
Owner-Based Role-Based Access Control OB-RBAC

Mohsen Saffarian
Faculty of EEMCS University of Twente

Enschede, Netherlands
saffarianm@cs.utwente.nl

Babak Sadighi
Axiomatics AB Electrum 223

Kista, Sweden
babak@axiomatics.com

Abstract—Administration of an access control model deals
with the question of who is authorized to update policies defined
on the basis of that model. One of the models whose adminis-
tration has absorbed relatively large research is the Role-Based
Access Control (RBAC) model. All the existing role-based
administrative models fall into the category of administrator-
based decentralized approach. In such an approach, a group
of administrators are given firstly, the authority of updating
authorizations for operative roles and secondly, the authority
of delegating the previous right to other lower-level adminis-
trators. However, in organizations with informal and flexible
structure, like academic and research-oriented organizations
such a sharp distinction between administrative roles and
operative roles might not exist. Here, each role may take part
in both operative and administrative decisions such that more
mission-oriented decisions are made by senior roles and more
specialized-level decisions are made by junior roles. In this
paper, we study a new class of access control model called
Owner-Based Role-Based Access Control (OB-RBAC) which is
suitable for such environments. The OB-RBAC model utilizes
the advantages of both Discretionary Access Control (DAC)
and RBAC. In particular, the OB-RBAC model builds a policy
model which not only fulfills the organizational restrictions but
enjoys the flexible administration of the DAC model.

I. INTRODUCTION

Access control policies can be divided into two types:
access policies and administrative policies. While access
policies answer the question of who is permitted to do what,
administrative policies answer the question of who is autho-
rized to update policies. There are three different approaches
for the administration of policies: centralized, owner-based,
and decentralized [1]. In the centralized approach, a group of
administrators are given the full authority to update access
policies. In the owner-based approach, it is the owner of
an object who has the authority to update access policies
for his object. In the decentralized approach, the owner or
administrator is allowed to delegate the right of updating
both access and administrative policies to other subjects.
The decentralized approach requires complex administrative
policies controlling who can delegate what to whom.

Administration of RBAC has absorbed large research
resulting in several different models, such as the ARBAC97
[2], ARBAC02 [3] and the administrative scope model
[4]. Existing role-based administrative models share two
characteristics: firstly, they administer RBAC using RBAC

itself and secondly, they use two different types of roles:
regular (operative) roles and administrative roles. Using
RBAC mechanisms to administer RBAC means that role-
based administrative models use the same principles and
assumptions as those of the basic and hierarchical RBAC. In
particular, this means that both operative and administrative
role hierarchies are created by ordering roles according to
a generic-specialized relation, indication that specific roles
inherit permissions from generic roles. Separation of opera-
tive and administrative roles is based on the assumption that
both tasks and required permissions to satisfactorily execute
them are separated into two different classes: access-level or
operative and administrative-level or simply administrative.
The two mentioned characteristics and their underlying
assumptions lead to inconvenient consequences which are
briefly described below.

Organizing a role hierarchy according to a generic-
specialized relation leads to several problematic conse-
quences [5], [6], [7], among which the most important one
is that senior roles acquire all permissions assigned to junior
roles. In many organizations, senior roles are not qualified
enough to undertake the activities of junior roles [6].

Distinguishing between operative and administrative roles
is not always realistic. Based on such an assumption, in a
typical organization operative roles are associated with op-
erative tasks and permissions to perform activities resulting
in satisfying the goals of that organization. The purpose of
the existence of administrative roles is to manage operative
roles. To do so, administrative roles are given adminis-
trative permissions, namely role creation/deletion, edge in-
sertion/deletion, permission-role assignment/revocation and
user-role assignment/revocation. However, In many orga-
nizations an operative role can also be associated with
administrative tasks. The existing role-based administrative
models can deal with such a situation by assigning users
of the operative role to an appropriate administrative role.
Such an assignment should be performed with respect to
the least privilege principle which requires that a member
of the operative role should only be given access to ad-
ministrative permissions that are necessary to complete his
tasks. Therefore, when assigning users of the operative role
to the existing administrative roles does not satisfy the least
privilege principle, an appropriate administrative role should

2010 International Conference on Availability, Reliability and Security

978-0-7695-3965-2/10 $26.00 © 2010 IEEE

DOI 10.1109/ARES.2010.94

236

be created. Consequently, the number of administrative roles
increases in the direct proportion to the number of operative
roles associated with different set of administrative tasks.

