



Abstract—MobiGuide is a distributed decision-support system

(DSS) that provides decision support for patients and

physicians. Patients receive support using a light-weight

Smartphone DSS linked to data arriving from wearable

monitoring devices and physicians receive support via a web

interface connected to a backend DSS that has access to an

integrated personal health record (PHR) that stores hospital

EMR data, monitoring data, and recommendations provided

for the patient by the DSSs. The patient data model used by the

PHR and by all the system components that interact in a

service-oriented architecture is based on HL7's virtual medical

record (vMR) model. We describe how we used and extended

the vMR model to support communication between the system

components for the complex workflow needed to support

guidance of patients any time everywhere.

I. INTRODUCTION

Providing clinical decision-support (CDS) to patients in
addition to care providers is a difficult challenge. In the
MobiGuide project (www.mobiguide-project.eu) we are
developing a Ubiquitous Guidance System that provides
clinical-guideline-based decision support to physicians
through web interfaces and to patients via Smartphone
interfaces. Guidance can be made available anytime and
everywhere by employing a distributed decision-support
system (DSS), which includes a backend DSS that has access
to the full guideline knowledge base and the complete
personal health record (PHR) and a light-weight mobile DSS
(mDSS) that runs on the patient's Smartphone and has access
to signal data collected from a body-area network (BAN) of
wearable sensors. The PHR includes in addition to the BAN
data, clinical data coming from hospital electronic medical
records, recommendations delivered to the patients by the
distributed DSS, abstractions or patterns found in the data by
the DSS and responses provided to DSS recommendations by
users (patients and physicians).

In order to improve chronic patients' management by the
MobiGuide system, we need to assess the patient's current
condition from BAN signal data (e.g., physical activity level

This paper has received funding from the European Union´s Seventh

Framework Programme for research, technological development and
demonstration under grant agreement no. 287811.

A.González-Ferrer, M. Peleg and G.Klebanov are with University of
Haifa, Israel (+972-4-828-8509; fax: +972-4-828-8522; e-mail:
morpeleg@is.haifa.ac.il), E. Parimbelli is with U. of Pavia, Italy (e-mail:
enea.parimbelli01@ateneopv.it), E.Shalom is with Ben-Gurion University,
Israel (e-mail: erezsh@bgu.ac.il), C. Marcos is with ATOS, Spain (e-mail:
carlos.marcos@atosresearch.eu), I. Martínez-Sarriegui is with U. Politécnica
de Madrid, Spain (e-mail: imartinez@gbt.tfo.upm.es), N.L.S. Fung is with U.
Twente, The Netherlands (e-mail: l.s.n.fung@utwente.nl) and T. Broens is
with MobiHealth B.V., The Netherlands (tom.broens@mobihealth.com).

determined from pedometer and accelerometer data, blood
glucose measurements determined by glucometers with
Bluetooth connections), supplemented by data that is
proactively reported by patients (e.g., patient with gestational
diabetes mellitus (GDM) reporting eating extra carbohydrates
at a wedding). This changes the "traditional" workflow where
interaction with the patients is usually limited to periodic face
to face encounters with the caregiver. Instead, in MobiGuide,
data collection by the BAN, proactive data reporting by
patients, and delivery of clinical recommendations to patients
and physicians is continuous.

A major challenge in developing clinical DSSs is their
interoperability with electronic health records (EHR), which
can be facilitated by standards [1]. In MobiGuide the
complexity of interoperability increases, as the system
includes over twenty interacting components and a wide
range of data sources and types. Targeting the
interoperability challenge, MobiGuide's integrated PHR uses
the HL7 virtual medical record (vMR) standard [2] as a
conceptual model for storing patient data. In this paper we
show how this standard is also used for the communication
flow and coordination between system components,
extending it appropriately to address the management of the
distributed clinical workflow, which includes also the patient.

