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Abstract—Malicious hosts tend to be concentrated in certain
areas of the IP addressing space, forming the so-called Bad
Neighborhoods. Knowledge about this concentration is valuable
in predicting attacks from unseen IP addresses. This observation
has been employed in previous works to filter out spam. In this
paper, we focus on the temporal behavior of bad neighborhoods.
The goal is to determine if bad neighborhoods strike multiple
times over a certain period of time, and if so, when do the
attacks occur. Among other findings, we show that even though
bad neighborhoods do not exhibit a favorite combination of days
to carry out attacks, 85% of the recurrent bad neighborhoods do
carry out a second attack within the first 5 days from the first
attack. These and the other findings here presented lead to several
considerations on how attack prediction models can be more
effective i.e., generating both predictive and short neighborhood
blacklists.

I. INTRODUCTION

The Internet Bad Neighborhood concept emerged [1] from
the observation that malicious IP addresses are not evenly
distributed over the IP addressing space [2]–[4]. Bad Neighbor-
hoods can be seen as subnetworks having higher concentrations
of malicious IP addresses than the measured average [1], [5]–
[8]. For example, we found in a previous study that 50% of
spamming IP addresses on the Internet can be traced back to
only 20 Autonomous Systems (ASes) [8].

Knowledge about the concentration of malicious hosts is
valuable in predicting attacks from unseen IP addresses. Tradi-
tionally, blacklisting has been the approach of choice to predict
attacks, in which sources involved in previous attacks are
flagged as malicious [9]–[12]. The bad neighborhood concept
furthers traditional blacklisting and improves attack prediction
by extending the reputation of malicious IP addresses to their
immediate neighbors – i.e., by blacklisting their neighboring IP
addresses, which are, in turn, more likely to carry out attacks
due to the typical concentration. As shown in recent works [1],
[7], this idea has proved to be effective in predicting and
protecting network from attacks.

As for traditional blacklists, bad neighborhoods blacklists
should be both predictive and short [13], that is, be able to
forecast attacks from most bad neighborhoods (and having low
false positives) and list only significant bad neighborhoods,
especially if they are employed to filter out traffic in real-time.

To achieve these goals, several aspects of bad neighbor-
hoods have been scrutinized. In [1], van Wanrooij and Pras

developed a bad neighborhood-based spam filter, while in [5]
we have put spamming bad neighborhoods under scrutiny. The
issue of the bad neighborhood size was investigated in [6],
while the performance of third-party spam blacklists was
evaluated in [7]. Ultimately led to the Ph.D. dissertation of
one of the authors [8], [14].

In this paper, we focus on another facet of bad neigh-
borhoods (BadHoods hereafter). The goal is to reveal their
temporal behavior, i.e., to determine if they strike multiple
times over a certain period of time, and if so, when do
the attacks occur. By scrutinizing their temporal behavior, a
network administrator can determine how often bad neighbor-
hood blacklists should be updated in order to better protect
targets. Most importantly, any observed temporal pattern can
be employed in the design of attack prediction models to
counterattack attacks (or avoid damage from the attacks).
Moreover, it may allow to generate shorter blacklists, since
entries not likely to attack again may be removed.

With this in mind, we address two research questions:

1) Given a certain monitoring period, in how many days
a bad neighborhood is observed carrying out attacks?
And on what days do these attacks occur? The answer
to this question will show if a network administrator
can expect bad neighborhoods to attack again and
when that is expected to happen.

2) Given a single monitoring day, how many bad neigh-
borhoods that carried out attacks in this day can be
traced back to previous days (recurrent)? And how
long does it take for most of them to strike again? The
answer can be used to develop models that predict
attacks from bad neighborhoods, based on historical
past.

To carry out this investigation, we have obtained real world
data sets listing IP addresses involved in attacks from different
applications (we refer to those data sets as raw blacklists).
Then, we have aggregated [6] each of these blacklists into bad
neighborhood blacklists, which are obtained by aggregating
the raw blacklist into a /24 prefixes blacklist. Finally, we then
scrutinized their temporal behavior.

The rest of this paper is divided as follows. In Section II,
we cover the data sets used in this paper. Next, in Section III,
we address the first research question, while in Section IV we
address the second one. After that, we cover the related work
in Section V and the conclusions are presented in Section VI.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



II. EVALUATED DATASETS

In this section we describe the raw blacklists used to
generate the bad neighborhood blacklists. Then, we show how
the number of BadHoods vary on a daily basis for BadHood
blacklist.