To overcome the above-mentioned inconveniences, we
present the Owner-Based Role-Based Access Control model
(OB-RBAC). At the core of the OB-RBAC is the concept
of timed-ownership delegation through which resources are
assigned to roles for specific period of time. Similar to
the traditional Discretionary Access Control (DAC) models,
members of a role which is the owner of a resource have the
authority to update both access and administrative policies
regarding that resource. The OB-RBAC model comes with
an intrinsic administrative model which falls into the owner-
based decentralized approach. In particular, the OB-RBAC
model can be well adapted to administrative procedures in
organizations with flexible and informal structure.

The rest of the paper is organized as follows. In section 2
we briefly review the background research work which has
influenced the OB-RBAC model. In section 3 we highlight
the motivation behind the design of the OB-RBAC model.
Semantics of the model are given in section 4. Section 5
discusses the related work and section 6 concludes the paper.

II. MOTIVATION

In this section, in the context of the business-IT alignment
principle [8], [9], [10], we highlight the motivation of
proposing the OB-RBAC model. This principle is concerned
with the importance of having IT systems correspond to
the organizational structure and organization’s goals. In
this regard, we describe two unrealistic assumptions in
the context of RBAC, namely permission and membership
inheritance and separation of operative and administrative
roles. These assumptions result in a policy model which
does not necessarily capture the reality in organizations.

A. Permission and Membership Inheritance

The hierarchical RBAC assumes that the relation between
roles in the hierarchy is of the ”isa” type. In such a hierar-
chy, a member of a senior role is a member of its junior roles,
thereby acquires permissions assigned to those junior roles.
Furthermore, members of a more senior role can activate any
subset of its junior roles. Moffet [11] argues that in addition
to the generalization hierarchy, there are at least two other
role hierarchies, namely activity hierarchy and supervision
hierarchy, which are built based on the aggregation and
supervision relations between roles, respectively. In a typical
organization, most of the time, the reason for which a role is
created is that it is impossible for the members of the already
existing roles to satisfactorily perform all the activities of
that organization. This is due to the fact that either among
the existing roles some expertise is missing or the load of
the activities assigned to each role is in such a way that
some of them cannot be satisfactorily performed. In both
cases, some activities are delegated from a delegator role to a

newly created delegatee role. When such a delegation occurs,
the delegator loses its authority to perform the delegated
activities. This is due to the fact that if the delegator could
perform the delegated activities satisfactorily, there would be
no reason to delegate them. Moffet, in the same paper, also
addresses the need for the supervision relation between the
delegator and delegatee so that delegation works properly.
As a conclusion, generalization hierarchy does not always
reflect the relation between roles precisely.

B. Separation of Operative and Administrative Roles

Existing role-based administrative models assume that
role-based policies can only be updated by the members
of administrative roles. However, we argue that each role in
an organization can be associated with both operative and
administrative tasks. In particular, we argue that each role
in the hierarchy can supervise and manage its immediate
children through administrative permissions.

III. THE OB-RBAC MODEL

In this section, we formally describe the OB-RBAC
model. Particularly, we show how the role hierarchy is or-
ganized and administered. The role hierarchy in OB-RBAC
is the activity hierarchy based on the aggregation relation
between roles. Central to the activity role hierarchy is the
delegation of subsets of activities down in the hierarchy
to either newly created roles or the existing roles. When
such a delegation occurs, the delegator no longer would be
able to perform the delegated activities, but the delegatee
becomes responsible to do so. However, this delegation
works satisfactorily only if firstly, the delegatee is given the
required permissions and resources to perform the delegated
activities and secondly, the delegator is given the right of
supervising the delegatee. We leave the investigation of
models and mechanisms to support the supervision relation
between the delegator and delegatee for the future work.

