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ABSTRACT
The incremental design and analysis of parallel hard real-
time stream processing applications is hampered by the lack
of an intuitive compositional temporal analysis model that
supports arbitrary cyclic dependencies between tasks.

This paper introduces a temporal analysis model for
hard real-time systems, called the Compositional Temporal
Analysis (CTA) model, in which arbitrary cyclic dependen-
cies can be specified. The CTA model also supports hierar-
chical composition and incremental design of timed compo-
nents. The internals of a component in the CTA model can
be hidden without changing the temporal properties of the
component. Furthermore, the composition operation in the
CTA model is associative, which enables composing com-
ponents in an arbitrary order. Besides all these properties,
also latency constraints and periodic sources and sinks can
be specified and analyzed.

We also show in this paper that for the CTA model effi-
cient algorithms exist for buffer sizing, verifying consistency
of compositions and to compute the temporal properties of
compositions.

The CTA model can be used as an abstraction of timed
dataflow models. The CTA model uses components with
transfer rates per port, in contrast to dataflow models that
use actors with firing rules. Unlike dataflow models, the
CTA model is not executable.

An audio echo cancellation application is used to illustrate
the applicability of the CTA model for a stream processing
application with throughput and latency constraints, and to
illustrate incremental design.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces; D.2.13 [Software Engi-
neering]: Reusable Software
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1. INTRODUCTION
Emerging software defined radio applications should be

able to process multiple streams of different radio standards
simultaneously on shared multiprocessor hardware. The de-
sign and verification of these systems is hampered by the lack
of suitable compositional temporal analysis models that can
handle arbitrary cyclic dependencies, and can also handle la-
tency constraints in addition to throughput constraints. As
a result, an incremental design style to reduce the complex-
ity of the design and the analysis of these systems is hard
to apply. Ideally, such an incremental design style would
allow the grouping of components into subsystems that are
characterized in isolation without loss of accuracy.

For the throughput analysis of stream processing applica-
tions, dataflow models are often used. However, a limita-
tion of dataflow models is that they are not compositional
in general. A model is compositional if the properties of a
composition of components can be deduced from the prop-
erties of the individual components without knowing their
internal hierarchy. In the Synchronous Dataflow (SDF) [5]
model for example, composition is not always possible [13]
because deadlock freedom and token rate consistency of an
SDF graph can only be checked if the SDF graph contains
no hierarchy.

Figure 1, taken from [13], illustrates that the SDF model
is not compositional. In Figure 1a an SDF graph is shown
that is deadlock free because there are always sufficient to-
kens in one of the queues to fire one of the actors. However,
when actors A and B are composed into an actor P , an is-
sue with defining the rate at which actor P transfers tokens
arises. Using consistent rates, which guarantee that there
is no infinite accumulation of tokens on the edges, gives the
SDF graph shown in Figure 1b. However, this graph dead-
locks because the numbers of initial tokens are insufficient.
Even initially, no actor is enabled.

In this paper we introduce the Compositional Temporal
Analysis (CTA) model. We show that an abstraction can
be made from an SDF graph to a CTA model in which
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Figure 1: Composition of SDF actors

hierarchical composition of components can be performed
and incremental design is supported. It is also shown that
the CTA model can model latency constraints and strictly
periodic sources and sinks. The CTA model also supports
arbitrary cyclic dependencies between components.

The outline of this paper is as follows. The basic idea
behind the CTA model is presented in Section 2. Section 3
describes the CTA component model in detail. Composition
of CTA components is discussed in Section 4. The use of
the CTA model is illustrated in Section 5. Related work is
discussed in Section 6 and the conclusions are presented in
Section 7.

2. BASIC IDEA
In this section we provide an informal introduction to the

CTA model which is formalized in subsequent sections.
Components in the CTA model consist of ports and di-

rected connections between ports. Ports transfer data at a
current rate r which is bounded by a maximum rate r̂. Con-
nections introduce a total delay of ∆ which depends on the
current transfer rate of the connection. This delay speci-
fies the time it takes for data to go through the connection.
When ports are connected, their transfer rates are coupled
by a fixed ratio which is specified by the connection. An ex-
ample of such a component in the CTA model can be found
in Figure 2a. The example contains two components, A and
B, with three and four ports respectively and which both
have two connections between their ports. With the pro-
posed CTA component description, we can conservatively
model the periodic temporal behavior of dataflow graphs.

It has been shown that dataflow graphs can conservatively
model the temporal behavior of streaming applications [5].
Thanks to the monotonicity property of dataflow graphs
[15], earlier production times, can not lead to worse tem-
poral results. Therefore, these production times can be cho-
sen conservatively. Furthermore, we call a dataflow graph
to be temporally conservative to a task graph when every
data item arrives earlier in the buffer than the corresponding
token arrives in the queue of the dataflow graph [2].

We propose the CTA model as an additional level of ab-
straction in which the arrival of data is modeled tempo-
rally conservative (pessimistic) to the arrival of tokens in
the dataflow graph by bounding a possible schedule of the
dataflow graph with linear bounds. The CTA model is then
temporally conservative to an application if the dataflow
graph is also temporally conservative to the application.
It is guaranteed that in the application data arrives ear-
lier than is assumed during the temporal analysis of the
CTA model. Furthermore, compared to temporal analysis
of dataflow graphs, the CTA model adds composition and
hiding possibilities.