A. Choosing the Raw Blacklists

We have obtained data from three raw blacklist sources.
Many data sources can be employed when investigating Inter-
net BadHoods. In this work, we have chosen a subset of these
satisfying the following two criteria: (i) the blacklist has been
previously analyzed by both scientific and Internet security
communities; and (ii) the organization hosting the list provides
bulk-access to the blacklist data, to ensure we have a complete
view of the malicious IP addresses. These criteria led us to
choose two raw sources:

• Composite Block List (CBL): CBL is operated by “a
group of computer security, spam and virus profes-
sionals, dedicated to developing and maintaining an
anti-spam and anti-virus DNSBL (DNS blacklist) of
the highest possible quality and reliability, that large
organizations can use with confidence” [10]. It lists /32
IP addresses that have reached their spamtraps. The
number of traps and their location is not disclosed, but
it is distributed over different networks and countries.
CBL has been employed in a number of studies,
including [5], [6], [15]–[17].

• DShield.org (Dshield) [12]: DShield is a community
shared firewall log system. Volunteers submit their
firewall logs from more than 600 contributors, which
encompasses more than “500,000 IP addresses (fire-
walls) in over 50 countries” [18]. It is maintained
by the SANS Institute [19], and contains security
logs from many applications. As for Spam black-
lists, the blacklists IP addresses are aggregated from
many different sources. The DShield dataset has been
investigated by the research community in papers
including [13], [20]. We have focused on the two most
commonly attacked applications:
◦ TCP 445 (T-445): Microsoft-DS Active Direc-

tory and/or Windows shares.
◦ TCP 3339 (T-3389): Microsoft Terminal

Server (RDP).

In addition, we have obtained a raw spam blacklist from the
Electrical Engineering, Mathematics, and Computer Science
Faculty of the University of Twente (UT/EWI). CBL and
Dshield datasets, as discussed in [7] and in Chapter 7 in [8],
can be seen as public blacklists, which are usually generated
using a large number of honeypots/traps distributed over many
networks, which increases the probability of blacklisting more
sources. UT/EWI data set, on the other hand, was generated
based on the incoming traffic to two mail server. However,
there are some disadvantages of employing blacklists from
public sources. The main one is the fact that the dependability
of the security solution designed to protect the target is put
at stake, since it relies on the availability of third-party no-
warranty freely distributed blacklists. Such blacklist sources
might fail for various reasons – a disruption in the service can
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Fig. 1. Daily Spammers observed by UT/EWI – November 2011

occur (e.g, PSBL users experienced a 4 day period outage in
November 2011 due to bad weather conditions [11]), the public
source might become victim of DDoS attacks, or change their
business model and charge for access, or even stop providing
blacklists overnight.

In order to have fair comparison conditions, we have
considered datasets obtained for the same monitoring periods.
We have therefore considered two monitoring periods: April
2010 (19th to 26th, 8 days) and November 2011 (11th to 17th,
7 days).

After obtaining the data sets, we have, for each day and
data set, generated a /24 BadHood blacklist, i.e, aggregated it
under /24 prefixes [21] (since it is the smallest “routable” prefix
on the Internet and incurs smaller aggregation errors [6]).
These BadHood blacklists were then employed to answer the
research questions presented in the introduction.

B. Daily Number of Bad Neighborhoods

We have several reasons to expect that the BadHoods
distribution over different days is far from being static. The
main one is a consequence of the behavior that individual
hosts (/32) exhibit, trying to be as stealthy as possible (e.g.,
spamming only once a server and not coming back). For
example, Figure 1 shows the daily number of unique spammers
(/32 hosts) for UT/EWI throughout November 2011. As can be
seen the values range from less than 20K to more than 120K
individual hosts per day, over a period of 24 days. Another
reason for expecting that the BadHood distribution changes
over time is that DNS Blacklists [9], such as CBL [10], which
contain many malicious /32 IP addresses, have to be constantly
updated in order to keep up with the dynamics of individual
hosts and be effective in the mail filtering.

