
SimuContext: Simply Simulate Context1 
 

Tom Broens, Aart van Halteren 
Centre for Telematics and Information Technology, 

University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands, 
{t.h.f.broens, a.t.vanhalteren}@utwente.nl 

 

                                                           
1 We would like to thank Marten van Sinderen for his contributions to this paper. This work is part of the Freeband AWARENESS project. 
Freeband is sponsored by the Dutch government under contract BSIK 03025. (http://awareness.freeband.nl) 

Abstract 
Testing and demonstrating context-aware 

applications is challenging. Gathering and using ‘life’ 
contextual information for these purposes, often 
requires significant extra development effort. 
Furthermore, repeating tests and demonstrations of 
context-aware applications that use ‘life’ context 
information, in a controlled way, is difficult or often 
impossible to achieve. This paper presents a context 
simulation framework, called SimuContext, which 
abstracts from the complexity of interfacing with 
physical context sources and facilitates testing and 
demonstrating context-aware applications in a 
controlled way. 
 

1. Introduction 
Context-Awareness (CA) is a promising paradigm to 

personalize applications. Traditionally, non-CA 
applications only use explicit user-inputs to provide 
output. CA applications use additional implicit (sensed) 
context inputs collected from the user’s environment, 
to tailor the output to the user’s need [1]. Context (e.g. 
location, speed) is sensed from the user’s physical 
environment or derived from the user’s computing 
environment. In CA applications, context sources 
represent software entities that produce context 
information relevant for the CA application (see Figure 
1). 

CA Application

Context 
source

Context 
source

Explicit input

Output

Context

Context

 
Figure 1. Context-aware application 
 

The design and development of CA applications 
does not only concern traditional application logic, but 
also includes logic that deals with gathering and 

processing of context information coming from context 
sources. Therefore, application developers also face the 
challenges posed by the use of context sources. 

Currently, context-aware technologies are still 
evolving and are not yet widely deployed. Therefore, to 
develop context-aware applications, a significant extra 
amount of development effort may go into the 
implementation of context sources. The general 
structure of such a context source (see Figure 2) is that 
it acquires raw data from a data source (e.g. sensor), 
possibly performs some processing and then transforms 
it into a data structure suitable for the context-aware 
application. 

Context source

Raw 
data

Adapter Logic Adapter’ Context

 
Figure 2. Generic structure of a context source. 
 

Implementing these data transformations is quite 
cumbersome and time consuming. Furthermore, due to 
the device-specific nature of context sources, 
reusability of context sources and their transformations 
for other applications is limited. For example, to 
implement a context source of a Bluetooth GPS, the 
developer has to build a context source that can 
communicate with Bluetooth and the NMEA data 
format and then transform this to the data format that 
can be used by the CA application. 

Ideally, CA application developers want to abstract 
from the internals of context sources and treat them as 
a black box. Their effort should go in the development 
of the CA application logic which includes interfacing 
with desired context sources. We recognize that for 
operational CA services, physical context sources are 
mandatory. However, we envision that in the future 
third parties will develop context sources and therefore 
creating new context sources seems redundant, takes 
scarce development time and distracts from the real 
challenge of developing a CA application. 



Furthermore, testing and demonstrating CA 
applications in a controllable and reproducible way 
with physical context sources may prove extremely 
difficult. By nature, context information is highly 
dynamic (i.e. dynamic in value and quality) [2, 3]. 
Therefore, retrieving the same context in similar 
situations is hard. For example, when using a GPS, 
standing in the same spot can result in different context 
values over time due to changing accuracy. Also 
practically, it is hard to use life context information 
during tests or demonstrations. For example, GPS does 
not work inside buildings, which means that tests and 
demonstrations have to take place outside. 

In this paper, we propose a context simulation 
framework (SimuContext). Simulation in general 
provides many benefits for software development like, 
cost reduction, improve reliability and shorten 
development time [4]. Our framework facilitates 
application developers in testing and demonstrating CA 
applications by only specifying the behavior of context 
sources and using simulated context sources as inputs 
in their CA application. As a result, CA application 
developers can concentrate on the logic of their 
application and do not have to worry about the 
complexities of dealing with physical context sources. 
The SimuContext framework has the potential to offer 
CA application developers the following: 
• Rapid testing and demonstration of CA 

applications, in a controllable and reproducible 
manner, through configuration of existing 
SimuContext capabilities or by extending parts of 
the framework. 