Figure 3a contains a dataflow graph and Figure 3c shows
the CTA model that corresponds to this graph. An actor in
the dataflow graph is translated to a component where each
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Figure 3: Dataflow graph and the corresponding
CTA model with the schedules used for temporal
analysis

incoming or outgoing queue of the actor becomes a port.
Inside the component, all ports corresponding to an incom-
ing queue are connected to all ports corresponding to an
outgoing queue. The queues between actors in the dataflow
graphs correspond with connections between components in
the CTA model. In this example, the delays of the internal
connections of the CTA components correspond with the fir-
ing durations of the corresponding actors. Initial tokens on a
queue correspond with a negative, rate dependent, delay on
the corresponding connection. This negative delay ∆ repre-
sents data that can initially be used, i.e. data can be used ∆
time units before data is produced on the connection. For
illustration we have chosen a transfer rate of 1

4
token per

time unit.
Figures 3b and 3d show that the delays of the CTA model

in Figure 3c, model the temporal behavior of the dataflow
graph in Figure 3a conservatively. Figure 3b contains pe-
riodic schedules of actors E and F . The circles mark the
consumption times of tokens and the squares mark the pro-
duction times of tokens. On a queue, tokens can only be
consumed after they are produced, which means that all the
consumptions (circles) of F need to take place later than the
corresponding productions (squares) of E. Purely for illus-
tration purposes we have added time between these produc-
tion and consumption times while they could occur at the
same time.

The periodic schedules as shown in Figure 3b can be
bounded by linear bounds which are illustrated with dashed
and solid lines. Figure 3d contains only these linear bounds.
The bound on the consumptions (dashed line) assumes ear-
lier (or equal) consumption times of tokens and the pro-
duction bound (solid line) assumes later (or equal) produc-
tion times of tokens. We can use these linear bounds in the
analysis because they assume later production times of data
which leads to a conservative temporal analysis result [2].
The CTA model of a dataflow graph is based on these linear
bounds.

In the CTA model periodic event sequences are used to ex-
press constraints. These periodic event sequences are spec-
ified using an offset and a distance between events. The
delays in the CTA model shift such a periodic event se-
quence over the time axis and thus change the offset. The
delays in the CTA model are therefore chosen to be equal
to the horizontal difference between the linear consumption
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Figure 2: Components, composition and hiding in the CTA model. The tables below the models contain the
visible ports, their maximum rates r̂ and their maximum current rates r̄

and production bound on the schedules of the corresponding
dataflow actors. This represents the maximum time between
the consumption of data on one port and the production on
the other port. The delay on the connection from F ′ to E′

specifies the amount of initially available data, which can
be computed with the number of initial tokens on the corre-
sponding queue in the dataflow model. The time it takes to
produce X tokens on a queue is in fact equal to X divided
by the transfer rate of data on the connection. Actor E can
transfer one token per four time units, i.e. the transfer rate
is maximally 1

4
, and thus, component E′ can start consum-

ing events −2
1/4

time before F ′ starts producing events.

Connections in the CTA model can change the transfer
rate with a fixed ratio. This can be seen as increasing or
decreasing the distance between events of the periodic event
sequence with a fixed amount of time.

Composition and hiding.
Figure 2a shows two CTA components, A and B. The

ports of the components are drawn as small circles and are
named Px. The maximum rates of the ports are shown in the
table below the components. When composing components,
connections are added between the ports of the components.
Arrows in this figure denote connections and the numbers
written next to these arrows represent the delay introduced
on the connection. The current rates of the ports connected
by connections are coupled with a fixed transfer rate ratio
which means that the maximum current rates of ports are
adapted to the slowest port in the chain of connected ports.
This transfer rate ratio is not shown in the figure, but can
be found by dividing the maximum transfer rates (r̂) from
the table in Figure 2a. Between P1 and P3 the transfer rate

ratio is equal to r̂(P3)
r̂(P1)

= 2 which means that the transfer rate

is doubled. The transfer rate ratios of the other connections
in Figure 2a are equal to 1.

Figure 2b shows the composition of components A and
B where the connections between P2 and P4 and between
P3 and P5 are added. The maximum current rates that are
possible given the transfer rate ratios of the connections are
shown in the table denoted by r̄. As shown in this figure,
the composition of components is again a component.

The ports that are connected in the composition can also
be hidden without changing the characteristics of the com-
ponent. This can be done by iteratively removing an internal
port and creating a connection for each pair of ports which
had a connection via this port. The delays of these new
connections can be found by adding the delays of the orig-
inal two connections together. The result of hiding all the
internal ports of the composition of Figure 2b is shown in

Figure 2c. The delays of the resulting connections are equal
to the sum of the delays of the original connections.

Consistency.
Not all compositions are possible. A composition must be

consistent, which means that it must be able to meet the
constraints imposed on the resulting component. Adding
connections can have the result that a port is connected
by multiple connections which means that there can be a
conflict in the ratios enforced by the different connections.
This type of consistency is similar to the consistency check
for SDF graphs and it indicates accumulation of data at a
lower level of abstraction.

It must be enforced that data becomes available in time.
The delay of a connection specifies the time it takes for data
to go through the connection. There can be cyclic connec-
tions between ports. This means that if the total time it
takes for data to travel through such a cycle of connections
is positive, data arrives too late. Because delays can be
rate dependent, we can calculate maximum transfer rates
for which all cycles have a negative cumulative delay. If such
rates can not be found, the composition is inconsistent. If a
CTA model corresponds to an SDF graph, inconsistency of
a composition usually indicates deadlock in that SDF graph.

3. COMPONENT MODEL
A component in the CTA model can be defined as a tuple

V = (P, r̂, C, γ, δ, ε). P specifies the ports of the compo-
nent. Each port has a strictly positive maximum transfer
rate which is specified by r̂ : P → R+. We use r(p) ≤ r̂(p)
as the current rate at which port p transfer data.

The set of connections between ports of the component is
defined by C ⊆ P × P. A connection (p, q) ∈ C is directed
from port p to port q and we use cpq as a shorthand for
(p, q). For each connection in the component a specification
of the delay introduced on the connection is given by δ and ε,
where ε : C → R specifies a constant delay on a connection
and δ : C→ R a rate dependent delay.