Taking these into account, Table I presents the daily num-
ber of BadHoods, for each individual dataset. As we expected,
for all data sets, the number of BadHoods changes on a daily
basis. In addition to that, we observe that:

• The variation on the number of daily BadHoods is
more significant for UT/EWI and DShield data sets
(T-445 and T-3389) than for CBL (Max Variation
row, which is the ratio between the day having most
entries divided by the day having the least entries, or
100×Max/Min.



April 2010
Day/Dataset CBL UT/EWI T-445 T-3389
1st Day 955,036 66,759 141,527 752
2nd Day 958,258 58,344 146,051 817
3rd Day 954,019 61,804 143,379 731
4th Day 954,522 60,045 142,531 759
5th Day 949,167 46,892 142,105 834
6th Day 957,583 48,828 142,422 832
7th Day 961,573 45,351 138,426 773
8th Day 956,410 59,739 141,512 895
Max. Variation: ∼ 1% ∼ 47% ∼5% ∼22%

November 2011
Day/Dataset CBL UT/EWI T-445 T-3389
1st Day 812,217 56,030 79,258 818
2nd Day 809,268 32,612 77,286 25,228
3rd Day 798,345 62,769 76,210 25,331
4th Day 792,098 64,452 77,003 33,319
5th Day 795,763 73,615 78,004 31,065
6th Day 803,126 69,760 79,259 19,742
7th Day 812,598 62,903 77,033 21,331
Max. Variation: ∼ 2% ∼125% ∼4% ∼4,000%

TABLE I. NUMBER OF BADHOODS/DAY

• Abrupt variations can occur, as can be seen between
1st and 2nd days of T-3389 (November 2011).

1) Variation between the Datasets : A reason for the
fact that variations were proportionally more significant for
UT/EWI and DShield datasets than CBL has to do with the
way each original blacklist is generated. UT/EWI and DShield
datasets are generated based only on attacks observed on a
single day, that is, all /32 entries they list correspond to, at
least, one attack observed on the very day.

CBL, on the other hand, may list entries on a random day
that were not observed in the very day. CBL and other public
spam blacklist sources employ large spam traps infrastructures
and after blacklisting a certain IP address, they may keep it on
the list for many forthcoming days, even though no more spam
has been observed from that particular IP. In fact, the CBL’s
de-list policy is “manual” – that is, the responsible network
administrator for the blacklisted IP should go to CBL web site
and manually remove the address from the list [22], otherwise
it might remain blacklisted for many days, as can be seen for
the IP address 221.0.141.106, as shown in Listing 1, which
was obtained on CBL’s website on October 2nd, 2012. As can
be seen, this IP address has been kept in CBL for more than
12 days since it was last observing attacking CBL traps. This,
in turn, confirms the fact that entries are expected to remain
blacklisted over multiple days even if there was no malicious
activity (spam, in this case) observed from its originating
sources. Since CBL’s aim is to provide better protection against
spam in relation to future attacks, keeping it on the blacklists
makes sense in case recurrent spammers are frequent.

2) Abrupt Variation in the Number of BadHoods: As
shown in Table I, the number of active BadHoods changed
significantly over a single day for November 2011 Dshield
T-3389 data sets (from 818 to 25,228, as shown in Table I).
Since we do not have the full traces, it is not easy to point
the exact causes. However, we assume that it relates to the
existence of new exploits or seasonal attack behaviors for the
particular TCP port.

Such behavior is not exclusive for the Dshield data set.
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Fig. 2. Number of BadHoods - UT/EWI

Figure 2 shows the number of BadHoods for the UT/EWI
dataset, for an extended period of time (November 1st -24th,
2011). As can be seen, also for Spam BadHoods, we can
observe significant variations from one day to the next (from
less than 10K to more than 50K, between November 6th and
November 7th).

1 IP Address 2 2 1 . 0 . 1 4 1 . 1 0 6 i s l i s t e d i n t h e CBL . I t a p p e a r s t o
be i n f e c t e d wi th a spam s e n d i n g t r o j a n o r proxy .

3 I t was l a s t d e t e c t e d a t 2012−09−20 08 :00 GMT (+/− 30 m i n u t e s
) , a p p r o x i m a t e l y 12 days , 7 hours , 30 m i n u t e s ago .

5 Thi s IP i s i n f e c t e d ( o r NATting f o r a computer t h a t i s
i n f e c t e d ) wi th a spambot we have n o t y e t been a b l e t o
i d e n t i f y . For t h e t ime b e i n g we r e f e r t o i t a s t h e
unknown66 spambot .