A. Delegation of Resources and Permissions in the OB-
RBAC

The concept of delegation is at the core of the administra-
tion of authorizations. In the OB-RBAC model two different
types of delegations, namely timed-ownership delegation
and timed-permission delegation are used.

1) Timed-Ownership Delegation: Traditionally, the
concept of role connects a group of subjects to a set of
permissions. However, we believe a set of resources can
also be associated to each role. In a typical organization, an
individual subject is recognized as the owner of a resource,
since he is a member of a role to which that resource has
been assigned. In this way, subjects assigned to a role
not only acquire the role’s permissions but also become
the owner of the role’s resources. Here, the concept of
ownership is different than that of used in the DAC model.
Similar to the traditional RBAC models, in the OB-RBAC

237

Security

Group

Manager

�etworkSecurity

ProjectLeader

PhysicalSecurity

ProjectLeader

SeniorResearcher
�etwork

Programmer

Figure 1. Role hierarchy in a security group.

model the system owns resources. However, by associating
resource re to role r certain degree of control over re is
given to the members of r. The system can restrict the
degree of control by imposing set of constraints on each
resource. When a specific type of resource is associated to a
role, either each member of the role becomes the owner of
his own specific instance of that resource, or all members
of the role are collectively considered as the owner of
instances of that resource. For instance, in Figure 1 assume
that role SeniorResearcher is associated with 10GB disk
space to be given to each member. Consequently, when
subject s1 is assigned to this role he becomes the owner
of his own 10GB disk space and thus, can define policies
regarding his disk space. Now, assume that printers p1 and
p2 are also given to the same role, but to be shared between
all members of the role. In this case, a general approach
for approval of policies regarding p1 and p2 defined by
members of role SeniorResearcher is to have a consensus
protocol which approves a policy only if at least m out of
n members accept that policy. For the sake of simplicity
and also to be consistent with the previous case, we assume
m is always equivalent to 1.

Definition 1: Let T denote a time interval of type [t1, t2],
where t1, t2 ∈ R and t1 ≤ t2. We also define the two
following relations:

• ti ∈ [t1, t2] if t1 ≤ ti and ti ≤ t2
• [t1, t2] ⊆ [t3, t4] if t3 ≤ t1 and t2 ≤ t4

Definition 2: We define the OWNS database as a set of
expressions of the form owns(r, u, re)[T], where r ∈ R is
a role, u ∈ U is a user which can be null, re ∈ RE is a
resource and T is a time interval.

This means that for each resource within an organization,
there is a corresponding record in the OWNS database
specifying the role and maybe one of its members (in case

Table I
OWNS DATABASE FOR THE ROOT ROLE IN FIGURE 1 AT TIME POINT t0

Role User Resource tstart tend

Sec.Gro.Man. null Net.Sec.Pro.Lea. t0 tn
Sec.Gro.Man. null Phy.Sec.Pro.Lea. t0 tn
Sec.Gro.Man. alice laptop1 t0 tn
Sec.Gro.Man. alice laptop2 t0 tn
Sec.Gro.Man. alice disk1 : 500GB t0 tn

that the resource is not shared between all of the members)
who is the owner of that resource for a specific period of
time. This will raise the issue that the system has to be
initiated by a root role e.g. CEO which is the first owner in
the system. Table 1 shows the OWNS database for the root
role in our example depicted in Figure 1 at time point t0.

In the OB-RBAC model, each role in the system
is also considered as a specific type of resource
whose ownership is shared between the members of
its parent role. Over each role eight predetermined
administrative actions can be performed: role
creation/deletion, user-role assignment/revocation,
permission-role assignment/revocation and resource-
role assignment/revocation. Such administrative actions
can only be performed by either the owner of a role or
delegatees who receive such permissions from the owner.
While the resource-role assignment permission is performed
through timed-ownership delegation, role creation, user-role
assignment and permission-role assignment actions are
performed through timed-permission delegation. We leave
the investigation of revocation mechanisms for the future
work.

