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Abstract— The automatic assessment of affect is mostly based
on feature-level approaches, such as distances between facial
points or prosodic and spectral information when it comes to
audiovisual analysis. However, it is known and intuitive that
behavioural events such as smiles, head shakes or laughter
and sighs also bear highly relevant information regarding a
subject’s affective display. Accordingly, we propose a novel
string-based prediction approach to fuse such events and
to predict human affect in a continuous dimensional space.
Extensive analysis and evaluation has been conducted using
the newly released SEMAINE database of human-to-agent
communication. For a thorough understanding of the obtained
results, we provide additional benchmarks by more conventional
feature-level modelling, and compare these and the string-
based approach to fusion of signal-based features and string-
based events. Our experimental results show that the proposed
string-based approach is the best performing approach for
automatic prediction of Valence and Expectation dimensions,
and improves prediction performance for the other dimensions
when combined with at least acoustic signal-based features.

I. INTRODUCTION

A significant part of past research in machine analysis of

human affect has focused on the recognition of prototypic

expressions (i.e., of seven basic emotions) based on data

that has been posed on demand and acquired in laboratory

settings [1], [2]. However, it has been shown that in everyday

interactions people exhibit non-basic, subtle and rather com-

plex affective states like thinking and embarrassment [3].

Therefore, a single label (or any small number of discrete

classes) may not reflect the complexity of the affective

state conveyed by such rich sources of information. Hence,

a number of researchers advocate the use of dimensional

description of human affect, where affective states are not

independent from one another; rather, they are related to one

another in a systematic manner [4].

In light of these, this paper focuses on combining multiple

audiovisual cues for automatic, dimensional and continuous

interpretation of affective displays recorded in naturalis-

tic settings. More specifically, we propose a novel string-
based approach for fusing verbal (i.e., spoken words) and

non-verbal behavioural events (e.g., smiles, head shakes

or laughter) for automatic prediction of human affect in

a continuous dimensional space. This approach stands in

contrast to most conventional approaches, which are based
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on audio/video based feature-level modelling and fusion. As

we also compute “features” for fusing the event strings, the

features derived from event strings are referred to as string-
based or event-based features while the (low-level) features

computed directly from the audio or video signal are referred

to as signal-based features or signal features.

The following subsections provide a brief introduction

to the background of dimensional affect recognition and

introduce related work.

A. Affect in Dimensional Space

The prosodic features which seem to be reliable indicators

of the basic emotions are the continuous acoustic measures,

particularly pitch-related measures (range, mean, median,

and variability), intensity and duration. For a comprehensive

summary of acoustic cues related to vocal expressions of

basic emotions, readers are referred to [5]. There have also

been a number of works that focus on how to map audio

expression to dimensional models. Cowie et al. used the

Valence-Activation space, which is similar to the Valence-

Arousal (V-A) space, to model and assess emotions from

speech [5]. Scherer and colleagues have also proposed how

to judge emotion effects on vocal expression, using appraisal-

based theory [6], [7].

Facial actions (e.g., pulling eyebrows up) and facial ex-

pressions (e.g., producing a smile), and to a lesser extent

bodily postures (e.g., backwards head bend and arms raised

forwards and upwards) and expressions (e.g., head nod),

form the widely known and used visual signals for automatic

affect measurement. Dimensional models are considered

important in this task, as a single discrete label may not

reflect the complexity of the affective state conveyed by the

combination of facial expression, body posture and body

gesture.

A number of researchers have investigated how to map

various visual signals onto emotion dimensions. For instance,

[4] mapped the facial expressions to various positions on V-

A space (e.g., joy is mapped on the high arousal - positive

valence quadrant), while [8] investigated the emotional and

communicative significance of head nods and shakes in

terms of Arousal and Valence dimensions, together with

dimensional representation of Solidarity, Antagonism and

Agreement.

B. Dimensional Affect Recognition from Audio and Video

Automatic dimensional affect recognition is still in its

pioneering stage [1], [9],[10],[11],[12]. The most commonly

employed strategy is to reduce the dimensional emotion
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classification problem to a two-class problem (positive vs.

negative or active vs. passive classification; e.g., [13],[14])

or a four-class problem (classification into the quadrants of

2D V-A space; e.g., [15], [16], [17], [18], [19]).

