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Abstract—Stream processing applications executed on multi-
processor systems usually contain cyclic data dependencies due
to the presence of bounded FIFO buffers and feedback loops, as
well as cyclic resource dependencies due to the usage of shared
processors. In recent works it has been shown that temporal
analysis of such applications can be performed by iterative
fixed-point algorithms that combine dataflow and response time
analysis techniques. However, these algorithms consider resource
dependencies based on the assumption that tasks on shared
processors are enabled simultaneously, resulting in a significant
overestimation of interference between such tasks.

This paper extends these approaches by integrating an explicit
consideration of precedence constraints with a notion of offsets
between tasks on shared processors, leading to a significant
improvement of temporal analysis results for cyclic stream
processing applications. Moreover, the addition of an iterative
buffer sizing enables an improvement of temporal analysis results
for acyclic applications as well.

The performance of the presented approach is evaluated in a
case study using a WLAN transceiver application. It is shown that
56% higher throughput guarantees and 52% smaller end-to-end
latencies can be determined compared to state-of-the-art.

I. INTRODUCTION

Real-time stream processing applications such as Software
Defined Radios (SDRs) that are executed on multiprocessor
systems usually require to give temporal guarantees at design
time, ensuring that throughput and latency constraints can be
always satisfied. In many cases, however, a temporal analysis
to obtain such guarantees is not trivial, as both cyclic data
dependencies and processor sharing with run-time schedulers
heavily influence the temporal behavior of an analyzed appli-
cation. Besides, so-called cyclic resource dependencies occur
wherever resource dependencies introduced by processor shar-
ing are opposite to the flow of data, making temporal analysis
even more challenging.

It has been shown that dataflow analysis techniques are ca-
pable of obtaining temporal guarantees under such demanding
circumstances [17], [19], [23]. The applicability of dataflow
analysis techniques is not limited to temporal analysis, but also
includes the computation of required buffer capacities [24],
scheduler settings [22], a suitable task-to-processor assign-
ment [18] and forms the basis for synchronization overhead
minimization techniques such as task clustering [5] and resyn-
chronization [8].

Especially the inherent support of cyclic data dependencies,
which is enabled by the so-called the-earlier-the-better refine-
ment relation [7], distinguishes dataflow analysis techniques
from other approaches. Cyclic data dependencies regularly
occur due to the presence of feedback loops. Moreover, cyclic
data dependencies are also introduced by the usage of First-
In-First-Out (FIFO) buffers with blocking writes for inter-
task communication, i.e. buffers on which a writing task is
suspended if the buffer is full. Data dependencies become
cyclic for such buffers as a reading task does not only have
to wait for a writing task if the buffer is empty (forward
dependency), but the writing task also has to wait for the
reading task if the buffer is full (backward dependency).

It is possible to assume during temporal analysis that buffer
capacities are all infinite and to determine sufficiently large
buffer capacities, i.e. buffer capacities that are large enough
such that writing tasks never have to wait for reading tasks,
afterwards. This allows to treat applications without feedback
loops as acyclic, enabling the usage of accurate temporal anal-
ysis approaches that are not available for cyclic applications.
Unfortunately, assuming buffer capacities as infinite during
temporal analysis also prevents the exploitation of a recently
discovered correlation between cyclic data dependencies and
interference: If two tasks that interfere with each other, i.e.
that are executed on the same processor, are connected via
a cyclic data dependency then the number of interferences
of one task during an execution of the other is limited by
this cyclic dependency. This correlation is considered in the
dataflow analysis approach from [26] and further exploited
in [25] by the introduction of an iterative buffer sizing.

However, the correlation between cyclic dependencies and
interference relies on the existence of cyclic data dependencies
between tasks sharing a processor. If between some tasks
communication is realized via FIFO buffers without blocking
writes or if the capacities of some of these buffers grow
large then the algorithm in [25] falls back to the rather
crude response time analysis from [9] for these tasks, which
basically assumes that all tasks on a shared processor are
externally enabled, i.e. put in the ready queue of the scheduler
after satisfaction of data dependencies, simultaneously. This
can lead to a significant overestimation of interference and
consequently unsatisfactory analysis results.

This paper presents a dataflow analysis approach for both
cyclic and acyclic single-rate real-time stream processing ap-
plications executed on multiprocessor systems with shared pro-
cessors and static priority preemptive schedulers [3]. The ap-
proach is based on the iterative fixed-point algorithm from [25]
and addresses the overestimation of interference between tasks
by the introduction of execution intervals. Execution inter-
vals are a generalization of dynamic offsets, as they do not
only represent bounds on external enabling times, but are
defined by the minimum external enabling and maximum finish
times of tasks. Furthermore, execution intervals are integrated
with an explicit consideration of precedence constraints, a
notion of both cyclic and acyclic data dependencies. The
combination of execution intervals and precedence constraints
is used to derive a more accurate, while still temporally
conservative characterization of interference and consequently
improved temporal guarantees for cyclic applications. Finally,
the presented approach is extended with the iterative buffer
sizing from [25], which enables a significant improvement of
temporal guarantees for acyclic applications as well.

The remainder of this paper is structured as follows:
Section II presents related work. An intuitive introduction to
the presented approach is given in Section III. Section IV
details the temporal analysis approach and discusses temporal
conservativeness, monotonicity and convergence of the analy-
sis flow. The approach is evaluated in a case study in Section V
and Section VI presents the conclusions.
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Fig. 1. Left: Task graph with variable source jitter. Right: Source jitter 𝐽 vs.
end-to-end latency 𝐿 for different temporal analysis approaches.

II. RELATED WORK

In this section we discuss related work. We make use of the
example depicted in Figure 1, a benchmark taken from [15], to
illustrate the differences between the various temporal analysis
approaches. The left side of the figure shows the task graph of
a streaming application, with tasks 𝜏𝑖 and 𝜏𝑘 being executed on
a shared processor using a static priority preemptive scheduler
and task 𝜏𝑘 having a higher priority (𝜋2) than task 𝜏𝑖 (𝜋1).
The Worst-Case Execution Times (WCETs) of the tasks are
written next to the tasks. The application is driven by a
periodic source with the frequency 𝑓 = 0.1 kHz and a variable
jitter 𝐽 = [0..50] ms. Moreover, inter-task communication
is realized via FIFO buffers whose optimum capacities are
unknown before analysis. The right side of Figure 1 depicts
the end-to-end latency 𝐿 determined by different analysis
approaches drawn against the source jitter 𝐽 .

The approach from [9] can handle cyclic data dependen-
cies, but determines interference between tasks solely based on
a rather crude period-and-jitter characterization which assumes
that all interfering tasks are externally enabled simultaneously,
resulting in the curve with circles. The consideration of the
effect that cyclic data dependencies bound interference in [26]
also does not help since the task graph is acyclic, leading to
the same curve with circles for this approach.

Only the combination with an iterative buffer sizing, which
is described in [25] and also later in this paper, leads to a
significant improvement of analysis results: The iterative buffer
sizing makes the previously acyclic task graph cyclic, which
allows to bound interference using these cycles. This technique
results in the curve with dots, but requires the usage of FIFO
buffers with blocking writes. Note that the differences between
our approach and the aforementioned are further detailed in
Section V.

The limitations of the crude period-and-jitter characteriza-
tion can be addressed by the usage of offsets, which represent
bounds on the external enabling times of tasks. The external
enabling time of a task is thereby closely related to the so-
called release time [20]: Both indicate the time at which a
task iteration is put in the ready queue of its scheduler, with
the difference that a release time occurs periodically, whereas
the external enabling time reflects the enabling of a task
iteration due to satisfaction of its data dependencies. Offsets
in the context of temporal analysis were pioneered in [20].
The offsets used in this approach are static, however, limiting
applicability to systems with strictly periodic schedules. This
limitation is relaxed in [13] by the introduction of dynamic
offsets, which combine static offsets with jitters and allow to
consider systems with data-driven schedules as well.