Definition 3: We define the set of timed-ownership delega-
tion statements T-OD as follows:
own-delegate(ui, uj , r, re,m, t)[T] ∈ T-OD if ui, uj ∈ U ,
r ∈ R, re ∈ RE,m ∈ {s, i} which indicates the mode of
the delegation such that if m = s, uj is null, t is a time
point, and [T] is a time interval.

own-delegate(u1, null, r1, re1, s, t1)[T1] ∈ T-OD means
that user u1 at time point t1 delegates the ownership of
resource re1 to role r1 such that the ownership is shared
between all members of r1 for the time interval T1. The
meaning of own-delegate(u1, u2, r1, re1, i, t1)[T1] ∈ T-OD
is that u1 at time point t1 delegates the ownership of
re1 to u2, an individual member of role r1, for the time
interval T1. own-delegate(u1, u2, r1, re1, i, t1)[T1] operation
succeeds if and only if the following constraints are satisfied
(which are the same for mode s):

1) own-delegate(u1, u2, r1, re1, i, t1)[t2, t3], t1 ≤ t2.
2) ((u1, r2) ∈ UR)1 ∧ (r2 �= r1) ∧

1UR is the user-role assignment relation.

238

Security

Group

Manager

�etworkSecurity

ProjectLeader

PhysicalSecurity

ProjectLeader

Figure 2. Role hierarchy in the security group at t0

(((r2, u1, re1)[T2] ∈ OWNS) ∨ ((r2, null, re1)[T2] ∈
OWNS) such that [T1] ⊆ [T2]).

3) ¬∃(((ri, uj , re1)[Ti] ∈ OWNS) ∨
((ri, null, re1)[Ti] ∈ OWNS) such that ∃ tj ∈ [T1] ∧
tj ∈ [Ti]).

4) (r2, null, r1)[T3] ∈ OWNS ∧ [T1] ⊆ [T3].

The first constraint indicates that the owner of a resource
can only delegate the ownership of his resource for a
time interval in the future. The second and third sets of
constraints indicate that the delegator user u1 must be a
member of role r2 which is the owner of resource re1

for at least the same time interval for which re1 is to be
delegated to the delegatee role r1. The reason for which
the third constraint is also required is given soon. The
fourth constraint indicates that the delegator role r2 can
delegate the ownership of its own resources only to its
immediate children. The motivation behind this is that each
role in the system can be associated with both operative
and administrative tasks and thus, should have freedom to
administer its own resources. As a consequence, when the
right of creating new roles is delegated to a role, this is the
delegatee role who becomes authorized to administer its own
roles and not the delegator or any other role in the system. If
own-delegate(u1, u2, r1, re1, i, t1)[T1] succeeds, the OWNS
database must be accordingly updated. This is accomplished
by inserting tuple (r1, u2, re1)[T1] into the OWNS database
(if the mode is s tuple (r1, null, re1)[T1] is inserted into
the OWNS database). Moreover, the time interval for which
the delegator role is the owner of re1 must be changed.
We address this issue by the third constraint. This constraint
requires the authorization function to search through tuples
in the OWNS database regarding resource re1 to see if the
ownership of re1 has already been delegated for some time
points within T1.

Using the concept of timed-ownership delegation, the
owner of each resource within the system may change time
to time. This mainly affects trusted policies (policies from
which authorities originate), due to the fact that each trusted
policy must now be associated with the time interval for
which it is considered trusted. Consequently, in the OB-
RBAC model, when at time point t1 subject u1 requests

to issue a policy for time interval [T1] about resource
re1 and for target subjects who are members of role r1,
the authorization function checks the constraints described
above to see if the policy is trusted. This is the case only if
all those constraints are held.

Table 3 shows the OWNS database for the existing
roles in our example at time point t1, after enforcing the
authorized timed-ownership delegation instances given in
Table 2. We can see that alice delegates laptop1 to bob
who is a member of role Net.Sec.Pro.Man.. In addition,
bob delegates 10GB of his own disk storage disk2 to carol
who is a member of role Sen.Res..