The transfer rates of ports of a connection (p, q) are cou-
pled with a fixed ratio. This ratio is specified by γ : C→ R+.
The current rate of port q of a connection (p, q) is coupled
to the current rate of port p: r(q) = γ(cpq ) · r(p).

We define the transfer rate on a connection (p, q) to be
equal to the transfer rate of the sending port: rc(cpq ) = r(p).
The time that data is delayed over a connection (p, q) de-
pends on the transfer rate of the connection and is equal

to: ∆(cpq ) = ε(cpq ) +
δ(cpq )

rc(cpq )
. The total delay of a connec-
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tion can be negative to specify that when the corresponding
application starts, data is available at the connection.

We introduce periodic event sequences as the unit of com-
putation in the CTA model. A periodic event sequence can
be specified as a tuple (o, λ). With o the offset of the event
sequence and λ the distance between events. The time at
which event n occurs in an event sequence (o, λ) is then
equal to τ(n) = o+n ·λ. The rate r of such a periodic event
sequence is equal to 1

λ
.

The semantics of ports in the CTA model can be for-
malized using such periodic event sequences. A port p can
produce event n on its outgoing connections at the moment
that event n is available at all of its incoming connections.
The moment that the first event can be produced is called
the start time s(p) of port p. This moment is larger than or
equal to the maximum of the offsets of the incoming periodic
event sequences. The rate at which port p can produce data
from that moment on is smaller or equal to the minimum of
the rates of the incoming periodic event sequences.

A connection in the CTA model can also be formalized
using periodic event sequences. A connection is always di-
rected from one port to another. Thus a connection (p, q)
receives one periodic event sequence from port p and pro-
duces a periodic event sequence on port q. The seman-
tics of the connection can be formalized as a transforma-
tion of the parameters of the incoming periodic event se-
quence. Consider the situation illustrated in Figure 4. Given
a periodic event sequence (op, λp) at port p the periodic
event sequence on port q is constrained by connection (p, q).
The event sequence at port p is then equal to (oq, λq) with
oq ≥ op + ε(cpq ) + λp · δ(cpq ) and λq = 1

γ(cpq )
· λp.

4. COMPOSITION
In this paper we use the following definition for composi-

tionality which is taken from [6]:

Definition 1:
A system is called compositional, if the properties of a com-
plex system can be deduced from the specifications of its
component modules, without any further information about
the exact internal structure of these modules.

In this section such a composition function is defined for
the CTA model. The composition of components is again a
component and the properties of this new component can be
deduced from the individual components of the composition
and the added connections between the components. Only
consistent compositions are allowed as will be defined in sub-
sequent sections. Furthermore, the connections between the
external ports of a component, including their properties
suffices for making a valid composition.

In Section 4.1 we describe the composition function it-
self and in Section 4.2 the consistency of a composition is
discussed. Associativity of the composition function of the
CTA model is presented in Section 4.3. The last section
defines a function which can hide ports from the specifica-
tion of a component without losing any information on the
resulting ports of the component.

4.1 Specification
Composing two components in the CTA model

adds connections between the two components. Con-
sider two components A = (PA , r̂A , CA , γA , δA , εA) and
B = (PB , r̂B , CB , γB , δB , εB ) where PA and PB are disjoint
sets of ports. The result of the composition D = A ⊕ B
is a new component which is specified by A, B and ⊕.
The compose function ⊕ adds connections C⊕ between
components A and B with C⊕ ⊆ (PA ∪ PB ) × (PA ∪ PB ).
The ratio between the rates on the added connections is
specified by the function γ⊕ : C⊕ → R, the rate dependent
delay introduced on the new connections by the function
δ⊕ : C⊕ → R and the constant delay by ε⊕ : C⊕ → R.

The result of the composition D = A ⊕ B, is formalized
as D = (PD , r̂D , CD , γD , δD , εD ). The ports of D are equal to
the union of the ports of A and B, i.e. PD = PA ∪ PB . The
maximum rates r̂D are defined using the maximum transfer
rates of A and B:

r̂D (p) = r̂X (p) for all p ∈ PX , with X ∈ {A,B}

The set of connections between ports of D can be specified
by CD = CA ∪ CB ∪ C⊕ . For each of these connections the
rate ratio γD , the rate dependent delay, δD , and the constant
delay, εD are specified as follows:

γD (c) = γX (c) for all c ∈ CX , with X ∈ {A,B,⊕}

δD (c) = δX (c) for all c ∈ CX , with X ∈ {A,B,⊕}

εD (c) = εX (c) for all c ∈ CX , with X ∈ {A,B,⊕}

4.2 Consistency
A CTA component needs to meet a certain number of con-

strains. Rates of ports are coupled by connections between
ports and the constraint on the start time of a port needs
to be met. Because a port can be connected by multiple in-
and/or outgoing connections, multiple constraints must be
met for a port. We call a CTA component consistent if all
the constraints for all the ports can be met.

Composing two consistent components can lead to incon-
sistencies because cyclic constraints that can not be met
can be created between the two components. This section
presents a method to verify the consistency of a compo-
nent. This method can obviously also be used to check if a
composition (which itself is also a component) is consistent.
Inconsistent compositions and components are not allowed
in the CTA model because they have ports on which it is
not possible to transfer any data or connections on which
data is accumulated.