The SymTA/S approach [11], one of the approaches dis-
cussed in [15], characterizes interference between tasks using
dynamic offsets. However, the approach cannot take into

account arbitrary cyclic data dependencies. Consequently, it
has to assume infinite FIFO buffer capacities during analysis.

Moreover, dynamic offsets have a significant shortcoming
when tasks with large jitters are involved, as it is the case
in our example: The analysis has to assume for the worst
case that an iteration 𝑛 of task 𝜏𝑖 executes as late as possible
(that is, with maximum jitter), whereas iteration 𝑛 of task 𝜏𝑘
executes as early as possible (with minimum jitter). This leads
to the detection of interference between iteration 𝑛 of task 𝜏𝑖
and iteration 𝑛 of task 𝜏𝑘, which obviously cannot occur in
the application itself. An overestimation of interference is the
consequence, which is illustrated by the curve with crosses.

This problem can be addressed by replacing dynamic
offsets with relative offsets, which are not defined in relation
to the source, but directly in relation to interfering tasks, as it
is proposed in [10]. While analysis accuracy is high for this
approach, its applicability is limited to tree-shaped task graphs.

Another possibility to reduce the inaccuracies of dynamic
offsets is the addition of explicit exclusions of interference due
to precedence constraints. Such a method was first considered
in [27] in which preempted tasks are analyzed in chains with
other preempted tasks, preventing to account for the same
interference multiple times. In [12] a notion of execution
intervals is used in combination with precedence constraints,
similar to our approach. However, precedence relations are
only evaluated between tasks in the same iteration and only
acyclic applications are considered.

Limiting interference using precedence constraints is also
discussed in [14] and refined in [16]. The latter refinement
is implemented as part of the Modeling and Analysis Suite
for Real-Time Applications (MAST) [6] and is capable of an
accurate characterization of interference for our example. This
is illustrated by the curve with boxes, which is equal to the
curve determined for our approach. However, the applicability
of the technique in [16] is also limited to acyclic task graphs
(in fact, even tree-shaped task graphs). Besides the obvious
shortcoming that task graphs with feedback loops cannot be
modeled, this can also have a negative impact on analysis
accuracy for acyclic graphs.

Assume for instance that the priorities in our example
are reversed, i.e. that task 𝜏𝑖 has a higher priority than task
𝜏𝑘. The technique in [16] would conclude that an iteration 𝑛
of task 𝜏𝑘 could potentially experience interference from all
iterations of task 𝜏𝑖 with a higher iteration index than 𝑛. In
contrast, our approach with its iterative buffer sizing would
introduce additional backward dependencies from task 𝜏𝑘 to
task 𝜏𝑖 that bound interference between these tasks, resulting
in more accurate analysis results.

As far as we know our approach is the first to consider
offsets in the context of applications with arbitrary cyclic
data and resource dependencies. The resulting support for
feedback loops and FIFO buffers with predefined capacities
distinguishes our work from all other offset-based approaches.
Moreover, our approach does not only support cyclic data
dependencies natively, but uses the precedence constraints
imposed by such dependencies to bound interference. To
the best of our knowledge, this combination of offsets and
precedence constraints enables a higher analysis accuracy for
cyclic applications than achievable by any other approach.

On top of that, our analysis approach can apply an iterative
buffer sizing, making even acyclic task graphs cyclic. The addi-
tionally introduced backward dependencies are used to bound
interference, which can lead to a significant improvement of
analysis results for acyclic applications as well.
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Fig. 3. Determining the maximum finish time of an iteration 𝑛 of task 𝜏𝑖
from Figure 2.

III. BASIC IDEA

In this section we illustrate the basic idea of combining
execution intervals with precedence constraints to bound in-
terference between tasks on shared processors. At first, we
show that there exist two different ways of conservatively
bounding interference using execution intervals and that only
a combination of the two leads to usable results. Then we
illustrate how this bound can be combined with an explicit
consideration of precedence constraints in order to determine
a more accurate interference characterization.

Consider the task graph depicted in Figure 2. All tasks
are triggered by the periodic source 𝜏𝑠 with the frequency
𝑓 = 0.1 MHz and communicate via FIFO buffers. The Best-
Case Execution Times (BCETs) and WCETs of the tasks
are denoted above them. Moreover, the tasks 𝜏𝑖, 𝜏𝑗 and 𝜏𝑘
are executed on a shared processor using a static priority
preemptive scheduler, with task 𝜏𝑖 having the lowest priority
𝜋1 and task 𝜏𝑘 having the highest priority 𝜋3. The unlabeled
tasks are executed on other, unshared processors and determine
the external enabling and finish times of the tasks 𝜏𝑖, 𝜏𝑗 and 𝜏𝑘
relative to the source. In the following we attempt to compute
an as accurate as possible, yet temporally conservative (i.e.
pessimistic) bound on the finish time of an iteration 𝑛 of task 𝜏𝑖
(shorthand notation: task iteration 𝜄𝑛𝑖 ). Thereby we make use of
so-called execution intervals of higher priority task iterations,
i.e. intervals being defined by the minimum external enabling
and maximum finish times of such task iterations.

Consider the Gantt chart depicted in Figure 3. The up-
per part of the chart shows the execution intervals of all
iterations of the higher priority tasks 𝜏𝑗 and 𝜏𝑘 that lie
in the temporal proximity of iteration 𝜄𝑛𝑖 . The execution
intervals are established by the minimum external enabling
times 𝜀 and maximum finish times 𝑓 of the tasks. Initially,
these are determined by the sums of BCETs and WCETs
on the paths to the respective tasks, relative to the periodic
executions of the source indicated by 𝑓(𝜄𝑛𝑠 ). For instance,
the initial execution interval of task iteration 𝜄𝑛𝑘 is equal to
𝑓(𝜄𝑛𝑠 ) + [1 + 1, 3 + 1 + 2] µs = 𝑓(𝜄𝑛𝑠 ) + [2, 6] µs.

Let us first assume that iteration 𝜄𝑛𝑖 is externally enabled
as late as possible, i.e. it holds that 𝜀(𝜄𝑛𝑖 ) = 𝜀(𝜄𝑛𝑖 ). Given
this external enabling time, the execution intervals of the

tasks 𝜏𝑗 and 𝜏𝑘, as well as their WCETs 𝐶𝑗 and 𝐶𝑘 we can
bound interference of the tasks in an accurate, yet temporally
conservative manner, as we explain in the following.

At first, we assume that iteration 𝜄𝑛𝑖 does not experience
any interference, i.e. it holds that its finish time is equal to
𝜀(𝜄𝑛𝑖 )+𝐶𝑖 (Figure 3a). Now we see that the execution interval
of iteration 𝜄𝑛𝑘 overlaps with the execution of iteration 𝜄𝑛𝑖 .
Consequently, we consider interference from this overlapping
iteration maximally, i.e. as the WCET of task 𝜏𝑘 (Figure 3b).
Due to this interference the finish time of iteration 𝜄𝑛𝑖 increases,
causing an additional overlap with iteration 𝜄𝑛𝑗 that we also
consider maximally (Figure 3c). We apply this procedure
of iteratively increasing interference until the finish time of
iteration 𝜄𝑛𝑖 converges, i.e. until the point in time at which
no new overlaps have to be considered. After considering
interference from iteration 𝜄𝑛𝑗 no other execution intervals of
higher priority tasks can overlap with the execution of iteration
𝜄𝑛𝑖 , making the finish time presented in Figure 3c an upper
bound on the finish time of iteration 𝜄𝑛𝑖 for the case that it is
externally enabled at 𝜀(𝜄𝑛𝑖 ).

