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ABSTRACT 

Spiral-waveguide amplifiers in erbium-doped amorphous aluminum oxide are fabricated by RF reactive co-sputtering of 
1-µm-thick layers onto a thermally-oxidized silicon wafer and chlorine-based reactive ion etching. The samples are 
overgrown by a SiO2 cladding. Spirals with several lengths ranging from 13 cm to 42 cm and four different erbium 
concentrations between 0.5−3.0×1020 cm-3 are experimentally characterized. A maximum internal net gain of 20 dB in 
the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations 
with waveguide lengths of 13 cm and 24 cm and erbium concentrations of 2×1020 cm-3 and 1×1020 cm-3, respectively. 
The obtained gain improves previous results by van den Hoven et al. in this host material by a factor of 9. Gain 
saturation as a result of increasing signal power is investigated. Positive net gain is measured in the saturated-gain 
regime up to ~100 µW of signal power, but extension to the mW regime seems feasible. The experimental results are 
compared to a rate-equation model that takes into account migration-accelerated energy-transfer upconversion (ETU) 
and a fast quenching process affecting a fraction of the erbium ions. Without these two detrimental processes, several 
tens of dB/cm of internal net gain per unit length would be achievable. Whereas ETU limits the gain per unit length to 8 
dB/cm, the fast quenching process further reduces it to 2 dB/cm. The fast quenching process strongly deteriorates the 
amplifier performance of the Al2O3:Er3+ waveguide amplifiers. This effect is accentuated for concentrations higher than 
2×1020 cm-3. 

Keywords: Amorphous aluminum oxide, erbium, optical gain, waveguide amplifier, spiral amplifier, rate-equation 
model. 
 

1. INTRODUCTION 
Rare-earth-doped materials have been of great interest because of their capability of optical amplification [1−5] and 
lasing [6,7]. In particular, erbium-doped materials offer a solution for signals around 1.53 µm in the telecommunication 
C-band [7]. In comparison with semiconductor optical amplifiers (SOAs) [8], rare-earth-doped optical amplifiers offer 
longer excited-state lifetimes [9], providing the capability for high-speed amplification [10] in the non-saturated-gain 
regime. Besides, a small gain dependence on temperature was demonstrated in different erbium-doped fibers [11,12] and 
waveguides [13]. Refractive index changes, usually observed in SOAs as a result of generating electron-hole pairs, are 
significantly weaker in rare-earth-doped materials [14]. Erbium-doped aluminum oxide (Al2O3:Er3+) offers a broadband 
gain spectrum of 80 nm width [5], required for wavelength-division multiplexing (WDM). In addition, rare-earth-doped 
Al2O3 is easily deposited onto oxidized silicon substrates and patterned employing CMOS-compatible processes, 
facilitating its integration with different waveguide platforms including Silicon-on-Insulator (SOI) [15], polymer [16], 
and silicon nitride [17,18]. In our approach, a film of erbium-doped aluminum oxide is deposited onto oxidized silicon 
wafers by RF reactive co-sputtering from metallic targets in an oxygen atmosphere [3]. Low-loss channel waveguides 
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Figure 3. Internal net gain measured in Al2O3:Er3+ spiral waveguides with different Er3+ concentrations (symbols) and 
simulated gain (lines) as a function of propagation length for different Er3+ concentrations. The rate-equation model 
presented in [9,13], which includes ETU and a fraction of fast-quenched ions, was used for the simulations. 

where αabs(λ) is the wavelength-dependent absorption coefficient of Er3+ in dB/cm, and l is the spiral length. Figure 3 
presents the small-signal gain measured in 21 spiral amplifiers of different lengths and Er3+ doping concentrations. The 
incident signal and pump powers were Ps ~ 1 μW and Pp ~ 250 mW, respectively. In average, 10% of the incident 
powers were coupled into the waveguide. From Fig. 3 one can observe that for low doping concentration lower gain is 
achieved due to low pump absorption and, thus, low inversion density. If the doping concentration significantly 
increases, the pump power available at the back part of the spiral waveguides is not enough to maintain the population 
inversion and, thus, the signal is reabsorbed, hence at longer spirals the gain drops. A maximum net gain of 20 dB was 
measured for two samples with lengths of 24.45 and 12.9 cm and doping concentrations of 0.95×1020 and  
1.92×1020 cm-3, respectively. The lines in Fig. 3 display the simulation results employing the quenched-ion model 
suggested by Agazzi et al. [9] and applied by the authors in [13]. From the simulation results, it is observed that the 
effect of fast quenching and ETU is accentuated at higher doping concentrations (3×1020 cm-3), where less than 10 dB of 
total internal net gain was measured. 

 
Figure 4. Maximum internal net gain at different signal powers, for a 24.45-cm-long spiral waveguide with a Er3+ 
concentration of 0.95×1020 cm-3. Measurement results are presented by the symbols, while the line displays the simulation 
results using the rate-equation model presented in [13]. (Figure modified from [13].) 
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Gain saturation as a function of signal power was measured in a 25.45-cm-long spiral with Nd = 0.95×1020 cm-3. The 
gain measurement and calculation were performed as previously described. The launched signal power was varied 
between –42 to –5 dBm, while the pump power remained constant as aforementioned. Gain saturation induced by 
increased signal power is presented in Fig. 4. When the signal power is increased, the stimulated emission of the 
signal at the beginning of the waveguide increases the population of Er3+ ions in the ground state. Since the pump 
power remains fixed, the Er3+ ions in the ground state at the beginning of the waveguide absorb more of the pump 
power available, reducing the pump power at the rear part of the waveguide, thus causing lower population 
inversion, more signal reabsorption and, therefore, lower gain. However, reasonable gain (>5 dB) was measured 
even in the strong saturated conditions and above 10 dB for launched signal powers lower than –15 dBm. 

4. SUMMARY 
The design of spiral amplifiers and their fabrication in Al2O3:Er3+ have been demonstrated. Propagation losses in the 
spiral-shaped waveguides were determined and, in average, are 0.19 dB/cm. Experimental gain results of 21 spiral 
shaped amplifiers of different length and Er3+ doping concentration were presented. Gain was simulated with an 
advanced amplifier model [9,13] for the range of lengths and doping concentrations available for the samples, and results 
show good agreement with the experimental results. A maximum total gain of 20 dB was determined for two samples 
with lengths of 12.9 and 24.45 cm and doping concentrations of 0.95×1020 cm-3 and 1.92×1020 cm-3, respectively. Gain 
saturation as a function of signal power was measured and simulated. 5.5 dB of net gain was measured in the saturated 
regime (-7dBm). 
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