In dimensional affect recognition emotions are represented

along a continuum. Considering this, most systems that target

automatic dimensional affect recognition tend to simplify

the problem by quantising the continuous labels into a

finite number of discrete levels. For example, Kleinsmith

and Bianchi-Berthouze discriminate between high-low, high-

neutral and low-neutral affective dimensions [20], while

Wöllmer et al. quantise the V-A dimensions of the SAL

database into either 4 or 7 levels, and then use Conditional

Random Fields (CRFs) to predict the quantised labels [10] .

Attempts for discriminating between more coarse categories,

such as positive vs. negative [13], and active vs. passive

[15] have also been attempted. Of these, Caridakis et al.

[15] uses the SAL database, combining auditive and visual

modalities. Nicolaou et al. focus on audio-visual classifica-

tion of spontaneous affect into negative or positive emotion

categories using facial expression, shoulder and audio cues,

and utilising 2- and 3-chain coupled Hidden Markov Models

and likelihood space classification to fuse multiple cues and

modalities [13]. Kanluan et al. combine audio and visual

cues for affect recognition in V-A space by fusing facial

expression and audio cues, using SVRs and late fusion

with a weighted linear combination [21] with discretised

labels (on a 5-point scale in the range of [-1,+1] for each

emotion dimension). The work presented in [19] utilises

a hierarchical dynamic Bayesian network combined with

BLSTM-NN performing regression and quantising the results

into four quadrants (after training).

As far as actual continuous dimensional affect prediction

(without quantisation) is concerned, four attempts have been

proposed so far, two of which deal exclusively with speech

(i.e., [10], [22]). The work by Wöllmer et al. uses Long

Short-Term Memory neural networks and Support Vector

Machines for Regression (SVR) [10]. Grimm and Kroschel

use SVRs and compare their performance to that of the

distance-based fuzzy k-Nearest Neighbour and rule-based

fuzzy-logic estimators [22]. The work by Gunes and Pantic

focuses on dimensional prediction of emotions from spon-

taneous conversational head gestures by mapping the head

motion vectors and occurrences of head nods and shakes

into Arousal, Expectation, Intensity, Power and Valence

level of the observed subject using SVRs [23]. The work

by Nicolaou et al. focuses on dimensional and continuous

prediction of emotions from naturalistic facial expressions

within the context of an Output-Associative Relevance Vector

Machine regression framework that augments the traditional

Relevance Vector Machine regression by learning non-linear

input and output dependencies inherent in the affective data

[24].

For further details on the aforementioned systems, as well

as on systems that deal with dimensional affect recognition

from a single modality or cue, the reader is referred to [1],

[2], [12].

In summary, none of the related works have investigated

string-based prediction and multimodal fusion of verbal and

nonverbal behavioural events for automatic prediction of

human affect in a continuous dimensional space.

The remainder of this paper is structured as follows: In

Section II the corpus used for the experimental validation,

i.e., the SEMAINE database of human-agent communication,

is shortly introduced. We describe the methods used for

automatic behavioural event detection and classification by

video and audio analysis in Section III. The experimental

setup and the string-based multimodal fusion of the be-

havioural events can be found in Section IV and Section

V, respectively. For comparison, we then introduce a more

conventional fusion approach to audiovisual affect analysis

in Section VI, before discussing the results in Section VII

and drawing our conclusions in Section VIII.

II. THE SEMAINE DATABASE

The SEMAINE database [25] was recorded to study natu-

ral social signals that occur in conversations between humans

and the future generation of artificially intelligent agents,

and to collect data for the training of such intelligent agents.

The scenario used for this is called the Sensitive Artificial

Listener, SAL for short. It involves a user interacting with

emotionally stereotyped “characters” whose responses are

stock phrases keyed to the user’s emotional state rather than

the content of what he/she says. The model is a style of

interaction observed in chat shows and parties, which aroused

interest because it seems possible that a machine with some

basic emotional and conversational competence could sustain

such a conversation, without needing to be competent with

fluent speech and language understanding.