Now consider that iteration 𝜄𝑛𝑖 is not externally enabled as
late as possible, but as early as possible, i.e. at 𝜀(𝜄𝑛𝑖 ) = 𝜀(𝜄𝑛𝑖 ).
Applying the same method of iteratively adding interference
we find the finish time shown in Figure 3d. As one can see,
in this case the finish time of iteration 𝜄𝑛𝑖 is larger than the
finish time for 𝜀(𝜄𝑛𝑖 ). This is due to the fact that the additional
overlap with iteration 𝜄𝑛−1

𝑗 , which is caused by the earlier
external enabling, is smaller than the WCET of task 𝜏𝑗 .

Such an anomaly on the computed finish time bounds with
respect to external enabling times earlier than 𝜀(𝜄𝑛𝑖 ) imposes
a problem in terms of computational efficiency: If we want
to find a bound on the finish time of a task iteration that is
independent of when the iteration is actually externally enabled
we do not only have to compute the finish time for one external
enabling time, but for all external enabling times between
𝜀(𝜄𝑛𝑖 ) and 𝜀(𝜄𝑛𝑖 ). This would make our proposed algorithm
practically unusable.

Fortunately, there is another temporally conservative way
to bound interference: A higher priority iteration cannot only
interfere no more than the WCET of the corresponding task,
but also no later than the maximum finish time of that iteration,
i.e. no later than until the end of its execution interval. In
Figure 3e this method is applied on the execution intervals
of the tasks 𝜏𝑗 and 𝜏𝑘: Starting from the external enabling
time 𝜀(𝜄𝑛𝑖 ) of iteration 𝜄𝑛𝑖 we iteratively add interference from
iterations of the tasks 𝜏𝑗 and 𝜏𝑘 up to their maximum finish
times. In this example, however, there is no time between the
execution intervals of the higher priority task iterations. For
that reason there is also no execution time left for the WCET of
iteration 𝜄𝑛𝑖 and its finish time consequently converges towards
infinity.

Now let us combine the two methods of bounding interfer-
ence as follows: For all higher priority task iterations whose
execution intervals end before or at the maximum external
enabling time of iteration 𝜄𝑛𝑖 we bound interference using
their finish times and for all other interfering iterations, i.e.
all iterations whose maximum finish times are larger than
𝜀(𝜄𝑛𝑖 ), we bound interference by the corresponding WCETs.
For 𝜀(𝜄𝑛𝑖 ) = 𝜀(𝜄𝑛𝑖 ) the finish time depicted in Figure 3f is
computed, which is apparently smaller than the finish time
computed for 𝜀(𝜄𝑛𝑖 ) = 𝜀(𝜄𝑛𝑖 ). As we show later, the latter
observation does not only hold for this example and not only
for the case that 𝜄𝑛𝑖 is externally enabled at its minimum
external enabling time, but for any external enabling time
smaller than 𝜀(𝜄𝑛𝑖 ). For that reason we can compute an upper
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bound on the finish time of iteration 𝜄𝑛𝑖 by only computing an
upper bound assuming that iteration 𝜄𝑛𝑖 is externally enabled
at 𝜀(𝜄𝑛𝑖 ) and know that this bound is indeed an upper bound
for any enabling time smaller or equal to 𝜀(𝜄𝑛𝑖 ).

Moreover, we can combine the consideration of interfer-
ence based on execution intervals with an explicit considera-
tion of precedence constraints: As it can be seen in Figure 2
task 𝜏𝑖 precedes task 𝜏𝑗 in such way that an iteration 𝜄𝑛𝑖 must be
always finished before iteration 𝜄𝑛𝑗 is externally enabled. From
this follows that iteration 𝜄𝑛𝑗 cannot interfere with iteration
𝜄𝑛𝑖 , independent of any overlaps with the execution interval of
iteration 𝜄𝑛𝑗 . Considering this relation in the computation of
maximum interference then just results in the finish time of
iteration 𝜄𝑛𝑖 presented in Figure 3g. In the following section
we show how to use dataflow modeling to derive a consistent
way of considering precedence constraints between tasks in
the finish time computation, resulting in more accurate analysis
results than achievable by only considering execution intervals.

Finally, note that the determined difference between max-
imum external enabling and maximum finish time of task
iteration 𝜄𝑛𝑖 is larger than the WCET of task 𝜏𝑖. This results in
an additional delay of task iteration 𝜄𝑛𝑗 that has to be accounted
for in a larger execution interval. Larger execution intervals,
however, can lead to even more interference that must be
considered. Therefore we have to compute execution intervals
and finish times alternately until convergence is achieved. This
makes our algorithm iterative.

IV. TEMPORAL ANALYSIS

Our temporal analysis and buffer sizing approach is pre-
sented in this section. Section IV-A describes the analysis
model and Section IV-B the iterative analysis flow. Sec-
tion IV-C presents algorithms that are used to determine
periodic execution intervals of task iterations, taking into
account delays due to data dependencies. In Section IV-D
these execution intervals, as well as precedence constraints,
are employed to bound finish times of task iterations not only
considering data dependencies, but also considering resource
dependencies due to processor sharing. Finally, Section IV-E
describes the iterative buffer sizing.

In the remainder of this paper we refer to upper (lower)
bounds on external enabling times of tasks as maximum
external enabling times 𝜀 (minimum external enabling times
𝜀). Analogously, we refer to upper (lower) bounds on finish
times as maximum finish times 𝑓 (minimum finish times 𝑓).
Moreover, we call an iteration 𝑛 of a task 𝜏𝑖 task iteration 𝜄𝑛𝑖
and the source period of that task 𝑃𝑖.

A. Analysis Model

We make use of Homogeneous Synchronous Dataflow
(HSDF) graphs to calculate lower bounds on the best-case and
upper bounds on the worst-case schedule of an analyzed appli-
cation. These bounds on schedules are used for the verification
of temporal constraints, the derivation of execution intervals
and a calculation of sufficiently large buffer capacities.

An HSDF graph is a directed graph 𝐺 = (𝑉,𝐸, 𝛿, 𝜌) that
consists of a set of actors 𝑉 and a set of directed edges
𝐸 connecting these actors. An actor 𝑣𝑖 ∈ 𝑉 communicates
with other actors by producing tokens on and consuming

tokens from edges, which represent unbounded queues. An
edge 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 initially contains 𝛿(𝑒𝑖𝑗) tokens. An
actor 𝑣𝑖 is enabled to fire if at least one token is available on
each of its incoming edges. Furthermore, the firing duration 𝜌𝑖
specifies the difference between the start and finish times of a
firing of an actor 𝑣𝑖. An actor consumes one token from each
of its incoming edges at the start of a firing and produces one
token on each of its outgoing edges when a firing finishes.

With our approach we analyze applications 𝒜 that can be
described by one or more task graphs 𝒯 ∈ 𝒜. We specify a task
graph 𝒯 as a weakly connected directed graph, with its vertices
𝜏𝑖 ∈ 𝒯 representing tasks and its directed edges representing
FIFO buffers. Our analysis requires BCETs and WCETs of
all tasks that hold independent of schedules. The underlying
hardware must support obtaining these times, as does for
instance the Starburst architecture [4]. Thereby it can be
assumed that all tasks are executed in isolation, since processor
sharing is analyzed by our algorithm. Communication time,
however, has to be included in the WCETs of tasks.

