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Abstract. The problem of estimating an analog signal from its noisy sampled measurements is studied in the
L1 (inducedL2-norm) framework. The main emphasis is placed on relaxing causality requirements. Namely, it
is assumed thatl future measurements are available to the estimator, which corresponds to the fixed-lag smoothing
formulation. A closed-form solution to the problem is derived. The solution has the complexity ofO.l/ and is based
on two discrete algebraic Riccati equations, whose size does not depend on the smoothing lagl.
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1. Introduction. This paper studies the problem of estimating an analog signal v from
sampled measurements of a related signaly. We assume thatv andy are generated by an
analog LTI systemG, driven by a common exogenous signalwv as shown in Fig. 1.1. The
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FIG. 1.1.Sampled-data estimation setup

measured discrete signalNy is the sampled version ofy (S denotes the ideal sampler) with
a constant sampling periodh > 0, corrupted by a discrete measurement noiseNn. The latter
may reflect roundoff errors and its intensity is modeled by the matrix˙ D ˙ 0 � 0. The D/A
converterF (estimator), which generates an estimateu of v, is our design parameter. We
quantify the estimation performance in terms of theL1 norm of theerror system

Ge ´
�

Gv 0
�

� F
�

SGy ˙1=2
�

; (1.1)

which maps the aggregate exogenous signalw ´
� wv

Nwn

�

(see Fig. 1.1) to the estimation error
e ´ v � u (hereGv andGy are the rows ofG corresponding tov andy, respectively). This
L1 norm is the induced operator normL2.R/ � `2.Z/ ! L2.R/.

The main theme of this study is the relaxation of causality constraints imposed uponF .
We say thatF is l-causalif its outputu.t/, at a time instancet 2 R, depends only onNyŒk� for
all k � t=h C l . In other words, anl-causal estimator has access tol “future” measurements
of Ny (l steps preview). Estimation problems in which the estimatoris constrained to bel-
causal for somel 2 N are referred to asfixed-lag smoothingand l is called thesmoothing
lag, see [1, 17] and the references therein. The smoothing problem may also be interpreted
as the estimation of thelh-delayed version ofv by a causal estimator, so the problem is
frequently referred to as theH 1 fixed-lag smoothing, which reflects the causality ofGe in
this formulation.

The incentive for relaxing causality constraints onF is the potential for an improved
estimation performance [1]. This comes at the price of a morecomplexF and, especially,
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a more knotty analysis compared with corresponding filtering (l D 0) and fixed-interval
smoothing (l D 1) results. Even in pure continuous- and discrete-time settings unrestricted
solutions to theL1 (H 1) fixed-lag smoothing problems were derived only in ’00s [13,21],
more than a decade after the corresponding filtering and fixed-interval smoothing results [18,
19]. Sampled-data counterparts of these results are yet more challenging. To the best of
our knowledge, there is noL1 fixed-lag smoothing solution for the setup in Fig. 1.1 in the
literature. The filtering problem in this setting was solvedin [20] in the case oḟ D I and
then in [15] for a general, possibly singular,̇. The design of non-causal D/A converters
(fixed-interval smoothing) is addressed in [9]. In the special case ofl D 1 (and˙ D 0), [14]
derives the solvability conditions, but not formulae forF .

We address the sampled-dataL1 fixed-lag smoothing problem via the lifting technique
[4], which converts it to an equivalent pure discrete problem, some parameters of which are
operators over infinite-dimensional spaces. We then start with a formal solution in terms of
these operators and then rewrite such a solution in terms of the original parameters ofG.
The latter procedure, called peeling-off, is rather nontrivial and its successful completion is
the main technical contribution of this paper. Technical challenges of the peeling-off step in
the smoothing case go far beyond those in the filtering case [15], owing chiefly to a more
elaborate solution to the discrete smoothing problems.