In the recording scenario, the participants are asked to talk

to four emotionally stereotyped characters. These characters

are Prudence, who is even-tempered and sensible; Poppy,

who is happy and outgoing; Spike, who is angry and con-

frontational; and Obadiah, who is depressive.

The study presented in this work is based on the first part

of the SEMAINE database. In this part, human operators

pretended to be the artificial agents. This type of interaction

is called Solid-SAL. Because we assume that the SAL agent

has no language understanding, a few rules govern this

type of interaction. The most important of these is that

the agent is not allowed to answer questions. However, the

operators are instructed that the most important aspect of

their task is to create a natural style of conversation; strict

adherence to the rules of a SAL engagement was secondary

to a conversational style that would produce a rich set of

conversation-related behaviours and therefore transgressions

occasionally occur.

Video was recorded at 49.979 frames per second at a

spatial resolution of 780 x 580 pixels and 8 bits per sample,

while audio was recorded at 48 kHz with 24 bits per sample.

Both the user and the operator are recorded frontally by both

a greyscale camera and a colour camera. In addition, the user

is recorded by a greyscale camera positioned on one side of

the user to capture a profile view of their face and body. To
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accommodate research in audio-visual fusion, the audio and

video signals were synchronised with an accuracy of 25 μs
using the system developed by Lichtenauer et al. [26].

The Solid-SAL part of the database holds recordings of 20

trials of the SAL experiment, split into over 100 character

conversations of approximately 5 minutes each. All recorded

conversations have been fully transcribed and annotated for

five affective dimensions and partially annotated for 27

other dimensions, using trace style continuous ratings. The

five core dimensions are those that psychological evidence

suggests are best suited to capture affective colouring in

general [27]. They are Valence, Activation, Power, Antici-

pation/Expectation and (overall emotional) Intensity.

Further details on the SEMAINE database can be found in

[25]. The database is freely available for scientific research

purposes from http://semaine-db.eu.

III. BEHAVIOURAL EVENTS

This section describes the procedures employed to detect

the behavioural events that are used for the proposed string-

based affect prediction and fusion approach.

A. Nonverbal Visual Events

The nonverbal events detected from the visual modality are

head gestures and facial action units (AU). Once detected,

these events are supplied as features to the string-based

prediction and fusion algorithm. Due to lack of annotated

SEMAINE data (in terms of head gestures and AUs), how

each visual event detection component affects the string-

based prediction algorithm and its accuracy could not be

evaluated.

Head gestures. We aim to recognise four different head

gestures: head nods, head shakes, head tilts to the left, and

head tilts to the right. The automatic detection of head

nods and shakes is based on the 2-dimensional (2D) global

head motion estimation. The face region is detected using

the well known Viola and Jones face detector [28]. In

order to determine the magnitude and the direction of the

2D head motion, optical flow is computed between two

consecutive frames. It is applied to a refined region (i.e.,

resized and smoothed) within the detected facial area to

exclude irrelevant background information.

After preliminary analysis, the angle component of the 2D

head motion vector has been considered as the distinguishing

feature in order to represent nods and shakes. The angle

measure has then been discretised by representing it with di-

rectional codewords. The directional codeword is obtained by

quantising the direction into four codes for head movements

(for rightward, upward, leftward and downward motion,

respectively) and one for ‘no movement’. The directional

codewords generated by the visual feature extraction module

are then fed into a Hidden Markov Model (HMM) for

training a nodHMM and a shakeHMM. However, to be able

to distinguish other head movements from the actual head

nods/shakes, we (i) threshold the magnitude of the head

motion, (ii) build an otherHMM to be able to recognise any

head movement that are not nods/shakes, and (iii) statistically

TABLE I

Comparative results obtained with respect to (i) thresholding the

normalised head motion magnitude, (ii) deciding on the number of states

to be used within the HMM models, and (iii) whether to use likelihood

space classification or maximum likelihood classification.

threshold
for
normalised
head motion
magnitude

number of
states used
in the HMM
model

likelihood
space clas-
sification
(%)

maximum
likelihood
classifica-
tion(%)

15 4 92.8 86.5
25 2 92.2 84.1
0 3 91.2 86.9
15 3 89.4 83.3
0 2 88.7 85.0

analyse the likelihoods outputted by the nod/shake/other

HMM (maximum likelihood vs. training classifiers on the

outputted likelihoods).

