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I. MOTIVATION

Programming coarse-grain reconfigurable arrays (CGRAs)
is a challenging task [1] , [2]. In this work, we exploit the
algebraic structure which is often present in the specification
of a streaming application to distribute the different parts of a
computation over a multi-core architecture. This architecture
is dataflow-based, so that the control of the cores coincides
with the availability of data on the channels. In this paper, we
focus on the compiler, not the architecture. We formulate our
work in the functional programming language Haskell since
that is close to a mathematical formalism.

II. HASKELL

A powerful feature of a functional language is the availability
of higher-order functions, which not only accept values, but
also functions as arguments. Figure 1 shows two examples of
such higher order functions: zipWith takes two vectors x and
y as arguments and applies a specific operation (+) pairwise
to the elements in the vectors, whereas foldl accumulates the
values in a vector x by means of a specific operation (+),
starting from an initial value (0). Note that the arguments to
these functions are separated by spaces, and not by commas.
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Figure 1: Higher order functions

Another powerful feature is the possibility to define embed-
ded domain specific languages (EDSL) as data-types within
Haskell. First of all, a parser for such an EDSL comes for
free, and transformations of expressions in an EDSL can be
defined as normal functions which exploit the practical feature
of pattern matching.

III. TARGET ARCHITECTURE

We have been developing an architecture for efficient
execution of streaming applications containing a high degree of
instruction-level parallelism. This paper is about the compiler
for this architecture, therefore the architecture will only be
outlined in brief terms.

The architecture belongs to the class of coarse-grain recon-
figurable arrays (CGRAs) and is composed of a mesh of simple,
configurable cores. The size of the mesh is configurable at
design time, for this paper we are using a mesh of 16 cores. The
cores include a functional unit for binary operations, a local
register file and a program memory which is used to control
the behaviour of the core. The cores are interconnected by
both a nearest-neighbour network as well as a global network
on chip (NoC) for full connectivity. The programming of each
core is based on finite state machine (FSM) logic where each
state is again defined by means of a specific instruction set.
The execution mechanism of each core is based on dataflow
principles, i.e. as soon as the required input data is available,
the nodes executes.

IV. COMPILER DESIGN

In this section, the proposed compiler is outlined and the
implementation is briefly explained. First, the actual language
is shown, which is implemented as Embedded Domain Specific
Language (EDSL). Then, we show how this EDSL is used to
implement functions and built an abstract syntax tree (AST).
Finally, we outline how the AST is mapped to the target
architecture.

We first define an elementary version of the programming
language for our target architecture as an EDSL in Haskell,
by means of the algebraic data type Expr (see Listing 1),
containing a constructor for every operation a core in the target
architecture can execute. In the language Expr constants can
be formulated (line 1), delays and feedback loops are supported
(lines 2 and 3) and inputs can be represented (line 4). Note
that the EDSL is a recursive data type, i.e., the type Expr is
used in the defintion of Expr itself.

data Expr = Const Int 1
| DELAYED Expr 2
| FEEDBACK 3
| Input String 4
| Op OpCode Expr Expr 5

data OpCode = ADD | MUL | SQR | AND ... 6

Listing 1: recursive EDSL definition for an expression

An example of the usage of the language Expr to define a
sum of a constant and an input is as follows:

sum = Op ADD (Const 1) (Input“x ′′)



Regular structures can be expressed by using Haskell’s higher
order functions, as in the accumulation of addition over a
sequence x of numbers:
sum up x = foldl (Op ADD) (Const 0) x
A further advantage of using an algebraic data type for the

EDSL is that an expression formulated in the language in fact
already is an AST. That is to say, we don’t need to define a
parser. For example, the AST of the above function sum up
is automatically generated when evaluating sum up:
ghci> sum_up [Input "x0",Input "x1",Input "x2",Input "x3"]
ghci> Op ADD

(Op ADD
(Op ADD

(Op ADD (Const 0) (Input "x0"))
(Input "x1"))

(Input "x2"))
(Input "x3")

As final step, the AST is implemented on the architecture.
The implementation consists of two steps: First each node in
the AST is mapped to one core in the architecture, then the
code for each core and the routing information are generated.
The mapping is currently performed with an ILP formulation,
but since the focus of this paper is on the compiler, it is
not outlined further here. To generate code for the cores, the
AST is traversed from the root node and for each node the
corresponding code is generated according to the programming
principle mentioned in Section III.

V. USAGE

To illustrate the usage principle of the complete design flow,
we show how a multiplication of two vectors can be specified in
the presented EDSL and then mapped to the target architecture.

The multiplication of two vectors vxv , shown in Listing 2,
is built using the two higher-order functions zipWith and foldl
that have already been explained in section II. A graphical
representation of vxv for two vectors of length eight is shown
in Figure 2.
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Figure 2: Structure of vxv

vxv x y = out 1
where 2
ms = zipWith (Op MUL) x y 3
out = foldl (Op ADD) (Const 0) ms 4

Listing 2: Implementation of a multiplication of two vectors

In line 1 of the code, the function name vxv and its arguments
x and y which are the two vectors to be multiplied are defined.
out is the resulting output. In line 3, the vectors are element
wise multiplied which leads to the row of Op MUL in Figure 2.

Finally, in line 4, the results of the multiplications are added up,
which leads to the row of Op ADD in Figure 2. Note that the
input vectors are now no concrete numbers as in the example
in Section II, but instead represent input signals denoted with
Input “name index”.

The next step in the design flow is the actual code generation
and mapping to the target architecture. The mapping for vxv
is shown in Figure 3.
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Figure 3: Mapping of vxv

For testing purposes, a simulation function is provided by
the compiler where the implemented function can be tested
with concrete input values. To test the function vxv with the
two test vectors x = [1, 2, 3] and y = [4, 5, 6], the simulate
function simExpr is called which then displays the result:

ghci> simExpr vxv x y
ghci> 32

Furthermore, the compiler provides auto generated graphical
representations of both the AST and the mapping result.

VI. CONCLUSION

A compiler was developed for an existing coarse-grained
reconfigurable architecture to implement functions with a high
degree of instruction-level parallelism. For this, the functional
programming language Haskell was used, as it inherently has
a notion of structure and, thus, can easily express parallelism
and the flow of data. For the compiler, we implemented
an embedded domain specific language (EDSL) as recursive
datatype. In combination with higher order functions, this EDSL
can be used to construct expressions that directly resemble
the structure of a given problem and thus can be mapped in a
straight-forward way to the target architecture.
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