II. METHODS

A. Standards for CDSS: HL7 Virtual Medical Record

We carried out a review of possible standards to be used for
the patient data model. We decided that the conceptual model
of the HL7 vMR could be very appropriate [2], mainly due to
its relatively small set of classes which simplifies its learning
curve and the time taken to represent different data items.
The model is built upon two axes, one to represent the type of
clinical information (e.g. Procedure, Observation, Problem,
Substance Administration, Goal, Encounter) and a second
one related to the workflow moment (e.g. Proposal, Order,
Event). Its good documentation and the fact that it was the
only standard to our knowledge designed specifically for
decision support made it the best candidate to use in
MobiGuide. In a second stage, we carried out an analysis of
how to use the standard to represent a complete existing
database that included hospital EHR data for one of the
domains used in the project (Atrial Fibrillation), to apply in
practice the theoretical review of the first step and to detect
cases where the standard lacked the complete semantics
needed in order to represent the full data set.

B. Workflow analysis

In order to understand how the vMR model could be used as
a mechanism for asynchronous communication among

Use of the Virtual Medical Record Data Model for Communication

among Components of a Distributed Decision-support System

Arturo González-Ferrer, Mor Peleg, Enea Parimbelli, Erez Shalom, Carlos Marcos, Guy Klebanov,

Iñaki Martínez-Sarriegui, Nick Lik San Fung, Tom Broens

system components, we studied in a third stage sample
interactions from a set of clinical scenarios from a GDM
guideline for which we generated sequence diagrams. In
these sequence diagrams we considered which parameters
should be passed in messages between interacting
components and whether some of these messages could
instead be stored as vMR instances in the patient's PHR. In
this way, the PHR would store a record of important events –
enabling future record data mining- and would also enable
asynchronous communication.

In Figure 1 we provide a simplified view which abstracts
away from the many different functional components, and
lumps together in the "extended DSS": the backend decision-
support engine, the knowledge base, the temporal abstraction
component, the component that maps guideline knowledge to
patient data, and the data notification component. In addition,
we lump together within the “PatientGUI” the basic graphic
user interface (mobile GUI) and the mDSS.

Figure 2. Part of the GDM guideline

The scenario for Figure 1 is taken from the domain of
GDM. It concerns guideline recommendations to patient's
non-compliance with recommended diet, shown
schematically in Figure 2. Figure 1 shows the entire process
from the time a patient uses her mobile to indicate an event of
non-compliance with diet, and how the system manages this
as part of a collection of previous diet non-compliance events

in order to detect a clinically relevant pattern (≥2 non-
compliance events in 7 days), triggering subsequent
evidence-based recommendations to physicians and patients.

III. RESULTS

Table I contains our analysis of which vMR classes, and their
attribute values should be used in order to support the
scenario shown in Figure 1. We explain Figure 1 and Table I
together, referring between brackets to steps numbered in
Figure 1. In the scenario, the extended DSS monitors for
"patient non-compliance pattern" by saving into the PHR a
specification of the non-compliance event that needs to be
detected for the pattern to be calculated [step 3]. This event is
an instance of the ObservationResult vMR class whose focus
is “increased carbohydrates” [Seq #3 in Table I]. Monitoring
for this event is done by a notification system that
continuously queries for the expected data item (in this case
the ObservationResult) in the PHR [step 4]. The extended
DSS automatically generates the query and when any
component stores a matching data item in the PHR a
notification event is sent back to the extended DSS. This is
shown in [step 6] and Seq #6 of Table I, where the
PatientGUI stores the event of increased carbohydrates
reported by the patient. In our scenario, the stored event of
increased carbohydrates was a second event during the past
week, hence a non-compliance pattern has been detected by
the extended DSS. In Figure 2, which shows the clinical
algorithm, we have answered "yes" to the first decision step.

Clinical recommendations generated by MobiGuide's

extended DSS can be either directed at caregivers or at

patients themselves. In [step 10] the extended DSS generates

a recommendation to the caregiver asking if he wants to

Figure 1. Time sequence diagram for “triggering recommendations for 7 days non-compliance"

send a feedback message to his patient, to remind her about

the importance of compliance to the prescribed diet. As

shown in the second decision step in Figure 2 and in Seq #10

of Table I, an instance of the ProcedureProposal vMR class

representing this recommendation is stored on the PHR by

the extended DSS. In addition, the positive response from

the physician is awaited (monitored).