Furthermore, we require that a task is only externally
enabled, i.e. put in the ready queue of the scheduler, if data is
available in all its input buffers and free space in all its output
buffers (data-driven scheduling).

Each task graph is single-rate and has a single strictly
periodic source 𝜏𝑠 that directly or indirectly externally enables
all other tasks of the task graph by writing data to input buffers
of tasks. Without loss of generality we require that no task is
externally enabled before the first execution of the source 𝜏𝑠,
which is the case if for each task at least one input buffer is
initially empty. In the following all times of a task graph are
defined relative to that first source execution.

Writing data to an output buffer can be implemented with
the following three steps. At first, it is verified whether an
output buffer location is not locked by a reading task. If
this is not the case, the location is locked by the writing
task (acquisition of space). This is followed by the actual
write operation to the locked buffer location (data write) and
finalized by unlocking the buffer location, making it available
to reading tasks again (release of data). Analogously, reading
data from an input buffer can be characterized by an acquisition
of data, a data read and a release of space. FIFO behavior
can then be implemented by simply traversing buffer locations
on both read and write operations in sequential order, with a
wrap-around after the last location.

As depicted in Figure 4 we model each task of a task graph
as a single HSDF actor. Such a one-to-one relation between
tasks and actors can be maintained if a scheduler performs all
acquisition operations of both data and space at the beginning
and all release operations at the end of each task execution.

Exchanging data between tasks over a FIFO buffer can
then be modeled by a directed cycle in an HSDF graph, as
depicted in Figure 4, with the number of initial tokens 𝛿𝑖𝑗 on
the edge from actor 𝑣𝑖 to actor 𝑣𝑗 being equal to the number of
initially full containers in the corresponding FIFO buffer and
the number of initial tokens 𝛿𝑗𝑖 on the edge from actor 𝑣𝑗 to
actor 𝑣𝑖 being equal to the number of initially free containers.
The consumption of a token by actor 𝑣𝑖 then corresponds to an
acquisition of space, whereas a token production by that actor
corresponds to a release of data. Analogously, the consumption
of a token by actor 𝑣𝑗 corresponds to an acquisition of data
and the production of a token by actor 𝑣𝑗 to a release of space.

In the following we derive HSDF graphs from task graphs
to compute minimum and maximum start times of actors.
These start times are then used to compute bounds on the
external enabling and finish times of the corresponding tasks.
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B. Iterative Analysis Flow

Figure 5 depicts the flow of our temporal analysis approach.
We use this analysis flow for the verification of temporal
constraints and for the computation of buffer capacities that
allow for a satisfaction of these constraints.

Input to our analysis flow are an application consisting of
one or more task graphs, a fixed task-to-processor mapping,
a specification of scheduler settings and a set of temporal
constraints. Moreover, if buffer capacities are determined with
our analysis flow then upper bounds on these capacities can
be specified.

In step 1 initial execution intervals are computed. Based on
the correspondence depicted in Figure 4, two HSDF models
are derived that reflect the best-case and worst-case behavior of
the analyzed application. The firing durations of the actors in
the best-case model are set to the BCETs of the corresponding
tasks, which enables the computation of periodic lower bounds
on the external enabling times of tasks with this model.
Analogously, the firing durations of actors in the worst-case
model are set to the WCETs of the corresponding tasks. As
we show in the next section, this model can be used to derive
periodic upper bounds on the external enabling times of tasks,
i.e. periodic upper bounds on the times at which task iterations
are put in the ready queues of their schedulers. By adding
the WCETs of tasks to the determined maximum external
enabling times a first periodic upper bound on the finish times
of tasks is derived. The minimum external enabling times and
the maximum finish times then just form the sought initial
execution intervals.

Note that at this stage the maximum finish times only
account for delays due to data dependencies, but not for delays
due to resource dependencies. This is amended in step 2 of
the analysis flow, which estimates interference between tasks
executed on shared processors. We consider a combination of
precedence constraints and the execution intervals determined
in step 1 of the flow to determine accurate estimates on
interference. Starting from the previously determined maxi-
mum external enabling times we iteratively add interference,
according to Section III, until upper bounds on the finish times
of tasks are determined. These bounds are now conservative
with respect to both data and resource dependencies.

However, the increased maximum finish times from step 2
can also result in additional delays of tasks due to data de-
pendencies. Consequently, in step 3 we have to recompute the
maximum finish times derived from the worst-case model in
step 1, with the firing durations of actors set to the differences
between previously determined maximum external enabling
times and the maximum finish times computed in step 2.

The maximum finish times computed in step 3, however,
can result in enlarged execution intervals, which can potentially
lead to even more interference than considered in step 2.

Therefore step 2 has to be repeated, taking the extended
execution intervals into account. This is the reason why our
analysis flow is iterative.

To combine our temporal analysis with an iterative buffer
sizing we determine estimates on buffer capacities in step 4 of
the flow. The capacities are computed based on the schedules
and maximum finish times computed in step 3. In turn, the
estimates on buffer capacities define additional precedence
constraints that are used to bound interference in step 2.

Finally, the schedules are checked against temporal con-
straints in step 5 and it is verified whether all maximum
external enabling times and buffer capacities have converged,
i.e. have not changed since the previous iteration of the algo-
rithm. If a constraint is violated the algorithm stops. Otherwise,
depending on whether all maximum external enabling times
and buffer capacities have converged the algorithm either
finishes or repeats the steps 2 to 5 until either convergence
is achieved or constraints are violated.

In the following we ensure that both maximum external
enabling times and buffer capacities increase monotonically
throughout iterations of the analysis flow. Moreover, it can be
seen that both maximum external enabling times and buffer
capacities increase with a minimum step size, which ensures
that no enabling time nor buffer capacity can converge towards
a certain value indefinitely. If additionally upper bounds are
specified on all buffer capacities or if maximum latencies are
defined it follows that all maximum external enabling times
and buffer capacities are limited from above. This combination
of monotonicity, minimum step sizes and limits ensures that
the analysis flow terminates, as it is detailed in [25].

As the other algorithms discussed in Section II our analysis
flow is iterative, both due to the mutual dependency between
interference and execution intervals (outer loop) and within
the interference computations (inner loop). The computational
complexity of our flow is therefore in the worst-case non-
polynomial. Nevertheless, the run-times are usually small
enough for an off-line algorithm, as shown in Section V.

C. Determining Execution Intervals

In this section we present our method to compute execution
intervals in steps 1 and 3 of the analysis flow. The execution
intervals are formed by periodic lower bounds on the external
enabling times and periodic upper bounds on the finish times
of tasks. Following the method presented in [9] we compute
these bounds using dataflow models reflecting the best-case
and worst-case behavior of an analyzed application.