152 head nod, 103 head shake, and 140 other clips (of

variable length) were manually extracted from the SEMAINE

database to train the HMM models. In order to determine

how to make the final decision, evaluation has been carried

out (using the aforementioned data and adopting 10-fold

cross-validation) with the following criteria: (i) thresholding

the normalised magnitude (normalised by the height of the

detected face) of the head motion (0–30), (ii) deciding on the

number of states to be used within the HMM models (2–5),

and (iii) whether to use maximum likelihood classification

(i.e., decision is based on the model that provides the

maximum likelihood) or likelihood space classification (i.e.,

decision is made by a classifier trained using the likelihoods

outputted by all HMM models, similarly to [13]). Table I

presents the best results. The best results were obtained by

thresholding head motion magnitude (threshold=15 or thresh-

old=25), and by using either 4 or 2 states within the HMM

models. To keep the model and computational complexity

simpler, we opted for likelihood space classification, setting

the threshold=25, and number of states=2.

In order to analyse the visual data continuously, we em-

pirically chose a window size of 0.4 seconds (about 20 video

frames) that allows the detection of both brief and longer in-

stances of head nods/shakes (similarly to other related work).

From the global head motion features extracted and the head

movements (nod or shake) detected, we created a window-

based feature set presented in Table II. The ground-truth for

the window at hand consists of the dimensional annotations

averaged over that window, for each coder separately. Please

see [23] for details.

The spotting capability of the automatic head nod and

shake detector was evaluated using a subset of the SEMAINE

database. There exists no publicly available (audio-)visual

data set annotated for head nods and shakes, at either frame-

level (frame-by-frame) or event-level (where a nod starts

and ends). Therefore, one of the authors manually annotated

a subset of the SEMAINE database that consisted of data

from 4 subjects (2 male and 2 female), over 7 sessions, and

44,060 video frames in total. As the focus of this paper is
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TABLE II

Head features extracted within a fixed window of 0.4 s.

Features (16) & their description
duration of no movement
duration of the upward head movement
duration of the downward head movement
duration of the rightward head movement
duration of the leftward head movement
average of the magnitude values
variance of the magnitude values
average of the angle values
variance of the angle values
loglikelihood outputted by nodHMM
loglikelihood outputted by shakeHMM
loglikelihood outputted by otherHMM
result of the maximum likelihood classification
result of the likelihood space classification (nod vs. shake)
result of the likelihood space classification (nod vs. other)
result of the likelihood space classification (shake vs. other)

Fig. 1. Nod, shake and other event detection results (per subject) on a
subset of the SEMAINE database.

on events, an event-level evaluation was conducted based

on a window of 20 frames (used for decision making by

the detector) by taking the majority vote as the label of the

window at hand. The results are presented in Fig. 1. The

figure shows that nod event detection seems to be best for

subject 14, followed by subject 22; other event detection

seems to be best for subject 21 followed by subject 14. Shake
event detection appears to be best for subject 21, followed

by subject 17. This in turn implies that naturalistic emotional

displays are rather subject-specific in nature. However, it is

difficult to draw hard conclusions given the limited amount

of data. Within the SEMAINE database, the amount of nod,

shake and other events varies between recording sessions and

between subjects. For instance, the aforementioned test set

contains 33,328 frames of other event, 6,873 frames of nod

event, and 3,859 frames of shake event.

To detect head tilts, we employ a haar-cascade eye detec-

tor. The detector usually returns multiple detections per eye.

To select which one is the real location of the eye, we modify

the probability of each candidate location in two ways.

Firstly, the probability of a candidate location is decreased

according to a Gaussian function of the distance to the prior

probability of the location of an eye given the detected

face location. Secondly, we modify the probability of each

candidate by the distance to other candidates. Candidates that

are close together will increase each other’s probability. This

results in the predicted locations of the left-eye {xl, yl} and

right-eye {xr, yr}.

Using the locations of the centres of the eyes,

we can now compute the roll of the face as

α = arctan (yr − yl)/(xr − xl), which, in turn, indicates

whether a head tilt has occurred. Similarly to the nod/shake

detection, we average α over a time window of 0.4 seconds.