7 Thi s IP i s i n f e c t e d ( o r NATting f o r a computer t h a t i s
i n f e c t e d ) wi th a spam−s e n d i n g i n f e c t i o n . In o t h e r words
, i t ’ s p a r t i c i p a t i n g i n a b o t n e t . I f you s im p ly remove
t h e l i s t i n g w i t h o u t e n s u r i n g t h a t t h e i n f e c t i o n i s
removed ( o r t h e NAT s e c u r e d ) , i t w i l l p r o b a b l y r e l i s t
a g a i n .

Listing 1. CBL Lookup Result – October 2nd, 2012

III. BAD NEIGHBORHOODS ATTACK STRATEGY

In this section, we address the first research question raised
in the introduction. We start by determining the total number
of days that BadHoods are active.

Figure 3 shows the distribution of the BadHoods taking into
account the number of days they are active (not necessarily
consecutive days), that is, carrying out attacks. As can be
observed, a significant part of the BadHoods are likely to attack
again (for CBL, this is most prominent due to its de-listing
policy). This is good news, implying that using historical data
is useful to predict attacks for a new day.

On the other hand, some datasets have presented a signif-
icant percentage of BadHoods that attack a single day out of
monitored days (almost 50% for T-3389 data sets). BadHoods
that are active for only one day pose a challenge for BadHoods-
based security systems, since such BadHoods attack on a single
day and are not further observed within a short term period.

A. The Bad Neighborhood Occurrence Score

The results presented in the previous section show the
number of days a BadHood is active for the monitoring data
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Fig. 3. BadHoods – Number of Days Active

sets. However, it does not show which days of the monitoring
period are chosen by the BadHoods. For example, 2 days could
be a combination of any 2 random days within the monitoring
period.

In order to be able to tell what days (or combination of) the
BadHoods are active, we propose in this section the occurrence
score. For a given data set having n days of data, we define,
for each /24 BadHood (B24), an occurrence score as follows:

occurrence(B24) =
n

∑
i=1

s(B24, i)×2i (1)

In this equation, i refers to a monitoring day, and may vary
from 1 (first day of the monitoring day, not necessarily the day
of the month) until n, the last day in the observed data set.
s(B24, i) represents if the BadHood is active on day i, therefore
its value is set to 1 if the BadHood active, otherwise 0. The
final occurrence score is the sum of 2i for each n day B24 is
active. In the end, the final number is a single integer number
that can be decomposed to reveal which days from the n days
a certain BadHoods carried out attacks.

To better illustrate how the occurrence score is calculated
and decomposed, consider the April 2010 data set from
UT/EWI. Table II shows an excerpt of the final BadHood
score file that was generated after scoring BadHoods for the
monitoring period. For each BadHood, an occurrence score is
provided, calculated using 1. As shown in this table, a score of
96 can be decomposed into two terms. The power of each of
them (5 and 6) represents the days the BadHood was active:
5th and 6th of the monitoring period. These, in turn, represent
April 23rd and 24th.

BadHood Score Decomposed Terms Days Active
93.105.233/24 96 25 +26 5th and 6th
94.66.155/24 16 24 4th
94.66.154/24 12 22 +23 2nd and 3rd
93.105.231/24 228 22 +25 +26 +27 2nd, 5th, 6th, and 7th
71.223.131/24 8 23 3rd
94.66.153/24 80 24 +26 4th and 6th

TABLE II. OCCURRENCE SCORES FOR UT/EWI BADHOODS (APRIL
2010)

An important property of the occurrence score is that any



score 2i < x < 2i+1 implies that the BadHood is active on the
i-th day plus any previous day(s) (i′ < i), but never on any
days > i. For example, a score of 32 means that a BadHood is
active on the 5th day. However, there is no other combination
of days that would yield to a score > 32 and < 64 that would
not include the 5th day. For example, if a BadHood is active
on days 1–4, it’s final score is 30, which is smaller than the
occurrence of a single day alone (5th day = 32).

1) Occurrence Scores Distribution and CDF: Figure 4
shows both the distribution and the cumulative distribution
function (CDF) of the occurrence scores (left and right
columns, respectively), for the April 2010 datasets, while
Figure 5 shows the results for the November 2011 data sets.