• Creation of a more comprehensive and realistic 
validation environment by deploying a multitude of 
SimuContext sources with specified properties. 

• Easy replacement of SimuContext sources by 
physical context sources due to a realistic context 
model and generic SimuContext interfaces. 

• Test specific characteristics of context sources for 
CA applications like subscribe/notify mechanism, 
connection loss, reasoning, quality changes etc. 
Bylund [5] distinguishes two types of context 

simulation tools: (i) a simulation suite that simulates 
context values and (ii) a semi-realistic simulation 
environment. We have chosen the first approach to 
offer a generic simulation facility which can provide a 
configurable set of context source types and instances, 
tailored to a specific CA application scenario. 
Summarizing, the SimuContext framework substitutes 
the implicit context inputs of CA applications with 
context inputs from SimuContext sources (see Figure 
3). 

CA application

Explicit user input

Output

Context

Context
SimuContext

Source

SimuContext
Source

 
Figure 3. CA application with SimuContext sources. 
 

The remainder of the paper is structured as follows. 
Section 2 discusses the requirements analysis which 
includes the definition of a context model. Section 3 
presents the design of the SimuContext framework. 
Section 4 discusses the proof-of-concept 
implementation of the framework. Section 5 presents a 
discussion. Finally, section 6 gives some conclusions 
and future work. 
 

2. Requirement analysis 
This section discusses the non-functional (section 

2.1) and functional requirements (section 2.2) for 
simulating context sources. 
 
2.1. Non functional requirements 

This section describes common quality aspects we 
require from our simulation framework: 
• Generality: the framework should be generic 

enough to simulate a diversity of context sources 
(e.g. computing context, user context, physical 
context [6]). Furthermore, the framework should 
not pose severe constraints on the target 
application, and therefore it should be reusable for 
multiple applications. 

• Extensibility: it should be easy to extend the 
framework to support specific context sources for 
specific context-aware applications. 

 
2.2. Functional requirements 

To create an accurate and realistic simulation 
framework for context sources, we have to analyze the 
nature of context. We start this analysis by researching 
what information elements are encapsulated by context. 

From the context model (See Figure 4), we see that 
context consists of information on several levels of 
abstraction. First, context has meta-information on its 
quality, which is called quality of context (QoC). 
Common parameters that we adopt as an example, are 
[7]: Precision, Correctness, Trustworthiness, 
Resolution and Up-to-dateness. Precision describes 
how well the context information mirrors the reality. 
Correctness indicates the probability that context 
information is correct. Trustworthiness indicates the 
probability that context information is correct with 
respect to the context provider. Up-to-dateness depicts 
the age of context information. For example, the 



physical location can be produced by a GPS. Such a 
context source has a precision of approximately 5 
meters. Correctness of GPS is high outside with clear 
view on the sky but low in areas with high buildings. 
Trustworthiness and up-to-dateness is high because the 
context is machine-produced and updated regularly. 
Furthermore, context is privacy sensitive information 
[8]. Security information (e.g. who is authorized to 
retrieve this context) is therefore part of the meta-
information. However, in this version of the framework 
we focus on the core functionality of context 
simulation. Therefore, we consider security a future 
extension of the framework. 

Context 
Meta-information

Relation 
information

Contextual information

Contex

QoC

Entity

Element

Value

Format

Security

 
Figure 4. Context model 

 
Second, context encapsulates information related to 

what it describes (relation information). Dey [9], 
defines context as any information that can be used to 
characterize the situation of an entity. This indicates 
that context is always related to an entity. An entity can 
be a human, physical, or computational object. For 
example, context can be related to Person X, Table Y 
or Application Z. 

Finally, context encapsulates the real contextual 
information. This consists of an element, describing the 
context identifier (e.g. Location). Then it has a value, 
for example 52.123/6.23123. Finally, it has a format 
that describes the value, for example Lat/Long. Taking 
these aspects together, this leads to the following 
requirement: 
• The SimuContext framework should support the 

elements that are encapsulated by the defined 
context model. This includes QoC, the entity to 
which it is related and the elements that describe the 
contextual information. 
Additionally, context has some other characteristics 

[2, 3]: (i) Context is temporal, (ii) context is spatial, 
(iii) context is imperfect and (iv) context sources are 
often distributed. These characteristics trigger the 
following requirements for our framework to 
realistically simulate context sources: 

• Due to its temporal and spatial nature, context is 
subject to continual changes. Therefore, the 
simulated context source should be able to have 
changing values specified in an application specific, 
pluggable value model. 