A CTA component V = (P, r̂, C, γ, δ, ε) describes the fol-
lowing set of constraints: The transfer rates of ports con-
nected by connections are coupled:

∀cij ∈ C : r(j) = γ(cij ) · r(i)

Furthermore, the start time s(p) of a port p needs to be
larger or equal than the offsets of all the periodic event se-
quences on the incoming connections. The offset on an in-
coming connection can be specified using the start time of
the other port of the connection and the delay of the con-
nection. The start time constraint for all the ports can thus
be enforced with:

∀cij ∈ C : s(j) ≥ s(i) + ε(cij ) +
δ(cij )

r(i)



Next to that we have that the transfer rate of ports is
larger than 0 and smaller or equal than its maximum rate:

∀p ∈ P : 0 < r(p) ≤ r̂(p)

We now define a component to be consistent if a solution
exist for the Linear Programming (LP) program, defined in
Algorithm 1, in which we have substituted r(p) by 1/λ̄(p).
Note that LP programs can be solved in polynomial time
and thus checking the consistency of a component has a
polynomial time-complexity.

Algorithm 1 : Consistency

Minimize
∑
p∈P

λ̄(p)

Subject to

∀cij ∈ C : λ̄(j) =
1

γ(cij )
· λ̄(i) (1)

∀cij ∈ C : s(j) ≥ s(i) + ε(cij ) + δ(cij ) · λ̄(i) (2)

∀p ∈ P : λ̄(p) ≥ 1

r̂(p)
(3)

Algorithm 1 not only checks consistency but also calcu-
lates for each port the minimum event distance. This cor-
responds with calculating, for each port p, the maximum
possible transfer rate r̄(p) = 1/λ̄(p) for which the compo-
nent is consistent. These maximum possible transfer rates
can be useful if one is interested in the temporal properties
of the component.

The composition of components A and B equals the union
of the set of constraints that describes A, the set of con-
straints that describes B, and the set of constraints that
describes the connections between A and B.

The solution of LP programs is exact in the sense that
there is no smaller solution for the LP for which the con-
straints are satisfied. Furthermore, we show that for each
p ∈ P there can be only one value for λ̄(p) for which the
solution of the LP is optimal. This is shown as follows:
the set of ports P of the component is split in k disjoint
subsets of ports Pi such that all the ports in a subset are
(indirectly) connected by connections and ports in different
subsets are not connected by connections. All the distances
between events of the ports in a subset are coupled, i.e.
λ̄(q) = ξ · λ̄(p) with ξ a constant. For such a subset Pi,
the sum of minimum distances between events is equal to:∑
p∈Pi λ̄(p) = λ̄(p0) + ξ1 · λ̄(p0) + . . . = λ̄(p0) · (1 + ξ1 + . . .).

Now there can only be one assignment to the individual
values for λ̄(p) that lead to the optimal solution for the min-
imum distances between events because smaller minimum
distances for one connected disjoint subset of ports can not
result in larger distances between events of another disjoint
subset of ports. This is because by definition there is no con-
nection between these subsets and thus also no constraint
that couples the minimum distances of the two subsets.

4.3 Associativity
This section shows that the composition operation is as-

sociative. This means that the resulting CTA model, after
performing multiple compositions, does not depend on the
order in which these compositions take place. This allows for
incremental design because the consistency of compositions
can be checked even if not all components are fully speci-
fied. The consistency of a subsystem can thus be checked
separately from the complete system because composing the

x

y

z

(a) CTA model before
hiding

x z

(b) CTA model after
hiding port y

Figure 5: Example of a CTA component where port
y is hidden

complete system does not depend on the order in which the
different compositions are done.

Now consider two compositions of three components:
A⊕0 (B ⊕1C) and (A⊕2B)⊕3C. We require that the set
of added connections and the corresponding functions, γ, ε
and δ of ⊕0 ∪ ⊕1 is equal to the connections and functions
added by ⊕2 ∪ ⊕3 . We use the notation ⊕0 ∪ ⊕1 = ⊕2 ∪ ⊕3

for this.
With this requirement we prove the associativity of the

composition operation for the CTA model with the following
proposition:

Proposition 1:
If composition using ⊕0 , ⊕1 , ⊕2 and ⊕3 result in consistent
compositions and ⊕0 ∪ ⊕1 = ⊕2 ∪ ⊕3 then A⊕0 (B ⊕1C) =
(A⊕2B)⊕3C holds.

Proof. With composition, the ports, their connections and
the delays on the connections are not changed, see Sec-
tion 4.1. Because also the added connections are equal
for both compositions the resulting components are indeed
equal.

As discussed in Section 4.2 composition of components is
equal to taking the union of the constraints of the compo-
nents with the added constraints for the connections between
the components. Union of sets is an associative operation so
the constraints imposed by both the compositions are also
equal. Because the constraints are equal also the possible
solutions are equal which means that the composition oper-
ation is associative.

4.4 Hiding
Ports of a component that do not need to be connected

from outside the component can be hidden from the com-
ponent description. Hiding removes the port while main-
taining the same constraints between the remaining ports
of the component. It is therefore an exact operation in the
sense that it does not change the temporal properties of the
remaining ports. The transformation of Figure 2b into Fig-
ure 2c shows an example of hiding.

Often, when applying the compose function, ⊕, on two
components A and B, the ports that become connected by
C⊕ do not need to be visible to the outside anymore. These
ports can be hidden from the interface description of a com-
ponent with the method presented in this section. This leads
to a smaller description of the component, it enables hier-
archy and it enables the creation of valid black-box compo-
nents for which only the external ports together with the
connections between these external ports are known.

The idea of hiding a port p is that all the indirect con-
straints between ports which follow from connections from
and to p are replaced by direct constraints. This is done by
adding connections from all the ports with a connection to
p to all the ports with a connection from p. We illustrate
this with the example shown in Figure 5. Port y is hidden



from the component description and the indirect constraints
imposed by port y need to be redistributed. This is done by
removing the two connections (x, y) and (y, z) and adding
a new connection (x, z). The characterization of this new
connection is as follows.