If the average value is greater than 0.1 radians, we say

that a right-head-tilt occurred, and if it is smaller than -0.1

radians, a left-head-tilt is detected.

Facial Action Units. To detect facial Action Units (AUs),

we employed the method proposed by Jiang et al. [29].

In their work the authors investigate the possibility to de-

tect AUs using two static and two dynamic appearance

descriptors. From those four we chose to use the Local

Binary Patterns (LBP) descriptor. Although according to

their reports the LBP descriptor did not attain the highest

recognition performance, it was by far the fastest. Since the

data we process in this study consist of over a million frames,

speed was of great importance.

The LBP descriptor is computed by systematically com-

paring the central pixel with a number of surrounding pixels

in a local neighbourhood. If the surrounding pixel has a

higher intensity than the central pixel, the result is a binary

1, otherwise it is a 0. The results of all neighbours together

forms a binary word, which is translated to a decimal number.

In our case, we use the 8 immediately surrounding pixels,

and thus we have an 8-bit word, and the decimal number

lie in the range [0, 255]. The LBP operator is applied to all

pixels in an image, and a histogram of the LBP output per

pixel is created which describes the texture of that image.

To encode local texture instead of a single texture for

the entire face, we divide the face region into 10 x 10

blocks. An LBP histogram is calculated for each of those

blocks separately, after which the histograms of all blocks

are concatenated to form a single feature vector. GentleBoost

feature selection is applied to this, and the reduced feature

set is fed to a bank of Support Vector Machine classifiers,

one for every AU detected. Currently, the system can reliably

detect 12 AUs (AU1, AU2, AU4, AU5, AU6, AU7, AU12,

AU14, AU15, AU20, AU25, and AU45). To be able to deal

with appearance variation due to head roll and different sizes

of faces, we use the locations of the eyes found during head

tilt detection. The input images are first rotated by α radians,

and then scaled to make the distance between the centres of

the eyes equal to 80 pixels.

Because it is notoriously time-consuming to create ground-

truth labelling of AUs from video, there is currently very

little AU annotation available for the SEMAINE database. To

wit, at the time of writing 181 frames have been annotated,

taken from eight character conversations of two subjects,

i.e., for both subjects the conversations with all four SAL

characters were used. Besides testing on the SEMAINE

database, we therefore also test our AU detector on 1504
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Fig. 2. AU detection result per subject on the MMI-Facial Expression and SEMAINE databases.

images of posed facial expressions taken from the MMI

Facial Expression Database [30]. Tests were done in a

subject-independent manner. Fig. 2 shows the average F1-

measure for all AUs per subject. Subjects two and three in

the figure are the two subjects taken from the SEMAINE

database. It is hard to draw conclusions for the SEMAINE

data given the limited data, and indeed the figure shows

that although performance is competitive for Subject three,

it is rather poor for Subject two. Unfortunately, there exist

no freely available databases of spontaneous data with AU

labelling, therefore, we cannot compare our results with those

of others. The results for the subjects from the MMI Facial

Expression database are all competitive with the current state

of the art.

B. Verbal and nonverbal acoustic events

As acoustic events we used laughter and sighs, as they

occur frequently in spontaneous emotional speech and carry

substantial emotional meaning. We additionally used emo-

tionally relevant keywords which are derived per dimension

by feature selection from automatic ASR transcriptions of the

whole SEMAINE database. We decided not to use the ground

truth transcriptions, but the recogniser’s output – also for

extracting string-based features on the training set – to avoid

a mismatch between ideal training conditions and imperfect

recognition conditions in a real-world system.

For keyword detection we used a multi-stream large

vocabulary continuous speech recognition (LVCSR) engine

tuned for robust recognition of spontaneous and emotional

speech (for details see [31]). In addition to the standard set of

39 cepstral mean normalised MFCC features, the system uses

discrete phoneme prediction features generated by a Long

Short-Term Memory (LSTM) network. The LSTM principle

enables long-range context modelling on the feature level and

was shown to be well-suited for modelling conversational

speech [32]. Instead of conventional hidden units which

can be found in the hidden layer of standard recurrent

neural networks, an LSTM network consists of recurrently

connected memory blocks that can store information over

long time periods and are able to model co-articulation

effects in human speech.