2) Timed-Permission Delegation: As aforementioned, in
order for delegation of activities down in the role hierarchy
works satisfactorily, each delegatee role should be given the
required resources and permissions. In the previous section
we described delegation of resources. However, in some
cases a delegator role instead of delegating the ownership
of its own resources, may prefer to only delegate required
permissions over its own resources. This is specially the
case when a resource should be shared between more than
one delegatee role. In the following, we describe delegation
of permissions in the OB-RBAC.

Definition 4: We define the set of permissions P as follows:
• pacc(a, re) ∈ P , if a ∈ A (set of actions), and re ∈

RE.
• padm(r, p) ∈ P , if r ∈ R, and p ∈ P .

permissions of the form pacc(a, re) denote access per-
missions, while permissions of the form padm(r, p) denote
administrative permissions. pacc(a, re) is the right of per-
forming action a on resource re. As we mentioned earlier,
we leave the investigation of revocation mechanisms for
the future work. Therefore, padm(r1, p1) is the right of
delegation of permission p1 to role r1.

While access delegation is a mechanism of assigning
access permissions to subjects, Administrative delegation is
used to distribute administrative permissions, through which
decentralized administration of authorizations is achieved.
In the OB-RBAC model, an authorized role can delegate
to its immediate children firstly, the right of accessing its
own resources and secondly, the right of issuing policies
regarding such resources, using access and administrative
delegation operations, respectively.

Definition 5: We define the set of timed-permission delega-
tion statements T-PD as follows:
perm-delegate(u, p, t)[T] ∈ T-PD if u ∈ U , p is an admin-
istrative permission, t is a time point, and [T] is a time
interval.

perm-delegate(u1, padm(r1, p1), t1)[T1] ∈ T-PD means
that user u1 at time point t1 performs administrative
permission padm(r1, p1) which results in the delegation of

239

Table II
T-OD: AUTHORIZED TIMED-OWNERSHIP DELEGATION INSTANCES

Instance of Timed-Ownership Delegation Delegator Role
own-delegate(alice, bob, net.sec.pro.lea., laptop1, i, t1)[t2, t6] alice ∈ sec.gro.man.
own-delegate(alice, null, net.sec.pro.lea., disk2 : 50GBofdisk1, s, t2)[t3, t6] alice ∈ sec.gro.man.
own-delegate(bob, carol, Sen.Res, disk3 : 10GBofdisk2, i, t3)[t3, t6] bob ∈ Net.Sec.Pro.Lea.

Table III
OWNS DATABASE AFTER ENFORCING AUTHORIZED own-delegate

OPERATIONS, t0 ≤ ti ≤ tn (1 ≤ i ≤ n)

Role User Resource tstart tend

sec.gro.man. null net.sec.pro.lea. t0 tn
sec.gro.man. null phy.sec.pro.lea. t0 tn
sec.gro.man. alice laptop1 t0 tn
sec.gro.man. alice laptop2 t0 tn
sec.gro.man. alice disk1 t0 tn
net.sec.pro.lea. null sen.res. t0 tn
net.sec.pro.lea. bob laptop1 t2 t6
net.sec.pro.lea. null disk2 t3 t6
sen.res. carol disk3 t3 t6

permission p1 for the time interval [T1] to role r1. It should
be noted that p1 can assume two forms: pacc(a1, re1) and
padm(ř1, pacc(a1, re1)). In the first case, members of r1

are authorized to perform action a1 on resource re1. In the
second case, members of r1 are authorized to delegate to the
immediate children of role r1 denoted by ř1 firstly, the right
of performing a1 on re1 and secondly, the right of further
delegation of the previous right to the immediate children
of ř1. This is similar to the mechanism of delegation of
administrative rights applied by the delegation profile [12]
of the eXtensible Access Control Markup Language [13].
In the following, we describe under which circumstances
operation perm-delegate(u1, padm(r1, p1), t1)[T1] succeeds.