It is well known [2, Sec. 7.3] that discrete fixed-lag smoothing can in principle be cast
as a filtering (l D 0) problem by incorporating the delaý�l in the “v” channel into the
signal generator. This approach, however, increases the problem dimension and might blur
properties of the resulting solution. In theH 2 (Kalman smoothing) case, the structure of the
filtering formulae can be exploited to derive a solution thatis based on fixed-size (indepen-
dent of l) Riccati equation and whose computational burden isO.l/, see [2, Sec. 7.3]. A
similar approach, however, does not work so smoothly in theH 1 optimization because the
corresponding Riccati equation in this case is more involved, see [3, 7, 23] for solutions de-
rived via this method and [21,÷III-B] for a discussion about their limitations. Moreover,the
application of this approach to the sampled-data problem iscomplicated by the fact that the
“v” channel is intrinsically infinite dimensional in the lifted domain. To the best of our knowl-
edge, the only complete solution to the discreteH 1 fixed-lag smoothing problem available
in the literature is the result of [21]. It provides necessary and sufficient solvability condi-
tions and does not introduce restrictive assumptions aboutthe signal generator. This solution,
however, involves several intermediate steps, which impedes its use as a starting point for the
peeling-of procedure. This motivates us to derive alternative discrete state-space formulae
in [12] following the steps of [16].

The solution of [12] also involves several intermediate calculations. These calculations,
however, appear to be more suitable for the use in sampled-data applications. As a result,
in the current paper we succeed in deriving a numerically tractable and transparent solution
to theL1 sampled-data problem. Our solution is based on two discretealgebraic Riccati
equations, which are independent of the smoothing lagl and one of which does not depend on
the achievable performance level
 either. Similarly to other sampled-dataH 1 solutions [4],
our solvability conditions involve the verification of the non-singularity of a matrix function
built upon blocks of a matrix exponential over the whole interval .0; h�. This part is the most
involved numerically part of the solvability conditions. The others are just plain conditions
based on the correspondingH 1 Riccati equation. The suboptimal solution is then the cascade
of a discrete filter and a zero-order generalized hold. The latter actually coincides with the
D/A part of the optimalL2 solution of [10].

Notation. For any setA, its indicator function1A.t/ is 1 if t 2 A and is zero else-
where. The spaceL2.R/ is the set of functionsf W R ! C

nf that have finite normkf k2 ´
2



.
R

t2R
kf .t/k2 dt/1=2, wherek�k denotes the standard Euclidean norm.`2.Z/ is the set of

Nf W Z ! C
nf with finite normk Nf k2 ´ .

P

k2Z
k Nf Œk�k2/1=2.

2. Problem Formulation. Consider the system in Fig. 1.1. Throughout the paper we
assume thatG is a causal finite-dimensional LTI system given in terms of its minimalstate-
space realization

G.s/ D
�

Gv.s/

Gy.s/

�

D

2

4

A B

Cv Dv

Cy 0

3

5 (2.1)

and the estimatorF W Ny 7! u is shift invariant andl-causal, i.e., is in the form

u.t/ D
bt=hcCl

X

iD�1

�.t � ih/ NyŒi �; t 2 R (2.2)

for somehold function(interpolation kernel)�.t/ and sampling periodh > 0. We say thatF
is stable if it is bounded as an operator`2.Z/ ! L2.R/ and stabilizing if the error systemGe

in (1.1) is bounded as an operatorL2.R/ � `2.Z/ ! L2.R/. The induced norm of the error
system is referred to as theL1 norm (see [8]) and denoted askGek1. We also assume that
the realization in (2.1) satisfies

A1: .Cy ; eAh/ is detectable,

A2:
�

Cy ˙
�

has full row rank.

AssumptionA1 is necessary and sufficient for the existence of a stabilizingF . A2 says that
the measurements are not redundant and hence can be made without loss of generality. In ad-
dition, we effectively assume thatGy.s/ is strictly proper, which guarantees the boundedness
of the ideal sampling operation.

The problem studied in this paper is formulated as follows:
RP
;l : Let signal generatorsG and˙ � 0, satisfyingA1,2, and a constantl 2 N be given

and letS be the ideal sampler. Find whether there is a stable and stabilizing l-causal
estimatorF of form (2.2) such that

kGek1 < 


for a given
 > 0.
RP
;0 corresponds to the filtering problem solved in [15, 20], whereasRP
;1—to the fixed-
interval smoothing problem solved in [9, Sec. III].

3. Main Result. To solve the smoothing problem for this system we need two (sym-
plectic) matrix exponentials:

�.t/ D
�

�11.t/ �12.t/

0 �22.t/

�

´ exp
��

A BB 0

0 �A0

�

t

�

and
�

�11.t/ �12.t/

�21.t/ �22.t/

�

´ exp.H
 t/;

where

H
 ´
�

A BB 0

0 �A0

�

C
�

BD0
v

�C 0
v

�

.
2I � DvD0
v/�1

�

Cv DvB 0
�

:
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To shorten the notation, we omit the argument whent D h, so that�ij and�ij stand for
�ij .h/ and�ij .h/, respectively.