Combined with context-sensitive triphone Hidden Markov

Models, the system achieved a true positive rate of 76.58 % at

a false positive rate of 0.94 % when trained on the SEMAINE

database, the SAL corpus, and on the COSINE corpus

[33] consisting of conversational, disfluent, and partly noisy

speech. The multi-stream LVCSR engine uses the on-line

LSTM decoder integrated in the open-source speech feature

extractor openSMILE [34] as well as a trigram language

model trained on the aforementioned speech corpora. All

phoneme HMM consist of three emitting states with each

state having 16 Gaussian mixtures. The nonverbal events

laughing and sighing are detected within the same recogniser

framework. We trained HMM comprising nine hidden states

for these vocalisations. The LSTM network for phoneme

prediction is composed of 128 memory blocks and the size

of the used vocabulary is 7.0 k.

From the 7.0 k words in the vocabulary, we selected a

subset of words relevant for each of the five affect dimensions

using the Correlation based Feature Subset Selection (CFS)

algorithm.

IV. EXPERIMENTAL SETUP

For the experiments reported in this paper we train Support

Vector Regressors (epsilon SVR with a polynomial (linear)

kernel), since SVR is known to handle large feature spaces

reliably. The trained models are evaluated using the SE-

MAINE database, using sessions that have been coded by

the same three raters. Recordings 4, 6, 9, 10, 11, 13, 15, 16,

17, 18, and 19 were used for training, and recording 3, 5,

12, and 14 for testing.

As metrics for evaluation, the Mean Linear Error (MLE)

and correlation coefficient (CC) are used. MLE measures

the average of the absolute error between an estimator and

the true value of the quantity being estimated. CC (usually

referred to as Pearson’s correlation) indicates the strength

of a linear relationship between two variables. MLE and

CC have been calculated both for individual raters and the

(automatic) predictor. Both MLE and correlation have been

calculated for each rater with respect to other raters and by
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averaging the obtained results.

For the audiovisual analysis conducted within this paper,

we only consider regions where the subjects are talking,

i.e., user speech turns. Since these turns themselves are

unsuitable as units of analysis due to their high variability

in length (from few seconds up to minutes), we decided

for an incremental segmentation scheme. This scheme has

been developed for the real-time SEMAINE demonstrator

system, where low-latency incremental estimation of the

user’s affective state is required. The turns are split into

overlapping segments, which are not longer than five seconds

and are sampled every second. Thus, the first segment within

a turn spans the range from 0 s to 1 s, the second from 0 s to

2 s, the fifth from 0 s to 5 s, and the sixth segment from

1 s to 6 s, and so on. A continuous affect label for each

dimension is assigned to each segment by simple averaging

of the dimensional affect labels within the segment. Applying

the aforementioned segmentation procedure leads to 7,699

segments in the training set, and 1,324 segments in the

evaluation set.

V. STRING-BASED FUSION

The event fusion is performed at the string-level per

segment (see section II for a definition) by joining all

events where more than half of the event overlaps with the

segment in a single string. The events can thus be seen as

“words”. The resulting strings are converted to a feature

vector representation through a binary bag-of-words (BOW)

approach. By doing so we do not consider term frequencies,

i.e., we only consider whether a certain event is present or

not within a segment and do not count how often events

occur. We decided to use this simple approach because, in

contrast to the keywords and vocal outbursts, the video-based

events are not identified as unique instant events in time,

but only locally as predictions for short time frames. Some

post-processing would have to be applied in order to group

these predictions into discrete events, which we will carefully

attempt to do as the next step in future work.

Due to the large vocabulary size in the corpus, we have to

select emotionally relevant words from the approximately

7.0 k dimensional word vector. We do this separately for

each of the five dimensions using CFS as a feature selection

algorithm. Approximately 200–300 words remain after this

feature selection. We add laughter and sigh BOW features

to the reduced word vector to obtain the audio event vector

(Event A). The video event vector (Event V) contains two

BOW dimensions for nod/shake, 12 dimensions for AUs, and

two dimensions for tilt left/right. We do not apply feature

selection here, thus this vector is always 16 dimensional.