Definition 6: Let 	 be the validates relation between two
timed-permission delegation statements, where
perm-delegate(u1, padm(r1, p1), t1)[T1] 	
perm-delegate(u2, padm(r2, p2), t2)[T2], if:
(p1 = padm(ř1, pacc(a1, re1))) ∧ ((u2, r1) ∈ UR) ∧ (t2 ∈
[T1])∧(p2 = pacc(a1, re1)∨padm(ř2, pacc(a1, re1)))∧(r2 ∈
ř1).

Each request for a timed-permission delegation operation
perm-delegate(un, padm(rn, pn), tn)[Tn] is evaluated by the
backward chaining process [12], in which a chain of permis-
sion delegation statements must be found, such that each
delegation statement is validated by the next one. Such a
process is successfully terminated only if the chain can
be traced back to a permission delegation statement perm-
delegate(u1, padm(r1, p1), t1)[T1] such that:

• ((r0, null, re1)[T0] ∈ OWNS) ∨((r0, u1, re1)[T0] ∈
OWNS), where re1 is a resource that all permissions
pi 1 ≤ i ≤ n are about, and r0 is a role that u1 is a
member of.

• [Ti] ⊆ [T0] (1 ≤ i ≤ n).
Each access request of the form (un, pacc(an, ren), tn) is

also authorized in a similar way described in the following (
such an authorization is required when un is not the owner
of ren at time point tn):

• ∃ rn such that (un, rn) ∈ UR ∧
pacc(an, ren) has been assigned to rn.

• The backward chaining process similar to the one
described above is used to evaluate the access request.
However, in this case, the process begins with a per-
mission delegation statement of the following form:
perm-delegate(ui, padm(rn, pn), ti)[Ti] in which pn =
pacc(an, ren).

• tn ∈ [T0], where [T0] is the time interval for which the
root delegator is the owner of resource ren.

B. Discussion about Resource Creation Permission

As we mentioned earlier, in the OB-RBAC model there
must be a top senior role, e.g. CEO, who is the first
owner of the resources in the system. Among such resources
are also roles created by this top senior role, to which
it delegates some activities based on the competencies of
each delegatee role. However, besides the top senior role,
other roles may also require to introduce new resources
such as roles, documents, and services into the system. In
general, we argue that each role in the hierarchy is allowed
to introduce new resources of specific types into the system,
only if it has been delegated the required permission. For
instance, in our example depicted in Figure 2, a member of
role NetworkSecurityProjectLeader is authorized to cre-
ate roles SeniorResearcher and NetworkProgrammer
only if it has been delegated permission pacc(create, role)
through corresponding delegation permission. It should
be noted that though resource creation is an administra-
tive permission, we consider it as an access permission
pacc(create, re), in order to keep it consistent with defi-
nition 4. This is also the case for user-role assignment and
permission-role assignment actions.

IV. RELATED WORK

Administration and delegation in RBAC have been re-
search tracks within the active area of RBAC. In the existing
role-based administrative models, the actual administration
of the administrative roles is centralized and it is assumed
that there is a central unit of administration that has all the
authority for creating and modifying the administrative roles
and their relations. Thus, the authority to administrate the

240

administrative roles is not captured in the administrative or
extended role hierarchy and requires yet another adminis-
trative level of role hierarchy [1]. This is in contrast to our
proposed model, in which only one role hierarchy is built
in such a way that all roles can actively participate in both
operative and administrative tasks.

Delegation in RBAC is about delegation of rights available
to a role to another role. This means that a user assigned
to a specific role may let another user act on his behalf in
activating that specific role. This is not the same as dele-
gating administrative rights either in terms of assigning new
users, resources and permissions to the role or introducing
new resources into the system. In delegation models for
RBAC [14], [15], [16], it is assumed that there are designated
administrative roles or security officers controlling such
administrative rights. This is an assumption that we don’t
have in the OB-RBAC model, as the administrative tasks
are distributed among all roles.

V. CONCLUSION

In this paper we present a new class of RBAC model
called OB-RBAC, which utilizes the administrative approach
applied by DAC models. The main advantage of the OB-
RBAC model is that it builds a policy model which fits
more naturally with the structure of an organization and the
activities it performs to satisfy its missions. This is partic-
ularly the case for organizations with flexible and informal
structure and fully decentralized administrative procedures.
Consequently, in our model, each role in the system is given
a certain degree of control over resources and permissions in
such a way that more mission-oriented decisions are made by
senior roles and more specialized-level decisions are made
by junior roles.