We have that r(y) = γ(cxy ) · r(x) and r(z) = γ(cyz ) · r(y)
and thus r(z) = γ(cxy )·γ(cyz )·r(x) = γ(cxz )·r(x). Therefore,
we choose γ(cxz ) = γ(cxy ) · γ(cyz ).

Next to that we have ∆(cxz ) = ∆(cxy )+∆(cyz ) = ε(cxy )+
δ(cxy )

r(x)
+ ε(cyz ) +

δ(cyz )

r(y)
. Because r(y) = γ(cxy ) · r(x) we have

that ∆(cxz ) = ε(cxz ) +
δ(cxz )

r(x)
with ε(cxz ) = ε(cxy ) + ε(cyz )

and δ(cxz ) = δ(cxy ) +
δ(cyz )

γ(cxy )
.

We can generalize this approach to the following method
in which we hide a port p ∈ P from a component
V = (P, r̂, C, γ, δ, ε) such that a new component V ′ =
(P ′, r̂′, C′, γ′, δ′, ε′) is created. We have P ′ = P \ {p} and
r̂′(p) = r̂(p) for every port p ∈ P ′

We first add the following direct connections to bypass
the indirect connections via p:

C′ = C ∪ Cn with

Cn = {(i, j) | (i, p) ∈ C ∧ (p, j) ∈ C}

The values for γ′(c), ε′(c) and δ′(c) for connections c ∈ C
are equal to γ(c), ε(c) and δ(c) respectively. The values for
connections c ∈ Cn are as follows:

γ′(cij ) = γ(cip) · γ(cpj ) with cip , cpj ∈ C
ε′(cij ) = ε(cip) + ε(cpj ) with cip , cpj ∈ C

δ′(cij ) = δ(cip) +
δ(cpj )

γ(cip)
with cip , cpj ∈ C

As a last step, the connections to and from port p can
safely be removed from C′.

The presented method for hiding a port only redistributes
constraints between the remaining ports and does not add
or remove constraints. Hiding a port thus does not influ-
ence the consistency of the component and also the temporal
properties of the component do not change.

5. PRACTICAL APPLICATIONS OF THE
CTA MODEL

An analysis model becomes useful if it can be derived from
a different level of abstraction. In this section we illustrate
some of the applications of the CTA model and give some
examples of how the CTA model can be used as an extra
level of abstraction.

In the past it has been shown that different types of
dataflow models can be used to model the temporal behav-
ior of real-time applications [10]. In Section 5.1 we give an
example of how an SDF graph can be temporally analyzed
with a conservative CTA model. We use research performed
on the linearized analysis of SDF graphs for this.

There are difficulties with expressing periodic sources and
sinks in dataflow graphs. Section 5.2 shows how to include
such periodic sources and sinks in the analysis of CTA mod-
els. Furthermore, we illustrate in Section 5.3 how the CTA
model can be used to calculate the sizes of buffers of appli-
cations. Adding latency constraints to dataflow graphs is in
general also difficult. In Section 5.4 we show that latency
constraints can be analyzed with the CTA model.

This section is concluded with a case-study in which the

ϕ π

1

ρ

(a) SDF actor

r̂c = ϕ
ρ

r̂p = π
ργ = π

ϕ
, ε = ρ, δ = ϕ− ϕ

π

(b) CTA component

Figure 6: Translation of an SDF actor to a CTA
component

CTA model is used to model the temporal behavior of a
car-radio application.

5.1 CTA abstraction of SDF graphs
This section shows that the CTA model can be used as an

abstraction of SDF graphs. Exact analysis of SDF graphs
often uses a transformation from the SDF graph to a corre-
sponding Homogeneous Synchronous Dataflow (HSDF) graph.
This transformation has a worst-case exponential blowup
in the number of nodes and connections [8]. By using lin-
ear bounds to conservatively bound schedules of the SDF
graph, the transformation to an HSDF becomes redundant.
The abstraction from an SDF graph to a CTA model uses
these linear bounds and thus results in an analysis method in
which the transformation to an HSDF graph is superfluous.
The analysis algorithms defined for the CTA model have
a polynomial computational complexity which means that
using the CTA model as an abstraction for an SDF graph,
the SDF graph can be conservatively analyzed in polynomial
time.

Given that a periodic schedule exists between such lin-
ear bounds, and given that the self-timed execution of SDF
graphs has a monotonic temporal behavior, it can be con-
cluded that tokens are produced earlier than in the periodic
schedule [15]. Using linear bounds only leads to conserva-
tive analysis results because the bound on the production
of tokens assumes later production times than the periodic
schedule.

Figure 6 shows the abstraction of an SDF actor to a CTA
component. Every incoming and every outgoing edge of the
SDF actor corresponds with one port of the CTA compo-
nent. Figure 6a illustrates the case for one incoming and
one outgoing edge of the actor. The corresponding CTA
component in Figure 6b has two ports. Every firing of the
actor in Figure 6a takes ρ time and every firing ϕ tokens are
consumed from the incoming edge and π tokens produced on
the outgoing edge. The actor has a self-edge with one token
to denote that its firings may not overlap which means that
it can fire maximally once every ρ time units. The maxi-
mum transfer rates of the actor are thus equal to ϕ

ρ
for the

incoming edge and π
ρ

for the outgoing edge. These transfer

rates are used as the maximum rates of the corresponding
ports in the CTA component. Note that if an actor does
not have a self-edge, its maximum transfer rate would be
equal to infinity. This can still be analyzed using a CTA
component that does not have constraints on the maximum
transfer rates of its ports.

The connections of the CTA component are as follows.
For every port of the CTA component that corresponds to
an incoming edge of the SDF actor, connections are added to
every port that corresponds to an outgoing edge of the SDF
actor. For example, if the SDF actor has 2 incoming edges
and 3 outgoing edges, then the corresponding CTA compo-
nent will consist of five ports and six connections between
these ports.



