 'nf_register_hook(&nfho);' function. Before 
calling this function the hooking function must be declared 
first, such as in the line: 'nfho.hook = hook_func;'. When 
packets arrive at the firewall, the 'hook_func' will be called. It 
will receive several important parameters as shown below: 

 

unsigned int hook_func(unsigned int hooknum,  

 struct sk_buff *skb,  

 const struct net_device *in,  

 const struct net_device *out,  

 int (*okfn)(struct sk_buff *))  

{ 

} 

 

An implementation of the Tree-Rule firewall in [4] and [5] 
use only Source IP address, Destination IP address, Source 
port and Destination port from the 'struct sk_buff *skb'. In this 
paper, we verify more information, i.e., the IN interface and 
the OUT interface. With this function, we read them from the 
'const struct net_device *in' and 'const struct net_device *out'.    

We create the Tree-Rule firewall using C on Cent OS 6.3 
Linux. It operates as a kernel module and runs in a kernel 
level. That is, our original firewall source code, firewall.c, will 
be compiled to the firewall.ko and will be executed by the 
command '# insmod firewall.ko'. We develop rule editor GUI 
using C# on Windows. The firewall rule will be created by 
GUI and will be sent to the core firewall running on Linux. 
The rule structure will be slightly modified for appendding 
information about a sequences of attribute columns, and 
network interface card combinations. 



A stateful mechanism presented in [5] will be modified in 
few parts; for example, for calculating the entry of hashing 
table (the parameter 'Entry' in [5]), we cancel the use of Max 
and Min [5] function because the new schemes can provide 
information of packets directions already. Thus, we will 
change the formula from: 

Entry = Hash( Max(Source _IP, Destination_IP), 
Min(Source_IP, Destination_IP), Max(Source_Port, 
Destination_Port), Min(Source_Port, Destination_Port), 
Protocol_Type, Key ). 

to 

Entry = Hash(Source _IP, Destination_IP, Source_Port, 
Destination_Port, In_Interface, Out_Interface, Protocol_Type, 
Key ). 

In [5], we used Max and Min function for this formula  
because the firewall did not know packet directions. In 
contrast, in this paper, the packet directions come along with 
the parameter '*in' and '*out'. These parameters will be the 
input parameters for a new formula to calculate the 'Entry' (see 
[5]). 

In Section III, we can see that separating a rule can bring 
several small rules. However, it requires an additional task on 
the firewall CPU because firewall have to check the IN 
interface and the OUT interface while it may work faster with 
a new small rules corresponding to these interfaces. Thus, we 
have to experiment and study an operational speed of the 
proposed model compared to the previous one; especially, in 
the large network. Additionally, due to that the security and 
‘ease of use’ aspects of the Tree-rule firewall have been 
already discussed in [4][5][6], this paper will mainly focus on 
a functional speed aspect.   

We create a big rule directly by creating a special code (C 
language) within firewall kernel program. The big rule for this 
study will be created from the network information below: 

- the network has 8 servers and each server opens 8 ports 

- the first 4 servers serve users from internet (all IP 
address) 

- the second 4 servers serve 4 groups of internal users 

- the firewall has 3 interfaces which are Internet (eth0), 
DMZ (eth1) and Local (eth1) 

 

We experiment in 4 cases 

Case #1 Attack non-existing IP addresses in DMZ, i.e., IP 
Scanning and DoS Attack  

Case #2 Attack an Web Server on other ports (not port 80) 

Case #3 Generate normal packets which SourceIP=internet 
IP address, DestIP= Web Server, DestPort=80 

Case #4 Generate normal packets which SourceIP=Local 
IP address, DestIP= internet IP address, DestPort=80 

We use 'hping' command on BackTrack 5R3 to generate 
packets by using the command like this: 

# hping3 192.168.22.2 -a 192.168.11.2 -p 333 -S -s +1 -d 
1440 -i u1000 

We also measure the processing time on packet-decision 
process. Starting time will be recorded when packet arrive at 
the hooking function [15]. Ending time will be recorded 
before the line 'return NF_ACCEPT' and 'return NF_DROP' 
[5][15]. We experiment on VMware with more than 1,000 
packets before taking average for every case. We test on both 
previous model [4][5] and the proposed model. The previous 
model will then be compared with the proposed model. The 
experimental results are presented in Table 1.  