Future work will include the development of a prototype
for the OB-RBAC model which can be used in different
application scenarios. Furthermore, we plan to extend the
OB-RBAC model in two directions. Firstly, incorporating
models and mechanisms to support the supervision relation
between the delegator and delegatee. Secondly, investigating
different revocation schemes which can be applied to the
model.

REFERENCES

[1] B. Sadighi, “Decentralised privilege management for access
control,” Ph.D. dissertation, 2005.

[2] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pp. 105–135, 1999.

[3] S. Oh and R. Sandhu, “A model for role administration
using organization structure,” in SACMAT ’02: Proceedings
of the seventh ACM symposium on Access control models and
technologies. New York, NY, USA: ACM, 2002, pp. 155–
162.

[4] J. Crampton and G. Loizou, “Administrative scope: A foun-
dation for role-based administrative models,” ACM Trans. Inf.
Syst. Secur., vol. 6, no. 2, pp. 201–231, 2003.

[5] J. Crampton, “On permissions, inheritance and role hierar-
chies,” in CCS ’03: Proceedings of the 10th ACM conference
on Computer and communications security. New York, NY,
USA: ACM, 2003, pp. 85–92.

[6] C. Goh and A. Baldwin, “Towards a more complete model of
role,” in RBAC ’98: Proceedings of the third ACM workshop
on Role-based access control. New York, NY, USA: ACM,
1998, pp. 55–62.

[7] J. D. Moffett and E. C. Lupu, “The uses of role hierarchies
in access control,” in RBAC ’99: Proceedings of the fourth
ACM workshop on Role-based access control. New York,
NY, USA: ACM, 1999, pp. 153–160.

[8] A. J. G. Silvius, “Business & IT alignment in theory and prac-
tice,” in HICSS ’07: Proceedings of the 40th Annual Hawaii
International Conference on System Sciences. Washington,
DC, USA: IEEE Computer Society, 2007, p. 211b.

[9] F. B. Tan and R. B. Gallupe, “A framework for research
into business-IT alignment: a cognitive emphasis,” pp. 50–
73, 2003.

[10] R. J. Wieringa, J. Gordijn, and P. A. T. van Eck, “Value-
based business-IT alignment in networked constellations of
enterprises,” in 1st International Workshop on Requirements
Engineering for Business Need and IT Alignment (REBNITA
2005), Paris, France, K. Cox, E. Dubois, Y. Pigneur, S. J.
Bleistein, J. Verner, A. M. Davis, and R. J. Wieringa, Eds.
University of New South Wales Press, August 2005, pp. 38–
43.

[11] J. D. Moffett, “Control principles and role hierarchies,” in
RBAC ’98: Proceedings of the third ACM workshop on Role-
based access control. New York, NY, USA: ACM, 1998,
pp. 63–69.

[12] E. Rissanen, “XACML v3.0 administration and delega-
tion profile version 1.0,” 2008, http://docs.oasis-open.org/
[tc-short-name]/[additionalpath/filename].pdf.

[13] T. Moses, “eXtensible Access Control Markup Lan-
guage,” 2005, http://docs.oasis-open.org/xacml/2.0/access
control-xacml-2.0-core-spec-os.pdf.

[14] E. Barka and R. Sandhu, “Framework for role-based delega-
tion models,” Computer Security Applications, 2000. ACSAC
’00. 16th Annual Conference, pp. 168–176, Dec 2000.

[15] J. Crampton and H. Khambhammettu, “Delegation
in role-based access control,” International Journal
of Information Security (IJIS), vol. 7, no. 2,
pp. 123–136, April 2008. [Online]. Available: http:
//dx.doi.org/10.1007/s10207-007-0044-8

[16] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framework
for role-based delegation and revocation,” ACM Trans. Inf.
Syst. Secur., vol. 6, no. 3, pp. 404–441, 2003.

241