To determine lower bounds on external enabling times of
tasks in step 1 of the analysis flow we consider a best-case
model in which each task is modeled as a dataflow actor,
according to Figure 4. The firing durations 𝜌 of actors in
this best-case model are thereby set to the BCETs of the
corresponding tasks. Furthermore, cyclic data dependencies
with limited numbers of tokens can delay periodic start times
of actors, while it can occur that the corresponding tasks do
not always experience the same delays. Consequently, we only
consider edges without initial tokens in the best-case model.
Taking the latter restriction into account, it has been shown
in [9] that the following Linear Program (LP) can be used to
determine start times of actors in the best-case model:

Minimize
∑
𝑣𝑖∈𝑉

𝑠𝑖

Subject to: 𝑠𝑠 = 0, ∀𝑒𝑖𝑗∈𝐸′ : 𝑠𝑗 − 𝑠𝑖 ≥ 𝜌𝑖

with 𝐸′ = {𝑒 ∣ 𝑒 ∈ 𝐸 ∧ 𝛿(𝑒) = 0}



These start times define a periodic schedule for the actors in
the best-case model, i.e. it holds that the start time of an actor
𝑣𝑖 in iteration 𝑛 is equal to 𝑠𝑖+𝑛 ⋅𝑃𝑖. By setting the start time
of the source actor 𝑣𝑠 to 𝑠𝑠 = 0 it holds that all start times
are computed relative to the first enabling of the source actor.
As the external enabling time of a task is also defined relative
to the first execution of its strictly periodic source it follows
that we can use the start time 𝑠𝑖 of an actor 𝑣𝑖 in the best-case
model to determine a periodic lower bound on the external
enabling times 𝜀(𝜄𝑛𝑖 ) of the corresponding task 𝜏𝑖, i.e.:

∀𝑛≥0 : 𝜀(𝜄𝑛𝑖 ) = 𝑠𝑖 + 𝑛 ⋅ 𝑃𝑖 ≤ 𝜀(𝜄𝑛𝑖 ) (1)

Moreover, we define a worst-case model that is used to
compute upper bounds on the external enabling times of tasks
in steps 1 and 3 of the analysis flow. According to Figure 4
we consider buffer capacities as cyclic data dependencies
in the worst-case model. The numbers of tokens for buffer
capacities determined with our analysis flow are set to the
upper bounds specified as input to the flow. This is required
as using estimates on buffer capacities instead of upper bounds
could lead to both larger maximum finish times in step 2 and
smaller maximum external enabling times in step 3, which
would consequently break monotonicity of the analysis flow.

In step 1 of the analysis flow we set the firing durations
𝜌 of actors in the worst-case model to the WCETs of the
corresponding tasks. In step 3, however, the firing durations are
set to the differences between the maximum external enabling
and the maximum finish times of tasks, with the first either
computed in step 1 or, if applicable, in the previous iteration
of step 3 and the latter computed in step 2 of the analysis
flow. According to [9] the start times of actors in the worst-
case model can be computed by solving the following LP:

Minimize
∑
𝑣𝑖∈𝑉

𝑠𝑖 (2)

Subject to: 𝑠𝑠 = 0, ∀𝑒𝑖𝑗∈𝐸 : 𝑠𝑗 − 𝑠𝑖 ≥ 𝜌𝑖 − 𝛿(𝑒𝑖𝑗) ⋅ 𝑃𝑖

Also note that self-edges with one token are usually used
in dataflow models to capture that a task cannot be enabled
before its previous execution is finished. However, we are not
making use of the actual enabling times of tasks, but of external
enabling times. Hence we omit self-edges in the worst-case
model, which has the additional advantage that the differences
between the maximum external enabling and maximum finish
times of tasks are allowed to be larger than source periods.
The data dependencies between tasks are nevertheless exactly
captured by the edges between the corresponding actors. This
allows to bound the external enabling time 𝜀(𝜄𝑛𝑖 ) of a task
iteration 𝜄𝑛𝑖 from above as follows:

∀𝑛≥0 : 𝜀(𝜄𝑛𝑖 ) ≤ 𝜀(𝜄𝑛𝑖 ) = 𝑠𝑖 + 𝑛 ⋅ 𝑃𝑖 (3)

The sum of this periodic upper bound on the external enabling
times of task iterations 𝜄𝑛𝑖 and the firing duration of the actor
corresponding to task 𝜏𝑖 defines an upper bound on the finish
times 𝑓(𝜄𝑛𝑖 ) of task iterations 𝜄𝑛𝑖 , i.e.:

∀𝑛≥0 : 𝑓(𝜄𝑛𝑖 ) ≤ 𝑓(𝜄𝑛𝑖 ) = 𝑠𝑖 + 𝜌𝑖 + 𝑛 ⋅ 𝑃𝑖 (4)

With Equations 1 and 4 we can finally define the sought
periodic execution intervals:

Definition 1: The execution interval ℐ(𝜄𝑛𝑖 ) of a task iteration
𝜄𝑛𝑖 is defined as the interval between its minimum external
enabling time and its maximum finish time, i.e.:

ℐ(𝜄𝑛𝑖 ) = [𝜀(𝜄𝑛𝑖 ), 𝑓(𝜄
𝑛
𝑖 )] = [𝑠𝑖 + 𝑛 ⋅ 𝑃𝑖, 𝑠𝑖 + 𝜌𝑖 + 𝑛 ⋅ 𝑃𝑖]

D. Bounding Interference
In this section we present the derivation of periodic and

temporally conservative upper bounds on the finish times of
tasks with respect to resource dependencies. At first, we bound
the finish time of a single task iteration 𝜄𝑛𝑖 from above, by
considering interference from higher priority tasks executed
on the same processor as task 𝜏𝑖 in a temporally conservative
manner. This means that external enabling and execution
times of higher priority tasks are considered in such way that
interference on task 𝜏𝑖 is maximized. To bound interference of
higher priority tasks we make use of WCETs, the execution
intervals defined in the previous section, as well as precedence
constraints. Then we extend the derived single-iteration bound
to a periodic bound that holds for any task iteration. Finally,
we use these periodic upper bounds on finish times to derive
the firing durations required in step 3 of the analysis flow.

The outline of the remainder of this section is as follows:
In Section IV-D1 it is pointed out that it is not sufficient
to consider all interference of higher priority tasks that can
occur between the external enabling time of an iteration 𝜄𝑛𝑖
and its finish time, since earlier iterations 𝜄𝑛−1

𝑖 , 𝜄𝑛−2
𝑖 , . . .

can also delay the execution of iteration 𝜄𝑛𝑖 . Subsequently,
we present a temporally conservative method of considering
such self-interference. In Section IV-D2 it is explained how
execution intervals can be used to bound interference and in
Section IV-D3 how the accuracy of this bound on interference
can be improved by an explicit consideration of precedence
constraints. In Section IV-D4 a distinction between interfer-
ence from tasks belonging to the same and other task graphs is
made, which allows a simplification of the derived interference
bound. The transformation of a bound on the finish time of a
single iteration 𝜄𝑛𝑖 to a periodic bound valid for any iteration
of task 𝜏𝑖 is explained in Section IV-D5, as is the subsequent
computation of firing durations for the worst-case model.

1) Handling Self-Interference: It is important to note that the
finish time of a task iteration cannot only be delayed due
to higher priority tasks that interfere with this iteration, but
also due to previous iterations of the same task which are
not finished before the iteration is externally enabled. For
that reason it is not sufficient to compute an upper bound
on the finish time of an iteration 𝜄𝑛𝑖 with respect to its own
external enabling time only. Instead, we have to determine
upper bounds on the finish time of an iteration 𝜄𝑛𝑖 with respect
to its own external enabling time and the external enabling
times of all preceding iterations 𝜄𝑛−1

𝑖 , 𝜄𝑛−2
𝑖 , . . . . Computing

the maximum of all these bounds then results in an upper
bound on the finish time of iteration 𝜄𝑛𝑖 that is temporally
conservative regarding both interference of higher priority
tasks and self-interference. To obtain such a bound we make
use of so-called maximum busy periods:

Definition 2: The maximum busy period 𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞) de-

fines an upper bound on the time between the external enabling
of an iteration 𝜄𝑛−𝑞+1

𝑖 and the finish of an iteration 𝜄𝑛𝑖 under
the following two assumptions:

∙ Iteration 𝜄𝑛−𝑞+1
𝑖 is not delayed by its preceding iter-

ation, i.e. it holds that 𝑓(𝜄𝑛−𝑞
𝑖 ) ≤ 𝜀(𝜄𝑛−𝑞+1

𝑖 ).
∙ All 𝑞 iterations 𝜄𝑛−𝑞+1

𝑖 . . . 𝜄𝑛𝑖 are in consecutive exe-
cution, i.e. it holds for all iterations 𝜄𝑚𝑖 and 𝜄𝑚+1

𝑖 with
𝑚 ∈ {𝑛 − 𝑞 + 1 . . . 𝑛 − 1} that 𝑓(𝜄𝑚𝑖 ) ≥ 𝜀(𝜄𝑚+1

𝑖 ).