TABLE I. ADAPTIONATIONS OF VMR

Seq

Use Case Use of vMR in the Scenario

3

The extended DSS

monitors for patient

non-compliance to
diet

ObservationResult
 focus: Increased carbohydrates

 (123995008)

 value: +/++
 GL_ID (extension): 201 6

Non-compliance to

diet stored in PHR

Propose-order-event/result Workflow Pattern

10

The extended DSS

stores

recommendation to
the physician to

provide feedback
message to his

patient

ProcedureProposal
 procedureCode: Notification (C0422202)

 target: Physician (C0031831)

 originalText:“The patient didn’t follow
compliancy recently. Consider sending

him/her the following recommendation

message: Remember that it is very
important that you comply to diet

recommendations and blood glucose
measurements schedule”

 DSS_ID (extension): 111

 GL_ID (extension): 201

11

The extended DSS
monitors for

physician's

acceptance

ProcedureOrder
 procedureCode: Notification (C0422202)

 target: Patient (C0030705)

 originalText: “Remember that it is very
important that you comply to diet

recommendations and blood glucose

measurements schedule”
 DSS_ID (extension): 111

 GL_ID (extension): 201

16

Physician stores in

the PHR his

agreement to
provide feedback to

the patient

20

Extended DSS

stores the message

that has just been
delivered to the

patient on his

Smartphone

ProcedureEvent

 procedureCode: Notification
(C0422202)

 target: Patient (C0030705)

 originalText:“Remember that it is very
important that you comply to diet

recommendations and blood glucose

measurements schedule”
 DSS_ID (extension): 112

 GL_ID (extension): 201

After storing the ProcedureProposal in [step 10], this new

recommendation is then retrieved from the PHR by the

caregiverGUI [steps 13-14] and the acceptance of the

recommendation [steps 15-16] by the physician is stored as a

workflow event in the PHR using ProcedureOrder vMR

class [Seq #16 of Table I].

Maintaining a link between the recommendation and
its acceptance allows the data notification system described
above to be triggered as soon as the caregiver’s acceptance
(represented in this case by a ProcedureOrder [step 17])
enters the PHR. This avoids confusion with other similar
previous recommendation records that could exist in the
PHR, improving performance too. This linkage is not part of
the vMR model but fortunately, the HL7 vMR model
includes a standard way to extend itself with attributes of any
possible HL7 data type. Hence, the linkage is stored by
tagging the recommendation with proprietary IDs that the

extended DSS uses internally to identify recommendations
and the guidelines from which they originated (DSS_IDs and
GL_ID in Table I). The DSS_ID will be used by the
interacting components when saving their reaction in the
PHR. For the use case shown here, the caregiverGUI will
extract the DSS_ID from the procedureProposal instance
(previously generated by the extended DSS [Seq #10 in Table
I] and it will include this DSS_ID within the subsequent
procedureOrder instance that it has to save upon acceptance
of the physician [Seq #11, 16 in Table I].

Once the extended DSS is notified that the caregiver has
accepted the recommendation [step 17] it resumes the
guideline execution, generates the recommendation directed
at the patient and stores it in the PHR [step 20] as Procedure
Event [Seq #20 of Table I]. The PatientGUI notifies to the
patient that a new recommendation has arrived and she can
read it [step 21] at any moment.

The knowledge of which vMR classes and vocabulary
codes are associated with each guideline recommendation
and patient data resides in a knowledge base to which is part
of the extended DSS. The mDSS (part of the PatientGUI)
receives relevant parts of this knowledge through projections
from the backend DSS.