Figure 6b shows the typical characterization of a connec-
tion in the created CTA component. The transfer rate ratio
of the connection is equal to the number of tokens produced
on the corresponding outgoing edge divided by the number
of tokens consumed on the corresponding incoming edge.
For the CTA component illustrated in Figure 6b this ratio
is equal to π

ϕ
.

For the calculation of the delay on the connection, we
use the discussed linear bounds. Figure 7 shows a periodic
schedule for the actor of Figure 6a. The vertical axis shows
the cumulative token transfer and the horizontal axis the
elapsed time. The consumptions of tokens is visualized with
circles and every firing, ϕ = 3, tokens are consumed at the
beginning of that firing. The productions of tokens are vi-
sualized with squares. The number of produced tokens in
every firing equals π = 2 and the tokens are produced at the
end of the firing. The duration of a firing is ρ = 3.

We have drawn the schedule with a consumption rate of
rc = 3

6
and a production rate of rp = 2

6
. The start time

of each firing f is defined as: s(f) = f ·ϕ
rc

. The tokens of

firing f are consumed at time s(f) and produced at time
s(f)+ρ. The maximum number of consumed tokens at time
s(f) is thus (f+1) ·ϕ and the minimum number of produced
tokens at time s(f) + ρ is f · π+ 1. An upper bound on the
consumption of tokens can be defined as α̂c = rc · t+ ϕ and
a lower bound on the production of tokens can be defined
as α̌p = rp · (t− ρ) + 1. This is illustrated in Figure 7.

The delay of a connection can then be seen as the hori-
zontal difference between the production bound, α̌p , and the
consumption bound, α̂c , on the x-axis (α̌p = 0 and α̂c = 0).
This corresponds with the difference in start times and is, as

shown in Figure 7, equal to
(
−1
rp

+ ρ− −ϕ
rc

)
. With rp = rc· πϕ

this can be rewritten to ρ+
ϕ−ϕ

π
rc

. The constant delay of the

connection in the CTA component is thus ρ and the rate
dependent delay of the connection is ϕ− ϕ

π
.

An edge in an SDF graph is formed by connecting an
outgoing edge from an actor to an incoming edge of an actor.
Such an edge can be abstracted in a CTA model with a
connection from the port corresponding to the outgoing edge
to the port corresponding to the incoming edge. The transfer
rate ratio on such a connection is equal to 1 and the delay
of the connection can be calculated by using the number
of initial tokens on the corresponding edge. Initial tokens
allow the consuming actor to start consuming tokens before
the producing actor produces tokens. For d initial tokens
and a transfer rate r on the edge, the consuming actor can
start d

r
time before the first token is produced. This can be

modeled in the CTA model with a delay of −d
r

. The value
−d can thus be used as the rate dependent delay δ of the
connection in the CTA model.

Note that the bounds on the schedules of the dataflow
graph are completely in the time domain and there is no
abstraction made to the time-interval domain, as is done in
[11].

Example 1:
Figure 8 shows an SDF graph and the corresponding CTA
model. Given the seven initial tokens of the SDF graph we
can transform the SDF graph in an equivalent HSDF graph.
On this HSDF graph it can be computed with an Maximum
Cycle Mean (MCM) algorithm [9] that actor Va can fire on
average twice every seven time units. Because actor Va con-
sumes and produces 3 tokens per firing the average transfer

α̂
c

= rc · t+ ϕ

α̌p = rp · (t− ρ) + 1

−ϕ
rc

−1
rp

+ ρ time

cumulative
token transfer

Figure 7: Linear bounds on a schedule for the actor
shown in Figure 6a with ϕ = 3, π = 2 and ρ = 3
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Figure 8: SDF to CTA example

rate is equal to 3 · 2
7

= 6
7

tokens/time unit. Furthermore, all
the rates in the dataflow are equal and are called r. With
Algorithm 1 we can calculate that r = 4

5
is the maximum

transfer rate that ensures consistency. The calculated maxi-
mum transfer rate using the abstraction to the CTA model is
thus slightly less accurate than the calculated transfer rate
of the SDF model, which is a result of using conservative
linear bounds.

5.2 Periodic sources and sinks
Periodic sources are elements in an application that de-

liver data at a fixed transfer rate, they can not be delayed.
Similarly, periodic sinks are elements that require data with
a fixed transfer rate and can not be delayed too. Normal
components in the CTA model are characterized with maxi-
mum transfer rates in contrast to what periodic sources and
sinks require. If a periodic source or sink is composed with
other components, the rate of the ports connected to this
source or sink must adapt their transfer to this fixed rate to
ensure that the components can keep up with the source or
sink. To enforce this fixed rate, extra constraints need to be
added for periodic sources and sinks.

Sources and sinks can be expressed in the CTA model by
modeling it as a normal component with a maximum trans-
fer rate for each port equal to its fixed transfer rate. This
fixed transfer rate can then be enforced in the consistency
algorithm, as defined in Algorithm 1, by adding an extra
constraint that states that for each port p of the source or
sink, λp is equal to 1

rs
with rs the fixed transfer rate of the

source or sink.

5.3 Buffer sizing
The CTA model can be used to calculate the required sizes

of buffers in an application. In this section we show how this
can be done if the CTA model is used as an abstraction for
an SDF graph.

A buffer with d locations can be modeled in an SDF graph
with two oppositely directed edges. One edge modeling the
flow of empty locations and one modeling the flow of filled
locations. A token corresponds with a location so the sum
of the number of tokens on the two edges always needs to be
less or equal to d tokens, to take the size of the buffer into



account. The two edges in the middle of Figure 8a model
for example a buffer with 7, initially empty, locations.