Note that this definition of a maximum busy period is in line
with the definition given in [13], with the difference that in [13]
a maximum busy period begins with the critical instant, i.e. the



earliest point in time before or at the external enabling of a
task iteration 𝜄𝑛𝑖 after which in the worst-case no lower priority
task of task 𝜏𝑖 can execute until the end of the maximum
busy period. In contrast, our maximum busy period begins
at the external enabling time of a task iteration 𝜄𝑛𝑖 , which is
potentially later than the critical instant. This is enabled by
the usage of execution intervals instead of external enabling
intervals, that are used in [13] to characterize interference.

If for a maximum busy period 𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞) both

assumptions hold it follows by definition that 𝜀(𝜄𝑛−𝑞+1
𝑖 ) +

𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞) is a temporally conservative upper bound on

the finish time of a task iteration 𝜄𝑛𝑖 . It can be seen that for
each task iteration 𝜄𝑛𝑖 there must exist at least one 𝑞 ≥ 1
for which both assumptions hold. Moreover, it holds for the
external enabling time of an iteration 𝜄𝑛−𝑞+1

𝑖 :

𝜀(𝜄𝑛−𝑞+1
𝑖 ) ∈ ℰ(𝜄𝑛−𝑞+1

𝑖 ) = [𝜀(𝜄𝑛−𝑞+1
𝑖 ), 𝜀(𝜄𝑛−𝑞+1

𝑖 )]

Taking this range of external enabling times into account, it
can be seen that a temporally conservative bound on the finish
time of iteration 𝜄𝑛𝑖 with respect to both interference of higher
priority tasks and self-interference can be computed as follows
(with 𝜀 a shorthand notation for 𝜀(𝜄𝑛−𝑞+1

𝑖 )):

𝑓(𝜄𝑛𝑖 ) = max
𝑞≥1

( max
𝜀∈ℰ(𝜄𝑛−𝑞+1

𝑖 )
(𝜀 + 𝑤𝑖(𝜀, 𝑞))) (5)

Now that we have established a relation between maximum
busy periods and maximum finish times we focus on the
derivation of an accurate, yet temporally conservative function
to compute maximum busy periods for any external enabling
times and numbers of consecutive executions. After deriving
such a function we show that Equation 5 can be simplified in
such way that it becomes computable, even though the number
of possible external enabling times within ℰ(𝜄𝑛−𝑞+1

𝑖 ) may be
very large in general.

2) Bounding Interference using Execution Intervals: A max-
imum busy period 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞) has to be temporally

conservative. This means that its value must be large enough
to accommodate both the WCETs of 𝑞 consecutive executions
of task 𝜏𝑖, as well as all interference of higher priority tasks
that can occur between the external enabling time of the first
of the 𝑞 consecutive executions, 𝜀(𝜄𝑛−𝑞+1

𝑖 ), and the finish
time of the last, 𝜀(𝜄𝑛−𝑞+1

𝑖 ) + 𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞). We account

for the execution time of task 𝜏𝑖 by simply adding 𝑞 times
its WCET 𝐶𝑖 to the maximum busy period. To account for
interference of higher priority tasks 𝜏𝑗 ∈ ℎ𝑝(𝑖) we make use
of the previously determined execution intervals. Note that in
the following we use the notation ℐ(𝜄𝑚𝑗 ) ∈ 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞)

to indicate that a task iteration 𝜄𝑚𝑗 is considered as interference
in 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞).

As execution intervals are defined by the temporally con-
servative minimum external enabling and maximum finish
times of task iterations it can be seen that only task iterations
can interfere with any of the 𝑞 iterations of task 𝜏𝑖 whose
execution intervals overlap with the maximum busy period.
Therefore we only have to account for higher priority task
iterations that adhere to the following two constraints:

ℐ(𝜄𝑚𝑗 ) ∈ 𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞)

⇒ 𝑓(𝜄𝑚𝑗 ) > 𝜀(𝜄𝑛−𝑞+1
𝑖 ) ∧

⇒ 𝜀(𝜄𝑚𝑗 ) < 𝜀(𝜄𝑛−𝑞+1
𝑖 ) + 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞)

In Section III it is discussed that there are two ways of
conservatively modeling interference of higher priority tasks
using execution intervals. In the following we consequently
divide all iterations 𝜄𝑚𝑗 that can interfere with 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞)

into two groups: Interference from task iterations whose
maximum finish times are smaller or equal to 𝜀(𝜄𝑛−𝑞+1

𝑖 ) is
considered via maximum finish times, whereas interference
from all other iterations is considered via the WCETs of the
corresponding tasks. Using this distinction we can divide the
busy period 𝑤𝑖(𝜀(𝜄

𝑛−𝑞+1
𝑖 ), 𝑞) into two parts, the first only

considering interference from the first group and the second
only considering interference from the second group:

𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞) = 𝑤∗

𝑖 (𝜀(𝜄
𝑛−𝑞+1
𝑖 )) + 𝑤′

𝑖(𝑞) (6)

For the iterations in the first group it holds by definition that
their maximum finish times are all smaller or equal to the
maximum external enabling time of iteration 𝜄𝑛−𝑞+1

𝑖 , i.e.:

𝑓(𝜄𝑚𝑗 ) ≤ 𝜀(𝜄𝑛−𝑞+1
𝑖 )

Therefore none of these iterations can interfere with any of the
𝑞 iterations of task 𝜏𝑖 after 𝜀(𝜄𝑛−𝑞+1

𝑖 ). If we additionally sub-
stitute 𝜀(𝜄𝑛−𝑞+1

𝑖 ) using Equation 3 we can bound interference
from these iterations from above with the following function:

𝑤∗
𝑖 (𝜀(𝜄

𝑛−𝑞+1
𝑖 )) = 𝜀(𝜄𝑛−𝑞+1

𝑖 )− 𝜀(𝜄𝑛−𝑞+1
𝑖 ) (7)

= 𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝜀(𝜄𝑛−𝑞+1
𝑖 )

Note that by using 𝑤∗
𝑖 (𝜀(𝜄

𝑛−𝑞+1
𝑖 )) to bound interference we

implicitly assume that the 𝑞 iterations of task 𝜏𝑖, as well as
any higher priority task iterations with a finish time larger
than 𝜀(𝜄𝑛−𝑞+1

𝑖 ), do not execute before 𝜀(𝜄𝑛−𝑞+1
𝑖 ). For that

reason we have to define the function 𝑤′
𝑖(𝑞) in such way that

it takes the WCETs of 𝑞 iterations of task 𝜏𝑖 into account, as
well as all interference of higher priority task iterations whose
maximum finish times are larger than the maximum external
enabling time of iteration 𝜄𝑛−𝑞+1

𝑖 . For the higher priority task
iterations that must be considered in 𝑤′

𝑖(𝑞) it follows:

ℐ(𝜄𝑚𝑗 ) ∈ 𝑤′
𝑖(𝑞) ⇒ 𝑓(𝜄𝑚𝑗 ) > 𝜀(𝜄𝑛−𝑞+1

𝑖 ) ∧
⇒ 𝜀(𝜄𝑚𝑗 ) < 𝜀(𝜄𝑛−𝑞+1

𝑖 ) + 𝑤′
𝑖(𝑞)

Replacing the minimum and maximum external enabling times
and the maximum finish times with the periodic bounds
derived in Section IV-C results in the following:

ℐ(𝜄𝑚𝑗 ) ∈ 𝑤′
𝑖(𝑞) (8)

⇒ 𝑠𝑗 + 𝜌𝑗 + 𝑚 ⋅ 𝑃𝑗 > 𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖

∧ 𝑠𝑗 + 𝑚 ⋅ 𝑃𝑗 < 𝑠𝑖 + 𝑤′
𝑖(𝑞) + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖

⇔
⌊

𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⌋
< 𝑚

<

⌈
𝑠𝑖 + 𝑤′

𝑖(𝑞) + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗
𝑃𝑗

⌉
Note that the last equivalence holds because 𝑚 must be integer.