TABLE II. USE OF VMR IN THE GDM SCENARIO

VMR Class
Scenario

Times Used %

ObservationProposal 6 11

ObservationResult 6 11

ProcedureProposal 7 13

ProcedureOrder 6 11

ProcedureEvent 23 42

UndeliveredProcedure 7 13

This scenario was created using a generic design and
adapts itself to any kind and type of recommendation defined
inside the MobiGuide system. The mechanism shown in
Table I [steps 10-20] includes the workflow pattern of
Propose-Order-Event related to a procedure (sending a
recommendation to a patient). The same mechanism can also
be applied to substance administrations, encounters, or
observations. Simpler patterns can also be used, such as
Proposal-Result, for example, when the DSS recommends
that the patient should measure her fasting's blood glucose
level at a certain time. In this case, The DSS issues an
observationProposal and waits for observationResult without
requiring an "order" step.

Table II reports the number of times that different VMR
classes were used in recommendations of the GDM guideline
and their percentage. Moreover, the technical solution that we
show relates to a concrete DSS engine and it is demonstrated
in a particular guideline, but could be adapted to other
architectures and clinical domains easily.

IV. DISCUSSION

The important need to give timely decision support as part of

the clinical workflow has been already recognized in the

literature [3], [4]. The workflow of asynchronous CDSSs

such as MobiGuide can be very complex due to the

requirement of supporting decisions outside clinically-

controlled environments any time. MobiGuide reminds

patients of activities that they should be doing (e.g.,

measuring blood glucose and ketonuria, exercising, injecting

insulin) at a schedule personalized to the patient's routine. At

the same time, MobiGuide reacts to asynchronous events

such as patterns discovered dynamically in patient biosignal

data collected from monitoring devices and to patient input

at unforeseen times. This complex workflow raises new

interoperability issues for distributed CDSS while keeping

compatibility with the common need to link a back-end DSS

with the patient record using standards. In this paper we

described how we used the vMR standard, which was

developed for CDS, to store patient data and for

asynchronous communication between system components

based on a notification mechanism.

Adaptation of the vMR schema

We tried to use the vMR “as is”, in order to capture all the

different types of data that we want to record in the PHR,

including DSS recommendations regarding the patient and

responses and acknowledgement from the patient and her

physician. Most of the semantics could be captured by the

original vMR model. The required adaptation for the

MobiGuide system are detailed below and summarized in

Table III, along with the number of times each adaptation

was used in the GDM guideline, for those adaptations for

which we have complete data at present.

In some cases, we were able to capture detailed semantics

by relaxing the definitions of vMR classes and their

attributes while remaining in the spirit of their intended

meaning. For example, using an instance of ProcedureEvent

was initially thought to be used for clinical procedures (e.g.

“knee surgery”) happening, while we adopted it to also

represent new scenarios like the event of sending a

recommendation message to the patient mobile, which while

clinically meaningful in our ubiquitous environment might

not be available in medical vocabularies. Similarly, we used

an instance of observationOrder with ‘dataSourceType=

DSS’ to indicate that the recommendation provided does not

need physician’s confirmation.

In cases of data items that focused on very specific

concepts needing more expressivity than provided by the

attributes of the vMR class used (e.g., blood glucose

measured after lunch and entered automatically by a specific

glucometer that the patient used), we utilized existing vMR

attributes for capturing parts of the semantics. For example,

the method of data input (manual vs. automatic) was

captured by the "method" attribute and the glucometer type

was captured by the datasource_type attribute. The "focus"

attribute captured the detailed type of blood glucose (BG

after lunch) using the post-coordination mechanism of

SNOMED [5] (see example in Table III, row 3).

In other cases where we also lacked expressivity in

SNOMED itself or in its post-coordination mechanism we

relied on the vMR's extension mechanism to store new

attribute-value pairs. For example, we saved an identifier to

represent an atrial fibrillation (AF) event detected by the

Linker AF detection algorithm.