In the solution we need two discrete algebraic Riccati equations (DAREs). The first one
is the DARE associated with the Kalman filter solution:

Y D �11

�

Y � YC 0
y.˙ C CyYC 0

y/�1CyY
�

�0
11 C �12�0

11: (3.1)

It is known [10] that ifA1,2 hold, (3.1) admits a stabilizing solutionY D Y 0 > 0 for which

NA1 ´ �11

�

I � YC 0
y.˙ C CyYC 0

y/�1Cy

�

(3.2)

is Schur. The discrete Lyapunov equation

X D NA0
1X NA1 C C 0

y.˙ C CyYC 0
y/�1Cy (3.3)

is then always solvable by anX D X 0 � 0. Denote thenP ´ I � YC 0
y.˙ C CyYC 0

y/�1Cy

and define the matrix

�

S
;11 S
;12

S 0

;12 S
;22

�

´ �
�

0 0

0 NA0
1X NA1

�

C
�

I 0

0 P 0

� �

�X �22 C �21P Y

I � YX �12 C �11P Y

��1 �

I �21P

Y �11P

�

(3.4)

(S
;11 D S 0

;11 � 0 andS
;22 D S 0


;22 � 0). The second DARE,

Y
 D S
;12.I C Y
S
;22/�1Y
S 0

;12 � S
;11; (3.5)

is 
-dependent and its solution, which exists if
 is sufficiently large, is said to be stabilizing
if det.I C Y
 S
;22/ ¤ 0 and the matrixS
;12.I C Y
 S
;22/�1 is Schur.

The main result of this paper is then formulated as follows:
THEOREM 3.1. Let the signal generatorG be given by(2.1)and assumptionsA1,2 hold.

ThenRP
;l is solvable iff
 satisfies the following conditions:
1. 
 > kDvk,
2. �12.t/ C �11.t/P Y is nonsingular8t 2 .0; h�,
3. �

��

I � Y.�22 C �21P Y /.�12 C �11P Y /�1
�

.I � YX/
�

< 1,
4. there is a stabilizing solutionY
 D Y 0


 � 0 to the DARE(3.5)and�.Y
S
;22/ < 1,
5. �.Y


NA0
lX

NAl / < 1, where NAi ´ NAi
1

(the first two conditions guarantee the well-posedness of(3.4)). If these conditions hold, then

NF

Ny

Nu1

N�Nu2

u
H

NFl.´/

NF
;l.´/

NFc.´/

´�1Cy

--

FIG. 3.1.
-suboptimal solution

the estimator depicted in Fig. 3.1 solves the problem. It is the cascade of a discrete estimator,
NF , and a generalized zero-order hold,H, with the hold function

�h.t/ ´
�

Cv 0
�

�.t � h/

�

I Y

0 I

�

1Œ0;h/.t/: (3.6)
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The components of the discrete filter are

NFc.´/ D ´

� NA1 �11YC 0
y.˙ C CyYC 0

y/�1

I 0

�

; (3.7a)

NF
;l .´/ D ´lC1

2

4

NA1��1
lC1�l

NA1��1
lC1Y


NA0
lC

0
y.˙ C CyYC 0

y/�1

I 0

X � NA0
l
X NA0

l
0

3

5 ; (3.7b)

NFl .´/ D
l�1
X

iD0

NA0
l�1�iC

0
y.˙ C CyYC 0

y/�1 ´l�i ; (3.7c)

where�i ´ I � Y

NA0
i X

NAi .
Proof. Omitted because of space limitations.
Some remarks are in order:
Remark 3.1 (solvability conditions).The first four conditions of Theorem 3.1 do not

depend on the smoothing lagl . These are the necessary and sufficient conditions for the solv-
ability of theL1 fixed-intervalsmoothing problem (l ! 1). The fifth solvability condition
of Theorem 3.1 reflects then constraints imposed by a finite preview. BecauseNA1 is Schur,
�.Y