Using Equation 8 we can summarize all iterations of a
higher priority task 𝜏𝑗 ∈ ℎ𝑝(𝑖) that have to be considered in
𝑤′

𝑖(𝑞) due to their execution intervals in the so-called execution
interval set:

𝐸𝜏𝑗→𝑤′
𝑖(𝑞)

= {𝜄𝑚𝑗 ∣
⌊

𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⌋
< 𝑚

<

⌈
𝑠𝑖 + 𝑤′

𝑖(𝑞) + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗
𝑃𝑗

⌉
}



Before using such sets to derive a temporally conservative
function 𝑤′

𝑖(𝑞) we introduce the notion of precedence con-
straints in the context of interference in the next section,
which enables the computation of more accurate bounds on
interference than by only considering execution intervals.

3) Tightening Interference Bounds using Precedence Con-
straints: In this section we present a bound on interference
that is based on precedence constraints. Thereby we make
use of so-called precedence sets. Due to space limitations we
only derive these sets intuitively, for a formal derivation of
precedence sets please refer to [26].

Reconsider the task graph depicted in Figure 4, which
contains a producing task 𝜏𝑖 that is connected to a consuming
task 𝜏𝑗 via a FIFO buffer of the capacity 𝛿𝑖𝑗 + 𝛿𝑗𝑖. We
further assume that both tasks execute on the same processor
and that task 𝜏𝑗 has a higher priority than task 𝜏𝑖. Based
on this we derive all iterations of task 𝜏𝑗 that can occur
during one iteration 𝑛 of task 𝜏𝑖. We do this derivation in
the corresponding HSDF model and use the notation 𝜄𝑛𝑖 not
only for task iterations, but also for the corresponding firings
of actors in the model.

According to the semantics of HSDF graphs, actor 𝑣𝑗 can
fire 𝛿𝑖𝑗 times before it must be enabled by a completed firing of
actor 𝑣𝑖. From this follows that all firings 𝜄𝑚𝑗 with 𝑚 ≥ 𝑛+𝛿𝑖𝑗
cannot be enabled before firing 𝜄𝑛𝑖 finishes. Moreover, it also
holds that actor 𝑣𝑖 can fire 𝛿𝑗𝑖 times before it must be enabled
by a completed firing of actor 𝑣𝑗 . From this follows that all
firings 𝜄𝑚𝑗 with 𝑚+ 𝛿𝑗𝑖 ≤ 𝑛 must be finished before firing 𝜄𝑛𝑖
is enabled.

Negating both constraints gives us the firings 𝜄𝑚𝑗 that can
occur during a firing 𝜄𝑛𝑖 , despite the precedence constraints
between the two:

𝑚 < 𝑛 + 𝛿𝑖𝑗 ∧ 𝑚 + 𝛿𝑗𝑖 > 𝑛 ⇔ 𝑛 − 𝛿𝑗𝑖 < 𝑚 < 𝑛 + 𝛿𝑖𝑗

As derived in [26] we can generalize this observation from
single edges to paths of edges: We define 𝒫𝑖𝑗 as the set of all
directed paths of edges from an actor 𝑣𝑖 to an actor 𝑣𝑗 and
𝛿(𝒫𝑖𝑗) as the minimum number of tokens on any path in 𝒫𝑖𝑗 ,
with 𝛿(𝒫𝑖𝑗) = ∞ if 𝒫𝑖𝑗 = ∅. According to [26] we can then
capture all iterations 𝜄𝑚𝑗 that can interfere with an iteration
𝜄𝑛𝑖 despite precedence constraints between the corresponding
tasks in the so-called precedence set:

𝑃𝜏𝑗→𝜄𝑛𝑖
= {𝜄𝑚𝑗 ∣ 𝑛 − 𝛿(𝒫𝑗𝑖) < 𝑚 < 𝑛 + 𝛿(𝒫𝑖𝑗)}

Note that adding an edge with an infinite number of initial
tokens to an HSDF graph does not affect the start times of
any actors. This relation is used in the definition of 𝛿(𝒫𝑖𝑗) for
𝒫𝑖𝑗 = ∅ to allow for a temporally conservative consideration
of actors without directed paths of edges between them. In [26]
it is shown that 𝛿(𝒫𝑗𝑖) and 𝛿(𝒫𝑖𝑗) can be computed efficiently
using the Floyd-Warshall algorithm.

To bound interference on 𝑤′
𝑖(𝑞) we do not only require

all iterations 𝜄𝑚𝑗 that can interfere with one iteration 𝜄𝑛𝑖 , but
that can interfere with all 𝑞 consecutive iterations of task 𝜏𝑖,
with iteration 𝜄𝑛−𝑞+1

𝑖 being the first. A set containing all these
interfering iterations can be obtained by taking the union of
the precedence sets of the iterations 𝜄𝑛−𝑞+1

𝑖 . . . 𝜄𝑛𝑖 :

𝑃𝜏𝑗→𝑤′
𝑖(𝑞)

=

𝑛∪
𝑛′=𝑛−𝑞+1

𝑃𝜏𝑗→𝜄𝑛
′

𝑖

= {𝜄𝑚𝑗 ∣ 𝑛 − 𝑞 + 1− 𝛿(𝒫𝑗𝑖) < 𝑚 < 𝑛 + 𝛿(𝒫𝑖𝑗)}

Both 𝐸𝜏𝑗→𝑤′
𝑖(𝑞)

and 𝑃𝜏𝑗→𝑤′
𝑖(𝑞)

are conservative upper bounds
on all iterations of a task 𝜏𝑗 that can interfere with 𝑤′

𝑖(𝑞).
To compute a more accurate bound on interference we can
therefore simply draw the intersection of the two sets. Before
we do that, however, let us first investigate how the lower
bounds of both sets relate to each other.