• Furthermore, to facilitate the user to simulate 
changing context, our framework should support 
two types of invocation mechanisms: (i) Request – 
Response and (ii) Subscribe-Notify. The latter 
mechanism enables users to specify a condition 
when they want to be notified of a context change. 

• To provide the Subscribe-Notify mechanism our 
framework should support an event model that 
specifies when context change events should be 
generated. This event model should be easy to plug 
into our framework. 

• Users should be able to specify a notification 
condition, based on context. For example, speed > 
50 km/hr. 

• Due to the imperfect nature of context, it inherently 
has quality properties. Our framework should be 
able to express this in a QoC model. The realization 
of the QoC model depends on the target application 
therefore the QoC model should be inplugable and 
extendible. 

• The quality values of context are related to the 
provided context. As this is subject to change the 
quality values are also subject to change. Our 
framework should support changing QoC values in 
a value model. 
This requirement analysis provides an initial 

description of what capabilities our framework 
supports. In the future work section of this paper (see 
section 6), we identify additional requirements for 
future enhancement of our framework. 
 

3. Design of the SimuContext framework 
This section discusses the design of the 

SimuContext framework. We start with a high-level 
overview followed by more details on provided 
interfaces and the functional architecture of a 
SimuContext source. In Figure 5, we present a black-
box overview of the SimuContext framework. 

SimuContext framework

exten
sion

exten
sion

exten
sion

Context 
source 
Spec.

SimuContext
Source

 
Figure 5. Overview of the SimuContext system 
 



In the configuration phase, the user or application 
developer specifies a context source it wants to 
simulate. Additionally, they can implement application-
specific extensions to the framework, which can be 
plugged-in, and then be used in the context source 
specification. For example, a developer can create a log 
file reader extension which is used to generate the 
context values. In the operational phase, the framework 
parses the context source specification and instantiates 
the corresponding SimuContext source. The simulated 
context source behaves as a physical context source 
and can be linked to the context-aware application. 
 

 
Figure 6. Interfaces 
   

A ContextSource offers the two required invocation 
mechanism: request-response (getContext()) and 
subscribe-notify (subscribe(), unsubscribe() and 
notify() method of a client callback object). Both 
mechanisms deliver Context which consists of the 
elements described in the meta-model. 

Figure 7 indicates the functional decomposition of 
the framework. It consists of different models that build 
up a SimuContext source and the information flow that 
exists between these models. 

The ServiceModel implements the two required 
invocation methods: request-response and subscribe 
notify. The user can request context from here or can 
subscribe to context changes. The ValueModel 
implements the value generator that produces the 
values of the context samples and the values of the 
QoC parameters. The EventModel implements the 
event generator that produces the events when the sub-
scribed user to this context source should be notified. 
The QoCModel implements the quality parameters of 
the delivered context sample. Both the ValueModel 
and the EventModel can be easily extended with 
application specific models like “Random-
ValueModel” and “RandomEventModel” which 
generate random values or events at random times, 
respectively. 

To configure SimuContext sources, we defined an 
administrator interface (SimuContextAdmin) (see 
Figure 8). It identifies methods to specialize the 

valuemodel and eventmodel to a user specified model 
(specialiseValueModel(), specialiseEventModel()). 

SimuContextSource framework

ValueModel EventModel

ServiceModel

Value Events

Value
QoCModel

Value

QoC

Context

Developer extensions

RandomVal
ueModel

RandomEv
entModel

 
Figure 7. Functional decomposition 

 
Furthermore, the eventmodel can be started and 

stopped. The configureSimuContextSource method 
enables the user to configure the SimuContext source 
using a configuration file. 

 
Figure 8. SimuContextAdmin interface 
 

4. Implementation 
We implemented the framework in Java. The 
framework is packaged as a standard Java library that 
can be included as a class library when developing CA 
applications. 

For easy configuration and testing of 
SimuContextSources, we developed an administrator 
application with a graphical user interface (see Figure 
9).  

 
Figure 9. Administrator GUI 
 

With the administrator application, developers can 
specify the characteristics of the context source they 



want to simulate. They can test if the specified 
SimuContext source behaves like they need for their 
application. Finally, they can save the specification in a 
configuration file that can be read by the SimuContext 
framework linked to their CA application. 