NA0
lX

NAl /, as a function ofl , is upperbounded by an exponentially decreasing function.
Hence, wheneverY
 is bounded, there exist a finitel for which the causality constraint be-
comes inactive. O

Remark 3.2 (solvability forl D 1). It can be shown [9] that
 satisfies the first four
conditions of Theorem 3.1 iff


 > 
h ´






�

Gv 0
�

� Gv.SGy/�.˙ C SGy.SGy/�/�1
�

SGy ˙1=2
�






L2�`2!L2 :

In the case wheṅ > 0, this 
h can be characterized via the self-adjoint operatorMO
 .ej� /,
described by the following two-point boundary condition system [5]:�

Px.t/ D
�

A BB 0

0 �A0

�

x.t/ C
�

BD0
v

�C 0
v

�

u.t/; ej�x.0/ D
�

I 0

C 0
y˙�1Cy I

�

x.h/

y.t/ D
�

Cv DvB 0
�

x.t/ C DvD0
v u.t/

Namely,
 > 
h iff MO
 .ej� / < 
2I for all �� < � � � . Thus,
h is the largest
 for which
the symplectic matrix

M
 ´
�

I 0

C 0
y˙�1Cy I

� �

�11 �12

�21 �22

�

has unit circle eigenvalues. The matrixM
 is actually similar to the symplectic matrix as-
sociated with the sampled-dataH 1 filtering Riccati equation in [15, 20] and it becomes the
symplectic matrix associated with (3.1) as
 ! 1. O

Remark 3.3 (recovering theL2 solution).The only difference between the theL1 esti-
mator of Theorem 3.1 and theL2 solution of [10] is the presence ofNF
;l , the gray block in
Fig. 3.1, in the former. This block vanishes in two limiting cases. First, becauseNA1 is Schur,
lim l!1

NAl D 0 and the fixed-interval solution is independent of
 (provided it satisfies the
first four conditions of Theorem 3.1, of course) and approaches theL2-optimal solution. Sec-
ond, it follows from the proof of Theorem 3.1 that

lim

!1

�

S
;11 S
;12

S 0

;12 S
;22

�

D
�

0 NA1

NA0
1 0

�

:

In this case (3.5) readsY
 D NA1Y

NA0
1 and its stabilizing solution isY
 D 0. Hence, the gray

block vanishes for
 ! 1 too (in this case the conditions of Theorem 3.1 hold8h > 0). O

5



4. Example: causal L
1 cubic splines. Consider the problem with

Gv.s/ D Gy.s/ D 1

s2
D

2

4

0 1 0

0 0 1

1 0 0

3

5 and ˙ D 0;

which does satisfy assumptionsA1,2. Without loss of generality we may assume thath D 1.
In the non-causal case (l D 1) this setting reproduces thecardinal cubic B-splines[22],
which are perhaps the most thoroughly studied polynomial splines. It is worth emphasizing
that in that case theL2 and L1 criteria result in identical estimators, which is a known
property of non-causal solutions [6,÷10.4.2]. Then, in [10], we studied theL2 version of
the problem under causality constraints, i.e., in the fixed-lag smoothing setup. The impulse
response of the resulting estimators could then be regardedas causal cubic splines. If causality
constraints are present,L2 (mean-square) solutions are no longer identical toL1 (minmax)
solutions. It is therefore of interest to see how cardinal cubic splines evolve under causality
constraints in theL1 setting. This is the main goal of this section.

AlthoughRP
;l studies a suboptimal solution (kGek1 < 
), in this section we consider
the optimal case corresponding tokGek1 � 
 . This is done by addressing the limiting
 , in
which case the DARE (3.5) no longer has a stabilizing solution, but still has a real positive
definite one. In general, this might be a delicate procedure [16], but it works for this specific
example painlessly, with the last condition of Theorem 3.1 replaced with�.Y


NA0
l
X NAl/ � 1.