Analyzing the figures, we can observe that, with the
exception of CBL, no occurrence score is significantly more
prominent than the others. In fact, with the exception of CBL,
all the other data sets observe small spikes on scores equal to
2i, which are BadHoods that have only attacked on a single
day. CBL, on the other hand, presents a significant spike on
score 254 for Figure 4(a) and 510 for Figure 5(a), (scores that
represents all previous days summed up), as expected from
Figure 3(a) and 3(e), which is due to their manual de-listing
policy (as discussed in Section II-B1).

That leads to the conclusion that, except for CBL, there
is no day or a combination of days that is significantly
more recurrent than others, even for different applications.
Therefore, our results show that a network administrator should
not expect any pattern or regularity in terms of which days
BadHood chose to attack – which makes the task of predicting
attacks more complex.

IV. TRACING BACK BADHOODS: TIME SINCE LAST
ATTACK

From the previous results, we conclude that there is no
particular combination of days that BadHoods choose to carry
out their attacks. Therefore, in this section, we focus on a
single day of the monitoring period instead of all the monitored
days. We single out the last day and scrutinize each observed
BadHood, in order to determine if they can be traced back to
any previous days. After that, we determine how many days
have passed since the last attack.

To do that, we have carried out a three-step approach.
First, we obtain all the /24 BadHoods of the last day of each
data set (as covered in Section II). Then, for each of them,
look it up on the final occurrence score file generated for the
whole monitoring period (as shown in Section III-A). Those
BadHoods that have been observed carrying out attacks in the
last day in combination with any of the other previous days
(in any combination) are filtered. Mathematically, this means
that we have only considered BadHoods having an occurrence
score larger than the threshold ε > 2i, in which i is the number
of monitoring days for each data set. For the April data sets,
ε is equal to 256 and 128 for November datasets.

In our case, we are interested in the last i′ day that a
BadHood X24 has been active (the day before the singled out
day). To illustrate this, consider that a certain BadHood from
UT/EWI (April data set) has a score of 262. By decomposing
this number into powers of two, it reveals that this BadHood

has been active in days 8, 2, and 1 (262 = 28+22+21). From
the days it was active, we compute the difference between the
last day (8) and the day right before it (2), which result in 6
days between attacks.

Table III shows the number of BadHoods on each data set,
and the percentage of the recurrent ones (OcurrenceScore > ε).
We can observe that for all the data sets (we have disregarded
CBL, due to its removal policy), the majority of BadHoods
that attack a target have also been observed in at least one of
the previous days. For the April 2010 data sets, that means that
65-89% of all BadHoods observed in the last day are likely to
have been observed on all previous days (7 days), while for the
November 2011 datasets, 73-80% of BadHoods observed on
the last day are likely to also have been active on all previous
days (6 days).

April 2010
UT/EWI DShield-T445 DShield-T3389

BadHoods 59,739 141,512 895
Recurrent 39,237 (65.68%) 126,057 (89.07%) 602 (67.26%)

November 2011
UT/EWI DShield-T445 DShield-T3389

BadHoods 62,903 77,033 21,331
Recurrent 51,745 (80.97%) 61,159 (79.39%) 15,732 (73.75%)

TABLE III. TOTAL AND RECURRENT BADHOODS IN RELATION TO
THE LAST DAY

Then, the next step was to determine when each of the
recurrent BadHoods was last observed. Figure 6 shows these
results as a cumulative distribution function (CDF). As can
be seen, for all the data sets, the majority of the recurrent
BadHoods return within 5 days (>85%), which is valuable
information to determine how many days should be considered
to build BadHood attack prediction models.

V. RELATED WORK

This paper is related to research works that fall into two
categories: concentration of malicious IP addresses and attack
prediction models.

In regards to concentration of malicious IPs, we have
seen several research works. For example, Ramachandran
and Feamster addressed the network level behavior of spam-
mers [2], concluding that most of spam comes from a few
concentrated part of IP address space. Collins et. al [3], in
turn, defined the concept of uncleanliness, which “works as an
indicator for how likely the network is to contain compromised
hosts”. DNS blacklists [9], such as CBL [10], also suggest the
same concentration. Van Eeten et al. [23], analyzing billions of
spam mesages from the period of 2005 and 2008, also confirm
similar results: they found that 50 ISPs account for half of
worldwide spam sources.

