SAMPLED-DATA L* SMOOTHING: FIXED-SIZE ARE SOLUTION WITH FREE
HOLD FUNCTION*

GJERRIT MEINSMA’ AND LEONID MIRKIN *

Abstract. The problem of estimating an analog signal from its noisy @athmeasurements is studied in the
L°° (inducedL?-norm) framework. The main emphasis is placed on relaxingality requirements. Namely, it
is assumed thdt future measurements are available to the estimator, whigkesponds to the fixed-lag smoothing
formulation. A closed-form solution to the problem is dedv The solution has the complexity ©f(/) and is based
on two discrete algebraic Riccati equations, whose size doedepend on the smoothing lag
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1. Introduction. This paper studies the problem of estimating an analog kigfram
sampled measurements of a related signalVe assume that and y are generated by an
analog LTI systengj, driven by a common exogenous signgl as shown in Fig. 1.1. The

FIG. 1.1.Sampled-data estimation setup

measured discrete signalis the sampled version of (S denotes the ideal sampler) with
a constant sampling perigd> 0, corrupted by a discrete measurement nais&he latter
may reflect roundoff errors and its intensity is modeled yriatrix¥ = 3’ > 0. The D/A
converterF (estimator), which generates an estimatef v, is our design parameter. We
guantify the estimation performance in terms of fff& norm of theerror system
Ge:=[Gy 0]-F[SG, x'?], (1.1)

which maps the aggregate exogenous signak [ ;" | (see Fig. 1.1) to the estimation error
e := v —u (hereg, andg, are the rows of; corresponding t@ andy, respectively). This
L* norm is the induced operator notbi(R) x £2(Z) — L*(R).

The main theme of this study is the relaxation of causalityst@ints imposed upaf.
We say thatF is /-causalif its outputu(z), at a time instance € R, depends only of[k] for
allk <t/h + 1. In other words, aih-causal estimator has access tfuture” measurements
of y (I steps preview). Estimation problems in which the estimea@onstrained to bé-
causal for somé € N are referred to afixed-lag smoothingnd! is called thesmoothing
lag, see [1,17] and the references therein. The smoothinggmobiay also be interpreted
as the estimation of th&:-delayed version of by a causal estimator, so the problem is
frequently referred to as the > fixed-lag smoothing, which reflects the causalitydafin
this formulation.

The incentive for relaxing causality constraints Bnis the potential for an improved
estimation performance [1]. This comes at the price of a nsoraplexF and, especially,
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a more knotty analysis compared with corresponding filtein = 0) and fixed-interval
smoothing { = oo) results. Even in pure continuous- and discrete-timersgstunrestricted
solutions to thel.> (H*°) fixed-lag smoothing problems were derived only in '00s P13,
more than a decade after the corresponding filtering and-fitedval smoothing results [18,
19]. Sampled-data counterparts of these results are yet ot@llenging. To the best of
our knowledge, there is nb* fixed-lag smoothing solution for the setup in Fig. 1.1 in the
literature. The filtering problem in this setting was solwed?20] in the case o> = I and
then in [15] for a general, possibly singulaZ, The design of non-causal D/A converters
(fixed-interval smoothing) is addressed in [9]. In the spkcase of = 1 (andX = 0), [14]
derives the solvability conditions, but not formulae 6r

We address the sampled-ddt& fixed-lag smoothing problem via the lifting technique
[4], which converts it to an equivalent pure discrete prahlsome parameters of which are
operators over infinite-dimensional spaces. We then st#ititarformal solution in terms of
these operators and then rewrite such a solution in termBeobtiginal parameters .
The latter procedure, called peeling-off, is rather nerdtiand its successful completion is
the main technical contribution of this paper. Technicalllemges of the peeling-off step in
the smoothing case go far beyond those in the filtering casg ¢lving chiefly to a more
elaborate solution to the discrete smoothing problems.

It is well known [2, Sec. 7.3] that discrete fixed-lag smonthtan in principle be cast
as a filtering { = 0) problem by incorporating the delay’ in the “v” channel into the
signal generator. This approach, however, increases tit#gmn dimension and might blur
properties of the resulting solution. In t#&? (Kalman smoothing) case, the structure of the
filtering formulae can be exploited to derive a solution tisghased on fixed-size (indepen-
dent of/) Riccati equation and whose computational burde®$), see [2, Sec. 7.3]. A
similar approach, however, does not work so smoothly inAlie optimization because the
corresponding Riccati equation in this case is more invthlgee [3, 7, 23] for solutions de-
rived via this method and [23]11-B] for a discussion about their limitations. Moreovéne
application of this approach to the sampled-data problecoisplicated by the fact that the
“v” channelis intrinsically infinite dimensional in the liftelomain. To the best of our knowl-
edge, the only complete solution to the discrat® fixed-lag smoothing problem available
in the literature is the result of [21]. It provides necegsand sufficient solvability condi-
tions and does not introduce restrictive assumptions aheugignal generator. This solution,
however, involves several intermediate steps, which irmpés use as a starting point for the
peeling-of procedure. This motivates us to derive altéraatiscrete state-space formulae
in [12] following the steps of [16].