The results of the string-based emotion recognition are

given in table III (rows labelled with Event A/V). Results

for conventional acoustic and video signal-based feature

approaches are also provided for comparison, as well as

results for fusion of events with signal-based features. The

signal-based features are described in the next section.

At this point we would like to point out that all the event-

based features used in this paper have been computed on the

actual output of the event detectors and not on the ground

truth labels, i.e. we are presenting fully realistic processing

conditions.

TABLE III

All results for affect prediction for five continuous dimensions A(ctivation),

V(alence), E(xpectation), I(ntensity), P(ower). Target label is the mean of

Rater 3, 5, and 6 annotations. SVR regression with polynomial kernel of

degree 1. Correlation coefficient (CC) and Mean Linear Error (MLE).

Audio (A): audio features (functionals of acoustic LLD); Video (V):

functionals of 2D head motion-based features (nod/shake); Event A/V:

String-based features from audio (A) events (words and laughs/sighs)

and/or video events (action units and head nod/shake/tilt). Best result(s)

printed in bold face.

CC A V E I P
Audio (A) 0.653 -0.085 0.190 0.503 0.367
Video (V) 0.204 0.037 0.037 0.397 -0.019
Event A+V 0.447 0.165 0.220 0.397 0.264
Event A 0.215 0.123 0.282 0.148 0.275
Event V 0.524 -0.014 -0.254 0.421 -0.013
A + V + Event A+V 0.699 0.037 0.213 0.548 0.405
A + V 0.661 -0.103 0.191 0.573 0.338
A + Event A+V 0.699 0.092 0.218 0.525 0.431
MLE A V E I P
Audio (A) 0.157 0.265 0.181 0.195 0.173
Video (V) 0.208 0.258 0.185 0.194 0.183
Event A+V 0.188 0.255 0.180 0.199 0.181
Event A 0.206 0.245 0.173 0.211 0.177
Event V 0.187 0.271 0.194 0.204 0.188
A + V + Event A+V 0.153 0.271 0.180 0.183 0.171
A + V 0.156 0.282 0.180 0.185 0.175
A + Event A+V 0.154 0.259 0.181 0.189 0.170

VI. FEATURE-LEVEL FUSION AND

COMPARATIVE ANALYSIS

This section aims to provide a baseline for comparing the

newly introduced string-based prediction and fusion, and the

traditional signal-based approaches and feature-level fusion.

In addition to these, fusion of string-based features with

signal-level features is also employed for further analysis.

The signal-level audio feature set is based on the one

used for the baseline results of the INTERSPPECH 2010

Paralinguistic Challenge [35]. This has been extended by

7 RASTA-PLP descriptors and 14 Mel-Frequency Bands

instead of only 8 as in the challenge set (covering the same

frequency range from 20–6,500 Hz). In order to improve

the computational efficiency for real-time on-line processing

in the SEMAINE demonstrator system, we decided to omit

the line spectral pairs as low-level features and remove the

percentile functionals (quartiles, and inter-quartile ranges),

which require the low-level feature contours to be sorted with

quick-sort. In total this leads to a 1,880 dimensional feature

set: 47 low-level descriptors, first order delta coefficients, and

20 functionals yields 1,880 features. Including the number of

pitch onsets and the total segment duration in seconds gives

the final number of 1,882. A description of the feature set is

given in table IV.

The extracted video features related to head gestures are

presented in Table II). After the feature extraction, the 20

327



TABLE IV

Acoustic features.

Descriptors (47) Functionals (20)
Loudness, Intensity, RMS & LOG energy min., max. value and range
Voicing Probability rel. position of max / min value
F0 (pitch) only in voiced regions arithmetic mean
MFCC 0–12 slope, offset, lin. and quad. error
RASTA style PLP-CC 0–7 standard deviation, skewness, kurtosis
MFB 1–14 time signal is above 25 %, 50 %, 75 %, and 90 %
Spectral Flux, Centroid, Entropy, Variance time signal is below 50 %
95% spectral roll-off point
Mean crossing rate (time-domain)

functionals listed in table IV are applied to these features.

Thus, a single vector of video features is created for each

segment, which can easily be concatenated with the acoustic

feature vector and the string-based bag-of-words vector.