We implemented some basic eventmodels and 
valuemodels that application developers can use out-of-
the-box: Random and GUI Event and Value models, 
Periodic Event model and Counter Value model. 

In addition to these ready made models, the 
framework allows for application specific models. New 
valuemodels must implement the ValueModel 
interface. The getValue() method implements the value 
generator. Furthermore, the framework should be able 
to set variables and read the description of the 
variables. New eventmodels must implement the 
EventModel interface and inherit the 
AbstractEventModel. This includes implementing the 
event generator with the generateEvent() method. 
Again, the framework should be able to set the needed 
variables and read the description of the variables. For 
descriptions of the interfaces that need to be 
implemented, see Figure 10. 

    
Figure 10. Interfaces 
 
5. Discussion 

By applying SimuContext sources, developers can 
abstract from the complexity of developing ‘life’ 
context sources for testing and development purposes. 
This enables them to focus on the application logic of 
their CA application. They can spend more time on 
developing their application. 

Deploying SimuContext sources is simple and only 
requires definition of configuration files by hand or 
using the administrator GUI. Additionally, some 
custom models can be added by extending the provided 
interfaces and implementing their corresponding 
methods. The framework is integrated in the CA 
application as a class library and with some simple 
method calls the SimuContext source is instantiated 
and ready for use. 

After developing the CA application and its 
corresponding SimuContext sources developers can use 
them to test, validate and demonstrate their CA 
application. Testing and validation becomes easy and 

realistic because the parameters of a SimuContext 
source can be modified in a controlled way. By 
modifying the parameters the (boundary) behavior of 
the CA application can be tested and validated. For 
example, when a ‘log file’ would be applied as 
valuemodel reproducible tests can be performed. 
Furthermore, when the SimuContext sources are 
configured more realistic (i.e. dynamic eventmodels 
and valuemodels that simulate a ‘life’ context source) 
also the application can be tested and validated in a 
semi-realistic setting. Additionally, by reconfiguring 
SimuContext sources the CA application can be tested 
for a multitude of context sources. 

Once the CA application has been sufficiently tested 
and validated, it is relatively easy to replace the 
simulated context sources with real context sources, 
provided that these context sources implement the 
common ContextSource interface. 

 

6. Related work 
Several initiatives aim to facilitate application 

developers in coping with physical context sources, 
often called context managers, like the Context Toolkit 
[10], JCAF [11] and PACE [12].  

There exist several semi-realistic simulation 
environments of which we will give some examples in 
this section. However, to our knowledge, context 
simulation suites are not existent.  

Bylund [5] discusses a tool that interactively 
simulates context information in real-time. Their tool, 
called QuakeSim, uses the popular game engine of 
Quake III Arena to simulate a 3D environment. In this 
environment virtual persons can move and interact with 
other persons or the environment itself. The game 
engine provides the context information of these virtual 
persons which can be used as simulated information for 
CA applications.  

UbiWise [13] uses similar technology as QuakeSim. 
It simulates a 3D environment to simulate ubiquitous 
environments which include prototyping of new 
devices and protocols. The simulator focuses mainly on 
computation and communication devices. 

3DSim [14] provides a tool for rapid prototyping 
Ambient Intelligent applications. It uses a 3D based 
virtual environment to represent ambient devices. 
Context events are passed to the system with a TCP-
based eventing interface. 

Morla [15] discusses a simulation environment for 
location-based systems. They focus on component 
interaction, networking and location changes. Their 
environment supports the distribution of context events 
generated by distributed simulators using Web 
Services. 



In contrast to the previous initiatives, SimuContext 
is a context simulation suite that enables the user to 
specify the behavior of context sources in stead of 
simulating an environment where the context is inferred 
from. In simulation environments, context changes are 
produced by interaction of a user with the environment 
(e.g. movement). SimuContext can be less attractive for 
live demonstrations (i.e. not a 3D GUI), however the 
simulated context is better controllable and 
reproducible. Additionally, testing and validation in an 
automated manner is more convenient. Furthermore, 
SimuContext is a context-centric approach while some 
of the related approaches focus on pervasive device 
and network aspects and use/provide context as a side-
effect. SimuContext offers a generic light-weight 
approach that focuses on context simulation which is 
based on a robust context model. 
 