The solution of [12] also involves several intermediateakdtions. These calculations,
however, appear to be more suitable for the use in sampliedaghgplications. As a result,
in the current paper we succeed in deriving a numericallstétzle and transparent solution
to the L>° sampled-data problem. Our solution is based on two disalgi&braic Riccati
equations, which are independent of the smoothing &t one of which does not depend on
the achievable performance leyekither. Similarly to other sampled-dat&® solutions [4],
our solvability conditions involve the verification of them-singularity of a matrix function
built upon blocks of a matrix exponential over the whole & (0, 2]. This part is the most
involved numerically part of the solvability conditionsh& others are just plain conditions
based on the correspondiff® Riccati equation. The suboptimal solution is then the cdesca
of a discrete filter and a zero-order generalized hold. Ttierlactually coincides with the
D/A part of the optimal_? solution of [10].

Notation. For any setA, its indicator functionl,(z) is 1 if t € A and is zero else-
where. The spacg?(R) is the set of functiong” : R — C"s that have finite nornf| £, :=
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(f,ell f(0)]1? di)'/2, where -| denotes the standard Euclidean norif?(Z) is the set of
f :Z — € with finite norm|| |, := (C ez | F K112

2. Problem Formulation. Consider the system in Fig. 1.1. Throughout the paper we
assume thag is a causal finite-dimensional LTI system given in terms hitnimal state-

space realization
A| B
_ | Guls) | _
G@_[GM]_{Q } e

G, | 0
and the estimataF : y — u is shift invariant and-causal, i.e., is in the form

Le/hl+1

u(ty= Y ¢@t—ibjlil. teR (2.2)

i=—00

for somehold function(interpolation kernely () and sampling period > 0. We say thatF

is stable if it is bounded as an operatd(Z) — L?(R) and stabilizing if the error systegi

in (1.1) is bounded as an operatiot(R) x £2(Z) — L?(R). The induced norm of the error
system is referred to as tHe® norm (see [8]) and denoted &8¢/ .. We also assume that
the realization in (2.1) satisfies

Ai: (Cy, e is detectable,
Ay [ €, X |has full row rank.

AssumptionA; is necessary and sufficient for the existence of a stabjliZzin.4, says that
the measurements are not redundant and hence can be maolet\ags of generality. In ad-
dition, we effectively assume that, (s) is strictly proper, which guarantees the boundedness
of the ideal sampling operation.
The problem studied in this paper is formulated as follows:
RP,,: Let signal generator§ and ¥ > 0, satisfying.4,,, and a constarit € N be given
and letS be the ideal sampler. Find whether there is a stable andistagi/-causal
estimatorF of form (2.2) such that

[Gelloo <¥

for a giveny > 0.
RP, ¢ corresponds to the filtering problem solved in [15, 20], velasRP,, ,—to the fixed-
interval smoothing problem solved in [9, Sec. IlI].

3. Main Result. To solve the smoothing problem for this system we need twm{sy
plectic) matrix exponentials:

At) = [ Al(l)(t) ﬁzg; ] = eXp([ g ljﬁ, ]t)

|:F11(l) Ia(t)
I (t) (1)

and
} = exXp(H, 1),
where

A BB’ BD! - ,
Hy:=|:0 _A,]+[_C, ](yzl—Dva) '[ ¢, D,B'].

v
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To shorten the notation, we omit the argument whea £, so thatA;; andI;; stand for
A;j(h) andTj; (h), respectively.

In the solution we need two discrete algebraic Riccati éqnat{DARES). The first one
is the DARE associated with the Kalman filter solution:

Y = Au(Y —YC)(Z + G, YC) ' CY) A + A Al (3.1)
Itis known [10] that if.A1 » hold, (3.1) admits a stabilizing solutidh = Y’ > 0 for which
A=A (I —YCH(Z +C,YC)T'Cy) (3.2)
is Schur. The discrete Lyapunov equation
X =A XA +C)(X+CYC)'C, (3.3)

is then always solvable by axi = X’ > 0. Denote ther? := I — YC;(¥ + C,YC))"'C,
and define the matrix

(52 82018 4t
Sl 12 Sy 0 A\ XA,
1o X Do+ TyPY 1 '[1 P (3.4)
0 P || I—YX I,+IyPY Y I, P ‘