First, let us calculate the matrices associated with theL2 solution. They are

�.t/ D

2

6

6

4

1 t �t3=6 t2=2

0 1 �t2=2 t

0 0 1 0

0 0 �t 1

3

7

7

5

; Y D 1

6

�

2 C
p

3 3 C
p

3

3 C
p

3 6 C
p

3

�

; NA1 D
�

p
3 � 3 1p
3 � 3 1

�

;

P D
�

0 0p
3 � 3 1

�

; and X D
�

6
p

3 � 6 3 � 3
p

3

3 � 3
p

3
p

3

�

:

Then the hold function defined by (3.6) is

�h.t/ D
�

1 �1 C t t.�t2 C 3t C
p

3/=6 t.3t C
p

3/=6
�

1Œ0;1/.t/:

Using the arguments of Remark 3.2, it can be shown that the minimal achievablekGek1 in the
non-causal case is
 D 1=�2 � 0:1013. For this
 the first three conditions of Theorem 3.1
hold, the matrix

� D

2

6

6

4

.sinh �
2

/2 1
2�

sinh� � 1

3�3 sinh� 1

2�2 .1 C cosh�/
�
2

sinh� .sinh�/2 � 1

2�2 .1 C cosh�/ 1
2�

sinh�

� �3

2
sinh� � �2

2
.1 C cosh�/ .sinh �

2
/2 � �

2
sinh�

�2

2
.1 C cosh�/ �

2
sinh� � 1

2�
sinh� .sinh�

2
/2

3

7

7

5

and then

S
 D

2

6

6

4

�15:410 �17:939 �4:271 3:369

�17:939 �20:935 �4:624 3:647

�4:271 �4:624 �1:045 0:825

3:369 3:647 0:825 �0:650

3

7

7

5

and Y
 D
�

25:900 29:296

29:296 33:229

�

:

The latter is positive definite and such that the eigenvaluesof S
;12.I CY
S
;22/�1 aref�1; 0g
(S
;12 is singular andY
 is a semi-stabilizing solution of (3.5) now).
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�h h

1
�.t/

(a) l D 1

�h h

1
�.t/

(b) l D 2

FIG. 4.1.Hold functions�.t/ (red lines:L1, blue lines:L2, dotted gray lines:l D 1)

Now,

�.Y

NA0
1X NA1/ D �

��

�2.3 C
p

3/=6 ��2.2 C
p

3/=6

�2 � 3 C
p

3 1 � �2.3 C
p

3/=6

��

D 1;

which implies that the fixed-interval performance
 D 1=�2 is achievable for everyl 2 N.
We consider two cases:l D 1 and l D 2. The discrete filtersNF in Fig. 3.1 for these

smoothing lags have transfer functions

NF .´/ D

2

6

6

4

´

´ � 1

0

0

3

7

7

5

and NF .´/ D

2

6

6

4

�´3 C .4 �
p

3/´2 C 2.2 C
p

3/´ � 2 �
p

3

�.´ � 1/.´2 � .3 �
p

3/´ � 3 �
p

3/

�6.´ � 1/3

6´.´ � 1/2

3

7

7

5

1

4´ C 1
;

respectively. Note that the dynamics of the causal part ofNF depend onl . In fact, asl in-
creases, their pole approaches˛ ´

p
3�2 via the sequence

˚

� 1
4
; � 4

15
; � 15

56
; � 56

209
; � 209

780
; : : :g.

This is in contrast to theL2 case, where the causal pole is located at˛ at everyl .
The resulting hold functions are presented in Fig. 4.1 by redlines. For the sake of com-

parison, blue lines there show the correspondingL2 solutions of [10] and dotted lines show
the fixed-interval solution (cardinal cubic B-spline). It is seen from Fig. 4.1(a) that in the
case ofl D 1 we end up with thepredictive first-order hold(linear interpolator), whose hold
function

�.t/ D .1 � jt j/1Œ�1;1�.t/

is linear int . This is surprising because this function is bothL2 andL1 optimal also in the
case whenGv.s/ D Gy.s/ D 1=s for everyl 2 N [11, Sec. III]. Forl > 1 the optimal holds
of Theorem 3.1 are cubic int and are qualitatively closer to the correspondingL2 solutions.

It is worth emphasizing that theL1 hold functions shown in Fig. 4.1, as well as everyL1

hold for l > 2, attain the very samekGek1 D 1=�2. Yet asl increases, theL2 performance
improves, see [13, Sec. 4]. For example, ifl D 1, theL1 estimator attainskGek2 � 0:1054,
which amounts to some120% of the optimalL2 performance level forl D 1. If l D 2, we
havekGek2 � 0:0773, which amounts to about101:3% of the corresponding optimal value.

REFERENCES

[1] B. D. O. ANDERSON,From Wiener to hidden Markov models, IEEE Control Syst. Mag., 19 (1999), pp. 41–51.