7. Conclusions and future work 
Context, delivered by context sources, becomes very 

important in pervasive environments. However, 
developing context sources can be cumbersome and 
time consuming. Furthermore, testing and 
demonstrating context-aware applications with physical 
context sources in a controllable and reproducible 
manner is difficult. This paper presents the 
SimuContext framework, a context source simulation 
framework, which facilitates developers in creating CA 
applications without losing scarce time on interfacing 
with physical context sources for testing and 
demonstration purposes. The framework enables them 
to easily specify context sources that will be simulated. 
These simulated context sources emulate the behaviour 
of life context sources. For operational context-aware 
application physical context sources are needed. 
However, for testing and demonstration purposes the 
SimuContext framework is a valuable tool. 

Our SimuContext framework contributes to further 
advance research on context-aware applications, 
providing an easy to use context simulation suite. We 
envision the following future extensions of the 
SimuContext framework: 
• Subscription mechanism: enhance the subscription 

mechanism with rules such that the user can specify 
a condition on which an event should be generated. 
Furthermore, this condition should incorporate QoC 
parameters such that only a notification is generated 
when the specified QoC requirements are met. 

• QoC model: extend the framework such that other 
QoC models can be plugged-in like cost models. 

• Context operational issues: context sources exhibit 
also some operational challenges such as sudden 
connection loss or the appearance of similar context 

sources (maybe with better quality). Future 
extensions of the framework should incorporate 
these challenges. 

• Security: context is privacy sensitive information. 
Therefore, security should be taken into account as 
part of the context meta-model. 

 

References 
1. Lieberman, H. and T. Selker, Out of context. IBM System 

Journal, 2000. 39(3): p. 617-632. 
2. Broens, T., Context-aware, Ontology based, Semantic 

Service Discovery. 2004, University of Twente: 
Enschede. 

3. Bunningen, A.v., L. Feng, and P. Apers. Context for 
Ubiquitous Data Management. in International 
Workshop on Ubiquitous Data Management (UDM'05). 
2005. Tokyo. 

4. Christie, A., Simulation: An Enabling Technology in 
Software Engineering. CROSSTALK Journal of Defense 
Software Engineering, 1999. 

5. Bylund, M. and F. Espinoza, Testing and Demonstrating 
Context-Aware Services with Quake III Arena. 
Communications of the ACM, 2002. 45(1): p. 46-48. 

6. Schilit, B., N. Adams, and R. Want, Context-Aware 
Computing Applications, in IEEE Workshop on Mobile 
Computing Systems and Applications. 1994: Santa Cruz, 
CA, USA. 

7. Bucholz, T., A. Kupper, and M. Schiffers, Quality of 
Context: What It Is And Why We Need It, in Workshop of 
the HP OpenView University Association 2003 
(HPOVUA 2003). 2003: Geneva. 

8. Robinson, P., H. Vogt, and W. Wagealla, Some research 
challenges in Pervasive Computing, in Workshop on 
Security and Privacy at the Pervasive 2004 Conference. 
2004: Munchen, Germany. 

9. Dey, A., Providing Architectural Support for Context-
Aware applications. 2000, PhD thesis, Georgia Institute 
of Technology. 

10. Dey, A., The Context Toolkit: Aiding the Development of 
Context-Aware Applications, in Workshop on Software 
Engineering for Wearable and Pervasive Computing. 
2000: Limerick, Ireland. 

11. Bardram, J., The Java Context Awareness Framework 
(JCAF) - A Service Infrastructure and Programming 
Framework for Context-Aware Applications, in Pervasive 
Computing. 2005: Munchen, Germany. 

12. Henricksen, K., et al., Middleware for Distributed 
Context-Aware Systems, in DOA 2005. 2005, Springer 
Verlag: Agia Napa, Cyprus. 

13. Barton, J. and V. V., UBIWISE, A Ubiquitous Wireless 
Infrastructure Simulation Environment, in HP Labratory 
Technical Report HPL-2002-303. 2002. 

14. Shirehjini, A. and F. Klar, 3DSim: Rapid Prototyping 
Ambient Intelligence, in sOc - EUSAI. 2005: Grenoble, 
France. 

15. Morla, R. and N. Davies, Modeling and Simulation of 
Context-Aware Mobile Systems. IEEE Pervasive 
computing, 2004: p. 48-56. 