(Sya1 =S8, <0andS,,, = S, ,, <0). The second DARE,
Yy = Sy2(l + Y, 8,207 Yy S, 1, — Sy, (3.5)

is y-dependent and its solution, which existy ifs sufficiently large, is said to be stabilizing
if det( + Y, S,2,) # 0 and the matrixS, 1»(/ + Y, Sy.2)"" is Schur.
The main result of this paper is then formulated as follows:
THEOREM3.1. Let the signal generatdy be given by2.1)and assumptiongl; » hold.
ThenRP, ; is solvable iffy satisfies the following conditions:
Ly >|D.l,
2. I'»(t) + M1 (1) PY is nonsingulavt € (0, A],
3. p((] — Y(Fzz + F21PY)(F12 + F11PY)71)(1 — YX)) <1,
4. there is a stabilizing solutiofi, = Y, > 0 to the DARK3.5)andp(Y, Sy 2,) < 1,
5. p(Y, A} X 4;) < 1, whered; := A}
(the first two conditions guarantee the well-posedneg84f). If these conditions hold, then

FI1G. 3.1.y-suboptimal solution

the estimator depicted in Fig. 3.1 solves the problem. hésdascade of a discrete estimator,
F,and a generalized zero-order holH, with the hold function

d)h(t) = [ CU 0 ]A(f —]’l)|: é g ] ﬂ[o,h)(l‘). (36)
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The components of the discrete filter are

Fue) = 2 [ fil I AnYCy(Z (J)r cye)™ } ’ (3.72)
AALL A AALL Y ALCH(E 4+ G YC)T!
Fp(z) =" { I 0 } (3.7b)
X - A X4 0
-1
Fi(z) =Y A, ,C)(Z+CYC)™ ', (3.7¢)
i=0

whereA; := 1 — Y, A/ X A;.

Proof. Omitted because of space limitatiofis.

Some remarks are in order:

Remark 3.1 (solvability conditions)The first four conditions of Theorem 3.1 do not
depend on the smoothing lagThese are the necessary and sufficient conditions for thie so
ability of the L* fixed-intervalsmoothing problem/(— o). The fifth solvability condition
of Theorem 3.1 reflects then constraints imposed by a fingeigw. Becausel; is Schur,
p(Yy/I;XfL), as a function of, is upperbounded by an exponentially decreasing function.
Hence, whenever, is bounded, there exist a finitefor which the causality constraint be-
comes inactive. v

Remark 3.2 (solvability fof = oo). It can be shown [9] thay satisfies the first four
conditions of Theorem 3.1 iff

y>m=|[ G 0]-Gu(SG) (2 +8G,(SG)) [ SG TV | 2o

In the case wheX’ > 0, thisy, can be characterized via the self-adjoint operaipfeie),
described by the following two-point boundary conditiostgm [5]:

=[5 2 |0+ 2o Juo o= ol v
v y
y() = [ C, D,B’ ]x(t) + D, D} u(r)

Namely,y > yj iff éy(eie) < y2I forall -z < @ < &. Thus,y; is the largesy for which

the symplectic matrix
M o I 0 F]l F12
UL eETIC, 1| Ty I

has unit circle eigenvalues. The matiix, is actually similar to the symplectic matrix as-
sociated with the sampled-dak&™ filtering Riccati equation in [15, 20] and it becomes the
symplectic matrix associated with (3.1) as> oc. v

Remark 3.3 (recovering the? solution). The only difference between the thé° esti-
mator of Theorem 3.1 and thie? solution of [10] is the presence @, ,;, the gray block in
Fig. 3.1, in the former. This block vanishes in two limitingses. First, becausg is Schur,
lim;~ 4; = 0 and the fixed-interval solution is independentofprovided it satisfies the
first four conditions of Theorem 3.1, of course) and appreachel ?-optimal solution. Sec-
ond, it follows from the proof of Theorem 3.1 that

. ) ) 0 A
||m 1//,11 v,12 i| — |: Z 1 i|
y~>oo|: Sy,lz Sy,zz Al 0

In this case (3.5) reads, = 4,7, A, and its stabilizing solution i¥, = 0. Hence, the gray
block vanishes fop — oo too (in this case the conditions of Theorem 3.1 held> 0). V
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4. Example: causal L cubic splines. Consider the problem with
1 010
Gy(s) =Gy(s)= =[]0 0]1 and X =0,
s 1 0[]0

which does satisfy assumption,; ». Without loss of generality we may assume that 1.