VII. DISCUSSION OF RESULTS

The results – as shown in table III – clearly show that

the proposed string-based approach for multimodal affect

prediction is feasible and gives the best result for the dimen-

sions Valence and Expectation. This is in line with findings

that these dimensions are poorly correlated with acoustic

features alone, for example. The approach also improves

the predictors’ performance if combined with signal-based

features. The overall best result is achieved for Activation,

where the average result is as good as human performance.

TABLE V

Correalation coefficient (CC) and Mean Linear Error (MLE) for five affect

dimensions A(ctivation), V(alence), E(xpectation), I(ntensity), and P(ower)

of the three human coders computed for each coder as the MLE or CC

between the coder’s annotation and the mean of the other two coders’

annotations on the test set.

CC A V E I P
R3 0.748 0.835 0.462 0.788 0.487
R5 0.757 0.776 0.418 0.763 0.483
R6 0.607 0.844 0.261 0.688 0.143
mean 0.704 0.818 0.380 0.746 0.371
MLE A V E I P
R3 0.429 0.159 0.262 0.322 0.309
R5 0.367 0.174 0.434 0.252 0.241
R6 0.199 0.152 0.340 0.191 0.346
mean 0.332 0.162 0.345 0.255 0.299

Table V gives the performance of each human annotator

compared to the average of the other two annotators. We

can see that the performance of our automatic predictors

is not yet at the level of human performance for all five

dimensions, but we are getting quite close for some dimen-

sions, Activation and Power dimensions, in particular. A huge

difference still remains for the Valence dimension, where

human performance/agreement is highest among all five

dimensions, but the correlation of the automatic prediction is

lowest. Considering the fact that the Event A+V and Event
A features gave best and second best results for automatic

prediction of Valence, this could be seen as an indication

that annotators strongly take the content and meaning of

utterances into account when creating their judgements.

Another notable issue that is evident when comparing human

and automatic performance is that the MLE is much lower for

automatic prediction than for human coder agreement (except

for Valence). This can be attributed to the fact that human

annotators use their individual scalings and offsets when per-

forming the annotations, which results in a higher error but

does not affect the overall correlation. Automatic predictors

generally try to optimise the output error during training.

Thus, for future continuous dimensional affect prediction

systems we should focus on the correlation coefficient as a

main evaluation metric, as followed in the INTERSPEECH

2010 Paralinguistic Challenge [35].

VIII. CONCLUSION AND OUTLOOK

We have investigated a novel approach to audiovisual

fusion on the SEMAINE database. The approach is based

on the bag-of-words technique which is already well known

and used for linguistic emotion recognition. We extended

this approach to multimodal string-based fusion by adding

video-based events (facial expression Action Units, head

nods, shakes, and tilts) as ‘words’ to the string of acoustic

events. We have also compared the proposed approach to

traditional signal-feature-based approaches and have inves-

tigated the potential of fusing features from the proposed

string-based approach and signal-based features (audio and

video), which gave the best performance for three out of five

affect dimensions.

Future work will investigate novel feature types as well

as further combinations of feature groups and modalities to

improve the prediction performance, especially for the Va-

lence dimension. We will also investigate scaling and offset

correction as well as smoothing for the individual annotator

tracks of the SEMAINE database as a pre-processing step in

order to obtain a more universal and noise free ground truth.

In the light of our results we can conclude that the

proposed string-based approach is the best performing ap-

proach for automatic prediction of Valence and Expectation

dimensions, and improves prediction performance for the

other three dimensions, when combined with signal-based

features. For Activation a correlation coefficient of 0.70 and

for Power of 0.43 is obtained in this case. This is as good

or even slightly better than human performance.
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[32] M. Wöllmer, F. Eyben, A. Graves, B. Schuller, and G. Rigoll,
“Bidirectional LSTM networks for context-sensitive keyword detection
in a cognitive virtual agent framework,” Cognitive Computation, vol.
2, no. 3, pp. 180–190, 2010.

[33] A. Stupakov, E. Hanusa, J. Bilmes, and D. Fox, “COSINE - a corpus
of multi-party conversational speech in noisy environments,” in Proc.
of ICASSP, Taipei, Taiwan, 2009.
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