TABLE III. ADAPTATION OF THE VMR SCHEMA

Adaptation # Example

Relaxing the definition of

VMR classes and attributes

21

Using ProcedureEvent for recording

DSS sending a recommendation to the

patient through her mobile phone

observationOrder with
dataSourceType =DSS indicates that

the recommendation does not need

physician’s confirmation

Using several attributes to
capture the observation's

topic

13

focus: blood glucose

method (of data input): manual |

automatic
datasource_type: glucometer type

Post-coordination of

concepts to capture

detailed concept focus

4

Blood glucose (BG) level after lunch:

focus: 271063001|Lunch-time-BG
level| :362981000|Qualifier

value|= 24863003|Postprandial|

Gesher_ID: a proprietary
ID that stores a code from

the Gesher knowledge base

for a concept that cannot
be composed based on

controlled vocabulary

terms

*

Gesher_ID = 10009 records an Atrial

fibrillation (AF) event detected by the

Linker AF detection algorithm
focus: code for AF event

The focus stores approximate meaning

relatedEntity used to
express the target of a

recommendation

56

Reminder to measure BG issued by

the DSS and delivered directly to the

patient without requiring physician
approval:

relatedEntity (Patient

 targetRole: code for concept "subject
of information" (see Figure 3)

Added attributes to capture

workflow: guideline and
guideline step that issued a

recommendation

56 Added GL_ID and DSS_ID

Added attributes to enable
the DSS to address quality

of data

4
Added different quality of data

attributes, such as "accuracy"

* work in progress; exact number will be known till the end of May

In other cases, we used other extension mechanisms

provided by the relatedClinicalStatements and

relatedEntities classes of the standard. For example, to

record the fact that a reminder to measure blood glucose was

issued by the DSS and delivered directly to the patient

without requiring physician approval for each reminder, we

used an instance of ObservationProposal whose

dataSourceType value was “DSS”. To express the target of

the recommendation (the patient) we included a

relatedEntity representing the patient as shown in Figure 3.

Figure 3. Use of Related Entity to specify the patient as information

target of an observationProposal to measure Fasting Blood Glucose

In some cases (last 2 rows in Table III), we had to extend

the vMR (via its extension mechanism) to include attributes

whose semantics could not be captured by existing vMR

attributes. For example, due to the complex workflow that

we were trying to record in the PHR, and facilitated by the

semantics of the Asbru [6] language and its DSS execution

engine, it was important for us to record in the PHR which

guideline step from which guideline issued a concrete

recommendation (recorded as a vMR class instance). This is

especially important when different guideline steps could

issue similar recommendations but we want the DSS to be

notified of a recommendation’s response related to a

particular guideline step, in order to follow the workflow.

Hence, as shown in Table I, we added the DSS_ID and

GL_ID attributes to vMR classes.

Another extension that we added (not shown in the

scenario) stems from MobiGuide's requirement to include

Quality of Data (QoD) information relating to data acquired

from BAN monitoring devices. Such quality indicators, such

as the accuracy level, are used by the mDSS to decide

whether to repeat measurements, ask for additional input,

and which decision options should be recommended.

Related Work

The vMR is not the only clinical data standard used for

CDSS. Another common model is openEHR archetypes [7]

It differs from vMR mainly in its flexibility for creating ad-

hoc models; unlike the vMR, openEHR does not provide a

small set of classes of data that have predefined structure,

but instead allows defining archetypes for each clinical data

item, where detailed semantics could be captured that are

particular to the data in mind. For example, an archetype to

represent ‘pain’ could capture properties such as the onset of

the pain, whether it is intermittent, whether it is spreading,

etc. Communities of developers define such detailed

archetypes and validate and share them with the community.

There is a trade-off between ease of learning of the data

model and its flexibility, and we chose the vMR exactly

because of its small number of classes with structured pre-

defined attributes. Our reasoning was that when patient data

from the EMR and abstractions found in signal data had to

be mapped to a standard model, it would not take a long time

to represent them in the vMR model, once we develop clear

guidelines that assist in such mapping. We are now in the

process of developing such guidelines and do not yet have

results on the time it takes in practice to represent data items

in the vMR model. Yet, an important evaluation that we

have accomplished in this paper is to determine that the

vMR in practice can be adequately used to represent data

items such that CDSS and communication between system

components in the notification system could be supported

with very little need for extension of the vMR.