Typically, real-time stream processing applications have
a throughput constraint. For example because they need
to process values from a periodic source. The through-
put which the application can meet depends, among other
things, on the sizes of the buffers. Therefore, correct sizes of
the buffers need to be calculated to ensure that the through-
put constraint can be met.

As we have seen in Section 5.1, the variable delay δ of a
connection that corresponds to an edge in an SDF graph is
equal to −d with d the number of tokens on the edge. If the
size of the buffer is not fixed, this size d is also variable. We
can use the CTA model of an SDF graph to find sufficient
values for d such that the throughput constraint can be met.
Finding the smallest buffer sizes for which the throughput
constraint can be met is equivalent to finding the maximum
possible variable delays given the constraints.

For simplicity we assume a fully connected SDF graph
which means that the corresponding CTA model also is fully
connected. This means that one source or sink in the model
immediately leads to fixed transfer rates of all the ports
in the CTA model. This allows us to define an algorithm
which calculates the values for the variable delay for which
the transfer rates indeed can be met.

Because all the ports of the CTA model are connected, we
can assume that there is one port which defines the through-
put constraint. We call this port pτ with the throughput
constraint 1

τ
which can be enforced by enforcing that λ̄(pτ )

is equal to τ . Next to that we introduce a set of connections
Cv which contains all the connections for which we need to
compute the variable delay. Because the numbers of tokens
on the edges corresponding to these connections can only be
positive we have a constraint on the variable delay on these
edges: δ(c) ≤ 0.

Algorithm 2 : Buffer sizing

Maximize
∑
c∈Cv

δ(c)

Subject to

∀cij ∈ C : λ̄(j) =
1

γ(cij )
· λ̄(i) (4)

∀cij ∈ C : s(j) ≥ s(i) + ε(cij ) + δ(cij ) · λ̄(i) (5)

∀p ∈ P : λ̄(p) ≥ 1

r̂(p)
(6)

∀c ∈ Cv : δ(c) ≤ 0 (7)

λ̄(pτ ) = τ (8)

Sufficient variable delays can now be computed with Al-
gorithm 2. Algorithm 2 can be solved with an LP solver be-
cause the given constraints can be simplified using the fact
that all the λ̄(p) variables are in fact constants. Because
λ̄(p) is a constant, Equation 5 also forms a linear constraint.

The algorithm finds assignments to the variable delays
on connections such that the throughput constraint of the
corresponding application can be met. With these variable
delays, sufficient numbers of tokens can be computed. The
variable delay δc of a connection c is equal to −d with d the
number of tokens on the corresponding edge in the dataflow
graph. The number of tokens on an edge is thus equal to
−δc with c the connection corresponding to the edge.

However, tokens in SDF graphs are integers while the so-
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Figure 9: Buffer sizing example for an SDF graph
with a conservative CTA model
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Figure 10: A CTA model with latency constrained
connections

lution of an LP algorithm is in general a set of real values.
To solve this issue we can make use of the monotonicity
property of SDF graphs [15]. This property tells us that
increasing the number of tokens on an edge cannot lead to
worse temporal results. We therefore know that the through-
put constraint of the application can still be met even if we
increase the token sizes. We therefore choose the number of
tokens on an edge corresponding to a connection c equal to
d−δce.

Example 2:
For the SDF graph shown in Figure 9a we want to compute
the number of tokens d such that a throughput requirement
of r = 1

2
tokens/time unit can be met. We first generate

the conservative CTA model shown in Figure 9b with the
method presented in Section 5.1. We now use Algorithm 2
on this CTA model to compute δ such that λ = 1

r
= 2 can

be achieved. The algorithm tells us that δ = −2.5 is the
largest value that can achieve a transfer rate of 1

2
. Thus

with d = d2.5e = 3 the dataflow graph should be able to
meet its throughput constraint. An MCM [9] algorithm on
the equivalent HSDF graph indeed tells us that this is the
case.

5.4 Latency constraints
In the CTA model it is also possible to take latency con-

straints into account. Two components that have latency
constraints, should provide ports on which the latency con-
straint can be set. These ports should internally be cor-
rectly connected to the other ports of the component to en-
force that these ports also adhere to the latency constraints.
Adding a latency constraint can then be done by adding a
connection between two such latency constraint ports of the
components.

Figure 10 shows how this can be done in the CTA model.
In the model, the ports ia , oa , ib and ob are added to specify
a maximum and a minimum latency constraint. The connec-
tion (ob , ia) specifies a maximum latency constraint of Lmax
time units between port o and port i and the connection
(oa , ib) specifies a minimum latency constraint of Lmin time
units between o and i.
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Figure 11: Block diagram of an Audio Echo Cancel-
lation application

For the maximum latency constraint, internal connections
(ia , i) and (o, ob) are added such that together with (ob , ia)
a delay constraint is created on ports i and o. The start
time constraint of ports enforces that data arrives at port i,
maximally Lmax time units before it arrives at o.

The minimal latency constraint, imposed by the path
through the connections (i, oa), (oa , ib) and (ib , o), specifies
a minimal delay between the ports i and o. The start time
constraint on ports ensures that data arrives at least Lmin
time units later at port o than it arrives at port i.

The other connections between components A and B now
need to have delays such that the maximum and minimum
latency constraints can be met. These connections need to
allow delays that adhere to the start time constraints im-
posed by (ob , ia) and (oa , ib).

5.5 Case-Study
In this section we use the CTA model to analyze the tem-

poral behavior of a car-radio application. The application
is taken from the case-study of [17] in which it is analyzed
using SDF graphs. We show that with the CTA model the
application and its constraints can be modeled more accu-
rately than with the SDF graphs. The application can also
be analyzed, and thus designed, incrementally.

Figure 11 shows the block diagram of this application. A
phone call can be handled using a Bluetooth (BT ) device
simultaneous with playing music at a lower volume. To pre-
vent the howling effect and to cancel the sound from the
speaker, audio echo cancellation is used. This ensures that
only the speech of the user is sent via the BT device. The
latency between the microphone and BT may be at most 30
ms.