In the non-causal casé & oo) this setting reproduces theardinal cubic B-spline$22],
which are perhaps the most thoroughly studied polynomiateg. It is worth emphasizing
that in that case thé? and L*> criteria result in identical estimators, which is a known
property of non-causal solutions [610.4.2]. Then, in [10], we studied the? version of
the problem under causality constraints, i.e., in the filsgdsmoothing setup. The impulse
response of the resulting estimators could then be regasiealisal cubic splines. If causality
constraints are present? (mean-square) solutions are no longer identical ¥ (minmax)
solutions. It is therefore of interest to see how cardin@icsplines evolve under causality
constraints in thé.* setting. This is the main goal of this section.

AlthoughRP,,; studies a suboptimal solutiofide|l« < y), in this section we consider
the optimal case corresponding|t@e| < y. This is done by addressing the limiting in
which case the DARE (3.5) no longer has a stabilizing sohytiut still has a real positive
definite one. In general, this might be a delicate procedL6g put it works for this specific
example painlessly, with the last condition of Theorem 8gdlaced witho(Yy/I;XfL) <1.

First, let us calculate the matrices associated with/theolution. They are

1 t:—13/6 2)2
o222 _1[2+V3 343 - [ V3-31
A@) = 00 1 o | Y_€[3+\/§ 6+ﬁ]’ Al_[f—3 1]’
00! —t 1
0 0 6/3—6 3—33
P_[f—31 } and X:[3—3ﬁ V3 }

Then the hold function defined by (3.6) is
dn@)=[1 =1+t t(=1>+3t +~/3)/6 t(3t ++/3)/6 | Tjo,1)(0).

Using the arguments of Remark 3.2, it can be shown that themalachievabld G| », in the
non-causal case is = 1/72 ~ 0.1013. For thisy the first three conditions of Theorem 3.1
hold, the matrix

(sin_hg)2 ﬁ_sinhn — 515 sinhz (1 + coshr)
ro|.gsnhr J(sinhn)® | gt coshn) g sinh
2—”7 sinhr  —Z-(1 + coshr) | (smh_%)2 —%_ sinhx
Z-(1 + coshr) Z sinhzx I —5sinhx (sinhZ)?

and then

—15.410 —17.939 1 —4.271  3.369
s, — | 717939 —20.935, —4.624 | 3.647 | 4y
YT U471 46247 S1.045 0825 r=

3.369 3.647 0.825 —0.650

25.900 29.296
29.296 33.229 |-

The latter is positive definite and such that the eigenvadfiss ;» (1 + Y, S,.2,) ! are{—1,0}
(S,.12 Is singular and’,, is a semi-stabilizing solution of (3.5) now).
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() @(t)

(@l=1 (byl1=2

FiG. 4.1.Hold functionsg (¢) (red lines: L°°, blue lines: L?, dotted gray lines! = o)

Now,

vy iy ([T +VE/6 —x2+V3)/6 T _
P<YVA1XA1)—P([ 7 =3+3 1-72G+3)/6 D -

which implies that the fixed-interval performange= 1/ is achievable for every € N.
We consider two caseg: = 1 and/ = 2. The discrete filtersF in Fig. 3.1 for these
smoothing lags have transfer functions

z P+ @ -VI2+22+V3)z-2-3
_ _ _ (7 — 2_(3_ _3_ 1
Flz) = zol and F(z) = (z—=1(z _6((31_x1/)§3)z 3—43) —
0 6z(z — 1)?

respectively. Note that the dynamics of the causal parf afepend ori. In fact, as! in-
creases, their pole approaches= +/3—2viathe sequencg-1, - -1 —36 209 3
This is in contrast to thé.?> case, where the causal pole is located at everyi.

The resulting hold functions are presented in Fig. 4.1 bylirezs. For the sake of com-
parison, blue lines there show the correspondifgolutions of [10] and dotted lines show
the fixed-interval solution (cardinal cubic B-spline). $tseen from Fig. 4.1(a) that in the
case off = 1 we end up with th@redictive first-order holdlinear interpolator), whose hold

function

o) = (= [tDV—1,n@)

is linear in¢. This is surprising because this function is bathand L> optimal also in the
case wherG,(s) = Gy(s) = 1/s for everyl € N [11, Sec. Ill]. Forl > 1 the optimal holds
of Theorem 3.1 are cubic inand are qualitatively closer to the correspondirigsolutions.
Itis worth emphasizing that thie> hold functions shown in Fig. 4.1, as well as evéry
hold for/ > 2, attain the very samfGel|l.o = 1/72. Yet asl increases, thé? performance
improves, see [13, Sec. 4]. For exampld, i 1, the L> estimator attain§Ge|, ~ 0.1054,
which amounts to som&0% of the optimalL? performance level fot = 1. If | = 2, we
have||Gell. &~ 0.0773, which amounts to abou1.3% of the corresponding optimal value.
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