Based on those works, the Bad Neighborhood concept was
introduced in [1]. The authors developed a mail filter that
employed Spam BadHoods to judge whether a message was
spam. They have proposed a combination of several rules to
classify a message based on the message’s source IP address
and URLs in the contents. In relation to this work, the authors
have employed different spam blacklists but have only consider
a period of one day in their monitoring period. However, as
shown by the CBL case, monitoring a single day may reflect
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Fig. 4. Occurrence Scores – April 2010

what is observed in several previous days, depending on the
blacklist de-listing policy.

Taking this previous studies into account, we have investi-
gated in [5] the specifics of spamming BadHoods. Our moni-
toring period was one week. We have proposed four definitions
for Spamming BadHoods, each of them addressing a particular
part of the “Spam picture”. We have found that botnets (and
individual bots) are responsible for most of Spam; however we
cannot neglect the impact of high volume spamming BadHoods
– that is, BadHoods having few spamming hosts but that
send large amounts of spam. Following this, we proposed and
evaluated two IP-based techniques to aggregate malicious IPs
into network prefixes other than /24 (from /24 to /8) [6]. For
this work, we used datasets for a single day period. We have
found that BadHood can be viably aggregated into different
BadHood sizes; however, the larger the BadHood, the larger
the aggregation error. Finally, in [7], we have evaluated third-
party raw blacklists to filter out spam messages. For this filter,
we have generated BadHood blacklists using a single day.
These findings then led to a Ph.D. dissertation [8].

Even though our work does not cover attack prediction

models, it provides the temporal analysis for such models.
In [13], Soldo et. al employed a recommendation system to
predict /24 prefixes that were likely to attack “neighboring”
targets (or victim networks). They evaluated the D-Shield
data set [12] and employed a neighborhood model (popu-
lar approach in recommendation systems) to predict attack
sources by “trusting similar peers”. Differently from theirs, our
BadHood definition is not a recommendation system technique
and it is defined in terms of neighboring sources of attacks –
and not on neighboring targets. For their model, the authors
considered a five day monitoring period, since they also found
that the majority of recurrent /24 prefixes attack within this
time frame. In comparison to our work, the authors have only
evaluated the DShield data set and they have not taken into
account the exploited applications. We have evaluated also UT/
EWI and CBL raw blacklists, in addition to DShield, and have
evaluated separatedly the two most exploited applications from
DShield.

VI. CONCLUSIONS

In this paper we have scrutinized Bad Neighborhoods’
temporal attacking behavior. We have raised two research
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Fig. 5. Occurrence Scores – November 2011

questions and investigated them using real world data sets for
three different misused applications: e-mail, Windows shares,
and Windows terminal servers.

For the first question, (“Given a certain monitoring period,
in how many days a BadHood is observed carrying out
attacks? And on what days do those attacks occur?”), we
found that a significant part of BadHoods (between 40% and
95%, depending on the data set) are likely to attack a same
target on multiple days (recurrent BadHoods). This confirms
that it is useful to use historical past of BadHoods to predict
new attack sources. However, we also found that there is no
particular combination of days that BadHoods chose to attack a
target, which poses an extra challenge when predicting attacks.

For the second question (“Given a single monitoring day,
how many BadHoods that carried out attacks in day can be
traced back to previous days? And how long does it take for
most of them to strike again?”), we found that the majority of
the BadHoods (85%) that attack a particular target are likely to
attack it again within a 5 day period, for the three applications
evaluated from two different raw blacklists.

The findings presented in this paper provide information

that can be used in prediction models. We showed in Section
II-B that daily number of BadHoods attacking a target varies
with the data source and misused application (also investigated
in Chapter 7 in [8]); therefore an attack prediction model
should leverage this and one could not expect an “one-size-
fits-all” temporal prediction model. Also, the usefulness of the
recent historical past has been proved first research question
since up to 95% of BadHoods are likely to attack more than
one day, which justifies its use to predict future attacks. Finally,
when deciding the number to use from the historical past to
design a prediction model, our results have shown that 5 days
covers the majority of the recurrent BadHoods (85%).

As future work, we intend to combine the findings pre-
sented in this paper with findings showed in previous works
to design attack prediction models, similarly to [13]. For
example, we have shown that a 5-day long training dataset
allows to predict 85% of new attacking sources, and we have
shown in [8] that the model should be application-specific.
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the maintainers of CBL and DShield.
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