[2] B. D. O. ANDERSON ANDJ. B. MOORE, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.

[3] P. BOLZERN, P. COLANERI, AND G. DE NICOLAO, On discrete-timeH 1 fixed-lag smoothing, IEEE Trans.
Signal Processing, 52 (2004), pp. 132–141.

7



[4] T. CHEN AND B. A. FRANCIS, Optimal Sampled-Data Control Systems, Springer-Verlag, London, 1995.

[5] I. GOHBERG AND M. A. K AASHOEK, Time varying linear systems with boundary conditions and integral
operators, I. The transfer operator and its properties, Integral Equations and Operator Theory, 7 (1984),
pp. 325–391.

[6] B. HASSIBI, A. H. SAYED , AND T. KAILATH , Indefinite Quadratic Estimation and Control: A Unified
Approach toH 2 andH 1 Theories, SIAM, Philadelphia, 1999.

[7] A. C. KAHANE , L. M IRKIN , AND Z. J. PALMOR, On the discrete-timeH 1 fixed-lag smoothing, in Proc.
15th IFAC World Congress, Barcelona, Spain, 2002.

[8] G. MEINSMA AND L. M IRKIN , Sampling from a system-theoretic viewpoint: Part I—Concepts and tools,
IEEE Trans. Signal Processing, 58 (2010), pp. 3578–3590.

[9] , Sampling from a system-theoretic viewpoint: Part II—Non-causal solutions, IEEE Trans. Signal Pro-
cessing, 58 (2010), pp. 3591–3606.

[10] , L2 sampled signal reconstruction with causality constraints: Part I—Setup and solutions, IEEE Trans.
Signal Processing, 60 (2012), pp. 2260–2272.

[11] , L2 sampled signal reconstruction with causality constraints: Part II—Theory, IEEE Trans. Signal
Processing, 60 (2012), pp. 2273–2285.

[12] , Yet another discrete-timeH 1 fixed-lag smoothing solution, in Proc. 20th MTNS Symposium, Mel-
bourne, Australia, 2012. (to appear).

[13] L. M IRKIN , On theH 1 fixed-lag smoothing: How to exploit the information preview, Automatica, 39 (2003),
pp. 1495–1504.

[14] L. M IRKIN , C. A. KAHANE , AND J. Z. PALMOR, AchievableH 1 performance in sampled-data smoothing:
Beyond thek MD1k-barrier, Syst. Control Lett., 48 (2003), pp. 385–396.

[15] L. M IRKIN AND Z. J. PALMOR, On the sampled-dataH 1 filtering problem, Automatica, 35 (1999), pp. 895–
905.

[16] L. M IRKIN AND G. TADMOR, On geometric and analytic constraints in theH 1 fixed-lag smoothing, IEEE
Trans. Automat. Control, 52 (2007), pp. 1514–1519.

[17] J. B. MOORE, Fixed-lag smoothing results for linear dynamical systems, Australian Telecommunications
Research, 7 (1973), pp. 16–21.

[18] K. M. NAGPAL AND P. P. KHARGONEKAR, Filtering and smoothing in anH 1-setting, IEEE Trans. Au-
tomat. Control, 36 (1991), pp. 151–166.

[19] U. SHAKED, H1-minimum error state estimation of linear stationary processes, IEEE Trans. Automat. Con-
trol, 35 (1990), pp. 554–558.

[20] W. SUN, K. M. NAGPAL, AND P. P. KHARGONEKAR, H 1 control and filtering for sampled-data systems,
IEEE Trans. Automat. Control, 38 (1993), pp. 1162–1174.

[21] G. TADMOR AND L. M IRKIN , H 1 control and estimation with preview—Part II: Fixed-size ARE solutions
in discrete time, IEEE Trans. Automat. Control, 50 (2005), pp. 29–40.

[22] M. UNSER, A. ALDROUBI, AND M. EDEN, B-spline signal processing: Part I—Theory, IEEE Trans. Signal
Processing, 41 (1993), pp. 821–833.

[23] H. ZHANG, L. X IE, AND Y. C. SOH, A unified approach to linear estimation for discrete-time systems. II.
H 1 estimation, in Proc. 40th IEEE Conf. Decision and Control, Orlando, FL,2001, pp. 2923–2928.

8