Table 1. Time consumption of packet decision on Tree-rule 
firewall 

  Processing Time for one packet  (nanosecond) 

  The Previous Model The Proposed Model 

Case #1 194.28 203.79 

Case #2 227.41 208.14 

Case #3 261.83 216.32 

Case #4 286.92 221.86 
 
 

The experimental result shows that operational speed of 
the previous model and the proposed model are slightly 
different. Although the proposed model has to verify against 
IN and OUT interface, it still gives us a good performance in 
speed of operation. Especially, in normal case (Case #3 and 
Case #4), it can provide a better performance. This is because 
number of line within the Root node in the proposed model is 
less than that in the previous model. Not only in the Root 
node, but other nodes (in other columns) are also smaller than 
the original nodes in the previous model. This is resulted from 
separating one big rule to many small rules. However, in some 
cases, the previous model will be faster. For example, in the 
Case #1, searching servers' IP address in Root node with the 
key (key is an IP address we want to find) which is greater 
than Maximum IP address in Root node, or less than 
Minimum IP address in Root node, the searching operation 
will be stopped quickly. This is because the key will be 
compared with the Minimum and Maximum first. If key is less 
than minimum or greater than maximum, the searching 
operation will return 'Not found!' and not necessary to operate 
binary searching. Therefore, in Case #1 where a key is outside 
the scope for the Root node, second and third column nodes, a 
decision can be made quickly. The Case #1 of the proposed 
model may be fast as in the previous model. However, the 
proposed model should verify against IN and OUT interface 
which require more time. Thus, the proposed model may be 
slower at time than the previous model in some cases. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we propose two main schemes to resolve 
problems of Tree-Rule firewall in large network 
environments. From our study, the problems came from big 
rule tree which cannot display on one screen and make 
difficulty to select appropriate attribute column for the Root 
node. The proposed solutions are (1) using combination 



between IN and OUT interfaces, and separating one big rule to 
many small rules, and (2) using independent column ordering 
for each separate design screen. After deploying these 
schemes, we found that firewall rule can be easily managed. 
We also measure decision time interval for the proposed 
model compared to the previous model. The experimental 
results show that operational speed of the proposed model still 
is high (low processing delay) although it should verify 
against IN and OUT interfaces. In future, we will extend our 
Tree-Rule firewall to co-operative firewalls suitable for 
various network environments.  

REFERENCES 
[1] W. Cheswick, S. Bellovin, A. Rubin, Firewalls and Internet Security: 

repelling the wily hacker, Addison-Wesley Professional, 2003. 

[2] E. Al-Shaer, H. Hamed, Firewall policy advisor for anomaly detection 
and rule editing, in: Proceedings of the IEEE/IFIP Integrated 
Management, IM, 2003, pp. 17–30. 

[3] T. Chomsiri, X. He, P. Nanda, Limitation of listed-rule firewall and the 
design of tree-rule firewall, in: Proceedings of the 5th International 
Conference on Internet and Distributed Computing Systems, China, 
2012, pp. 275–287. 

[4] X. He, T. Chomsiri, P. Nanda, Z. Tan, Improving cloud network security 
using the Tree-Rule firewall, Future Generation Computer Systems, 
Elsevier, 30 (2014) 116-126. 

[5] T. Chomsiri, X. He, P. Nanda, Z. Tan, 2014 IEEE 13th International 
Conference on Trust, Security and Privacy in Computing and 
Communications (TrustCom.2014), 2014, pp. 122-129. 

[6] T. Chomsiri, X. He, P. Nanda, Z. Tan , Hybrid tree-rule firewall for high 
speed data transmission. IEEE Transactions on Cloud Computing, online 
pre-publication, 2016,  pp. 1-13, ISSN 2168-7161. 

[7]  C. Pornavalai. T. Chomsiri, Firewall Policy Analyzing by Relational 
Algebra, In: proceeding of the 2004 International Technical Conference 
on Circuits/Systems, Computers and Communications (ITC-CSCC) , 
2004, pp. 214-219. 

[8] E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan, Conflict classification 
and analysis of distributed firewall policies, IEEE Journal on Selected 
Areas in Communications 23 (10) (2005) 2069-2084. 

[9] S. Hazelhusrt, Algorithms for Analyzing Firewall and Router Access 
Lists, Technical Report TR-WitsCS-1999, Department of Computer 
Science, University of the Witwatersrand, 1999. 

[10] P. Eronen, J. Zitting, An Expert System for Analyzing Firewall Rules, 
In: Proceedings of the 6th Nordic Workshop on Secure IT-Systems 
(NordSec), 2001, pp. 100-107. 

[11] L. Yuan, J. Mai, Z. Su, FIREMAN: A toolkit for Firewall modeling and 
analysis, In: Proceedings of the 2006 IEEE Symposium on Security and 
Privacy, 2006, pp. 199-213. 

[12] L. Zhao, A. Shimae, H. Nagamochi, Linear-tree rule structure for 
firewall optimization, In: Proceedings of Communications Internet and 
Information Technology, 2007, pp. 67-72. 

[13] R. Rosen, Netfilter, Linux Kernel Networking,  Apress, (2014) 247-278. 

[14] The netfilter.org project, 2014, http://www.netfilter.org/. 

[15] P. Ayuso, Netfilter's Connection Tracking System, LOGIN;, The 
USENIX magazine, 32 (2006)  34-39. 

[16] Fidel, Vidal, and José María. "Mecanismo para el acceso público a 
servidores con direccionamiento privado." (2011). 

 