In this case-study we focus on the Audio Echo Cancel-
lation (AEC ) task and its adjacent tasks. The OUT and
ADC task execute periodically at a frequency of exactly
8kHz. The adjacent Sample Rate Conversion (SRC ) task
transforms a 44.1kHz stream to a 8kHz stream. Rate con-
sistency is ensured if the AEC task can achieve a transfer
rate higher or equal to 8kHz.

Figure 12a contains an SDF graph of the AEC task to-
gether with its adjacent tasks. The self-edges of all actors
are omitted for clarity. The AEC actor processes blocks
of 80 samples to reduce the synchronization and scheduler
overhead. The firing durations of the SRC, ADC and OUT
actors are 1

8
ms such that they can fire at a rate of 8kHz.

The firing duration of the AEC actor is defined in [17] as
9.091ms which means that its maximum transfer rate is

80
9.091

> 8. However, the AEC task contains a 48 taps filter
which causes the first 48 samples to be used only for filling
the taps. Therefore, AEC has an extra algorithmic delay of
48
8

= 6ms. An actor in the SDF graph can only model this

delay inaccurately, which would lead to the conclusion that
the maximum transfer rate of AEC is less than 8kHz.

The SDF graph can be analyzed using a CTA model that
can be found with the technique presented in Section 5.1.
Because the CTA model decouples the delay from the trans-
fer rate of a component, we can model the extra algorithmic
delay more accurately. The CTA model in which the AEC
task is modeled with the algoritmic delay is shown in Fig-
ure 12b. Each port in the CTA model has a transfer rate of
8kHz, except the port denoted by 44.1 which has a transfer
rate of 44.1kHz. The delays of the connections inside SRC,
ADC and OUT are all equal to 1

8
ms except for the connec-

tion denoted by c. The delay of this connection is slightly
larger than 1

8
ms and we assume it to be equal to 2

8
ms. The

connections inside AEC denoted by a have a delay equal to
9.091 + 79

8
. The connections denoted by b include the al-

gorithmic delay and have a delay equal to 15.091 + 79
8

. We
also modeled the maximum latency constraint between the
microphone and BT with the connection denoted by −30.

The presented CTA model is consistent if the 158 initial
tokens from [17] are used for d0, d1 and d2. With these initial
tokens, the delays on the corresponding three connections in
the CTA model are equal to −158

8
with which all the delay

constraints can be satisfied. The maximum delay between
the microphone and BT is equal to 15.091+ 81

8
which is less

than 30.
Hiding can be applied to the ports of the SRC component.

This will result in the CTA model shown in Figure 12c. A
new component AEC’ is formed which now also does sam-
ple rate conversion on one of its inputs. The delay of the
SRC is moved inside the AEC’. This results in the change
of the delay of one internal connection compared to the de-
lays of AEC. This connection is denoted by e and its delay
is 15.091 + 81

8
. There is no loss of accuracy when applying

hiding because the end-to-end delays do not change.

6. RELATED WORK
A compositional analysis method for real-time systems is

presented in [12]. It defines adaptive interfaces of compo-
nents to enable the validation of system constraints and
introduces properties like refinement and independent im-
plementability. The methods presented in [4, 7] extend this
analysis method with a uniform interface, based on arrival
curves. This allows the composition of different types of
modeling and analysis methods. However, the use of com-
munication buffers with a finite capacity result in cyclic
dependencies. Such cyclic dependencies result in an expo-
nential worst-case computational complexity of the analysis
algorithms while the presented analysis algorithms for the
CTA model have a polynomial computational complexity.
Furthermore, buffer sizing for cyclic task graphs is not ad-
dressed.

A formal algebra for the analysis of temporal properties
is presented in [3]. It defines an algebra for composing com-
ponents based on the description of their interface. These
interfaces are characterized similarly as the interfaces of our
components, with an arrival rate function for ports and a
latency specification for tasks. It supports both incremental
design and independent refinement of components but does
not support cyclic dependencies between tasks.

To support hierarchical composition of actors in untimed
SDF graphs, non-monolithic profiles are introduced in [13].
These profiles consist of SDF graphs extended with shared
FIFOs.
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Figure 12: Modeling the AEC tasks together with its adjacent tasks

An analysis method which uses transfer rates of SDF ac-
tors to calculate schedules is introduced in [16]. This method
is extended in [14] for Cyclo-Static Dataflow (CSDF) [1]
graphs. The CTA model also uses transfer rates and can
be seen as a generalization of these works because it sup-
ports compositionality. Furthermore, the inclusion of the
effects of run-time scheduling in dataflow graphs has been
presented in [15]. This run-time scheduling is restricted to
the use of starvation free schedulers.

7. CONCLUSION
In this work we have introduced a compositional tempo-

ral analysis model in which components are characterized
using ports with maximum transfer rates and connections
with delays. This CTA model can be used to analyze appli-
cations with arbitrary cyclic dependencies, periodic sources
and sinks and can take latency constraints into account. The
analysis algorithms have a polynomial time-complexity.

We also provided an abstraction from an SDF graph to
a conservative CTA model on which the analysis can be
performed. With the CTA model more pessimistic results
are usually obtained than when using SDF graphs. However,
unlike the SDF model, the CTA model has compositional
analysis properties.

We have also shown that the analysis with the CTA model
suports independent implementability which helps to reduce
the complexity when designing and developing stream pro-
cessing applications. We furthermore presented a method
for hiding the internal connections of a composition. This
results in components which are only specified by their exter-
nal ports with maximum transfer and connections between
these ports with delays.

The practical applicability of the CTA model has been
illustrated with an audio echo cancellation application.
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