A related work is that by Marcos et al. [1] who presented

an approach to integrate the PROforma computer-

interpretable modeling language [8] with EHRs, where

openEHR archetypes, OWL expressions, and SNOMED

terms are used to describe the relevant medical concepts.

That work does not address how they could reuse the

conceptual model provided by archetypes for extending the

interoperability to a distributed system and they do not use

the vMR standard structure to create the archetypes (as we

proposed in [2]), but instead they use directly the archetypes

developed ad-hoc by the openEHR community. By using the

LinkEHR platform they are able to retrieve EMR data as

archetype instances conformant to the selected -and

specialized- archetypes, so that using a mediator module

able to connect to any XML data source, they feed the

PROforma DSS. They too have relied on SNOMED's post-

coordination mechanism, but acknowledged the option of

specialization of existing archetypes to express more

detailed semantics. They specialized archetypes by adding

specific attributes for facilitating integration with PROforma

decisions (e.g., in order to support a PROforma

argumentation rule that excludes patients with severe

comorbidities, the original archetype that records a problem

encountered during patient evaluation was extended with the

attribute ‘present’ for accounting the presence/absence of the

problem and with a numeric field for capturing the

comorbidity score).

Limitations and future work

The work presented here has some limitations; the full

guideline is being modeled at the time of writing, so

complete validation has not been achieved. However we

already analyzed and tested some complex scenarios

involving different types of recommendations (procedures,

notifications and recommendation that need patient data

entries) and our proposal seems to work well. Its

generalization to the complete guideline may still raise

exceptions that need extra adaptations, but the core of our

solution will remain intact.

REFERENCES

[1] M. Marcos, J. A. Maldonado, B. Martínez-Salvador, D. Boscá,

and M. Robles, “Interoperability of clinical decision-support
systems and electronic health records using archetypes: a case

study in clinical trial eligibility,” J. Biomed. Inform., vol. 46, no.

4, pp. 676–689, 2013.
[2] A. González-Ferrer, M. Peleg, B. Verhees, J.-M. Verlinden, and

C. Marcos, “Data Integration for Clinical Decision Support Based

on openEHR Archetypes and HL7 Virtual Medical Record,” in
ProHealth12/KR4HC12 (LNAI 7738), 2012, pp. 71–84.

[3] K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach,

“Improving clinical practice using clinical decision support
systems: a systematic review of trials to identify features critical

to success,” BMJ, vol. 330, no. 7494. p. 765, 2005.
[4] G. J. Downing, S. N. Boyle, K. M. Brinner, and J. a Osheroff,

“Information management to enable personalized medicine:

stakeholder roles in building clinical decision support.,” BMC

Med. Inform. Decis. Mak., vol. 9, p. 44, Jan. 2009.

[5] J. Pathak, J. Wang, S. Kashyap, M. Basford, R. Li, D. R. Masys,

and C. G. Chute, “Mapping clinical phenotype data elements to
standardized metadata repositories and controlled terminologies:

the eMERGE Network experience,” J. Am. Med. Informatics

Assoc., vol. 18, no. 4, pp. 376–386, 2011.
[6] Y. Shahar, S. Miksch, and P. Johnson, “The Asgaard project: a

task-specific framework for the application and critiquing of time-

oriented clinical guidelines,” Artif. Intell. Med., vol. 14, no. 1–2,
pp. 29–51, Sep. 1998.

[7] D. Kalra, T. Beale, and S. Heard, “The openEHR foundation,”

Stud. Health Technol. Inform., vol. 115, pp. 153–173, 2005.
[8] J. Fox, N. Johns, C. Lyons, A. Rahmanzadeh, R. Thomson, and P.

Wilson, “Proforma: a general technology for clinical decision

support systems,” Comput. Methods Programs Biomed., vol. 54,
no. 1–2, pp. 59–67, 1997.