On the one hand, if there is no directed path from an actor
𝑣𝑗 to an actor 𝑣𝑖 in the corresponding dataflow model then
𝛿(𝒫𝑗𝑖) is infinite, making the lower bound of 𝐸𝜏𝑗→𝑤′

𝑖(𝑞)
always

larger than the lower bound of 𝑃𝜏𝑗→𝑤′
𝑖(𝑞)

. The lower bound
of 𝐸𝜏𝑗→𝑤′

𝑖(𝑞)
therefore becomes the dominant bound when the

intersection between the two sets is taken. On the other hand,
if there is at least one directed path 𝑝 ∈ 𝒫𝑗𝑖 then it holds that
the periods 𝑃𝑖, 𝑃𝑗 and the periods of all other tasks on path
𝑝 must be equal, since the tasks must all belong to the same
task graph. By recursively substituting the inequalities from
the worst-case LP in Equation 2 that are defined for the edges
on a path 𝑝 it follows:

∀𝑝∈𝒫𝑗𝑖
: 𝑠𝑖 ≥ 𝑠𝑗 +

∑
𝑒𝑎𝑏∈𝑝

(𝜌𝑎 − 𝛿(𝑒𝑎𝑏) ⋅ 𝑃𝑗)

≥ 𝑠𝑗 + 𝜌𝑗 −
∑
𝑒𝑎𝑏∈𝑝

𝛿(𝑒𝑎𝑏) ⋅ 𝑃𝑗

As this inequality holds for any path from actor 𝑣𝑗 to actor 𝑣𝑖
it must also hold for the path 𝑝∗ with the minimum number
of tokens 𝛿(𝒫𝑗𝑖) =

∑
𝑒𝑎𝑏∈𝑝∗

𝛿(𝑒𝑎𝑏). From this follows:

𝑠𝑖 ≥ 𝑠𝑗 + 𝜌𝑗 − 𝛿(𝒫𝑗𝑖) ⋅ 𝑃𝑗 ⇔ −𝛿(𝒫𝑗𝑖) ≤ 𝑠𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⇔ 𝑛 − 𝑞 + 1− 𝛿(𝒫𝑗𝑖) ≤ 𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⇔ 𝑛 − 𝑞 + 1− 𝛿(𝒫𝑗𝑖) ≤
⌊

𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⌋
Note that the last equivalence holds because the left hand side
of the inequality is integer.

This lets us conclude that the lower bound of 𝐸𝜏𝑗→𝑤′
𝑖(𝑞)

is
always larger than the lower bound of 𝑃𝜏𝑗→𝑤′

𝑖(𝑞)
, independent

of whether there is a path from actor 𝑣𝑗 to actor 𝑣𝑖 or not.
Taking this observation into account by ignoring the lower
bound of 𝑃𝜏𝑗→𝑤′

𝑖(𝑞)
we can draw the intersection between the

two sets in the so-called interference set:

𝐼𝜏𝑗→𝑤′
𝑖(𝑞)

= 𝐸𝜏𝑗→𝑤′
𝑖(𝑞)

∩ 𝑃𝜏𝑗→𝑤′
𝑖(𝑞)

= {𝜄𝑚𝑗 ∣
⌊

𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗 − 𝜌𝑗
𝑃𝑗

⌋
< 𝑚 <

min(

⌈
𝑠𝑖 + 𝑤′

𝑖(𝑞) + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗
𝑃𝑗

⌉
, 𝑛 + 𝛿(𝒫𝑖𝑗))}

Finally, we are not interested in the particular iterations of
tasks 𝜏𝑗 ∈ ℎ𝑝(𝑖) that can interfere with 𝑤′

𝑖(𝑞), but only in
the number of iterations. For that reason we define a function
𝛾𝜏𝑗→𝑤′

𝑖(𝑞)
returning the maximum number of iterations of a

task 𝜏𝑗 that can interfere with 𝑤′
𝑖(𝑞). Such a function can be

determined by computing the number of elements in 𝐼𝜏𝑗→𝑤′
𝑖(𝑞)

(with −⌊𝑎⌋ = ⌈−𝑎⌉):

𝛾𝜏𝑗→𝑤′
𝑖(𝑞)

= ∣𝐼𝜏𝑗→𝑤′
𝑖(𝑞)

∣
= min(

⌈
𝑠𝑖 + 𝑤′

𝑖(𝑞) + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝑠𝑗
𝑃𝑗

⌉
, 𝑛 + 𝛿(𝒫𝑖𝑗))

+

⌈
𝑠𝑗 + 𝜌𝑗 − 𝑠𝑖 − (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖

𝑃𝑗

⌉
− 1



4) Differing between Interference from the same and other Task
Graphs: We differ between the two cases that a task 𝜏𝑖 and a
higher priority task 𝜏𝑗 ∈ ℎ𝑝(𝑖) belong to the same task graph
or not. This additional information can be used to simplify the
function 𝛾𝜏𝑗→𝑤′

𝑖(𝑞)
. With the shorthand notation 𝒯𝑖 for the task

graph of a task 𝜏𝑖 we can rewrite 𝛾𝜏𝑗→𝑤′
𝑖(𝑞)

as follows:

𝛾𝜏𝑗→𝑤′
𝑖(𝑞)

=

{
𝛾∗
𝜏𝑗→𝑤′

𝑖(𝑞)
, 𝒯𝑗 = 𝒯𝑖

𝛾
′
𝜏𝑗→𝑤′

𝑖(𝑞)
, else

Let us first consider the case that 𝒯𝑗 = 𝒯𝑖. As both tasks
belong to the same task graph they must also have the same
period, i.e. 𝑃𝑗 = 𝑃𝑖. Hence it holds that the summand
(𝑛−𝑞+1)⋅𝑃𝑖

𝑃𝑗
= 𝑛− 𝑞 + 1 is integer and we can draw it outside

of both ceiling functions. From this follows:

𝛾∗
𝜏𝑗→𝑤′

𝑖(𝑞)
= min(

⌈
𝑠𝑖 + 𝑤′

𝑖(𝑞)− 𝑠𝑗
𝑃𝑗

⌉
, 𝛿(𝒫𝑖𝑗) + 𝑞 − 1)

+

⌈
𝑠𝑗 + 𝜌𝑗 − 𝑠𝑖

𝑃𝑗

⌉
− 1

Note that by this simplification 𝛾∗
𝜏𝑗→𝑤′

𝑖(𝑞)
becomes indepen-

dent of a specific iteration 𝜄𝑛𝑖 . It is therefore a valid upper
bound on the number of interfering iterations of a task 𝜏𝑗 for
any 𝑤′

𝑖(𝑞), no matter for which 𝑞 particular iterations of task
𝜏𝑖 it is determined.

For tasks 𝜏𝑗 and 𝜏𝑖 belonging to different task graphs
𝛿(𝒫𝑖𝑗) is infinite. Therefore only the execution interval set has
to be considered. However, the external enabling times of tasks
belonging to different task graphs are generally uncorrelated,
i.e. it is unknown how 𝑠𝑗 and 𝑠𝑗 on the one hand and 𝑠𝑖 on
the other hand relate to each other. In the worst-case we have
to assume that these times are correlated in such way that the
inequality ⌈𝑎⌉+ ⌈𝑏⌉− 1 ≤ ⌈𝑎+ 𝑏⌉ becomes an equality when
applied on 𝛾𝜏𝑗→𝑤′

𝑖(𝑞)
. From this follows:

𝛾
′
𝜏𝑗→𝑤′

𝑖(𝑞)
=

⌈
𝑠𝑗 + 𝜌𝑗 − 𝑠𝑗 + 𝑤′

𝑖(𝑞)

𝑃𝑗

⌉

As one can see it holds that 𝛾
′
𝜏𝑗→𝑤′

𝑖(𝑞)
is also independent of

a particular iteration 𝜄𝑛𝑖 .

5) From a Single Iteration Bound to a Periodic Bound:
After having derived the function 𝛾𝜏𝑗→𝑤′

𝑖(𝑞)
that returns the

maximum number of interfering iterations of a task 𝜏𝑗 during
𝑤′

𝑖(𝑞) we can now also determine the function 𝑤′
𝑖(𝑞) itself.

As aforementioned, the function shall return a temporally
conservative bound on the time between the maximum external
enabling time of an iteration 𝜄𝑛−𝑞+1

𝑖 and the finish time of
an iteration 𝜄𝑛𝑖 . For that reason it must consist of both an
upper bound on the execution times of task 𝜏𝑖 itself, as well as
an upper bound on the execution times of all higher priority
tasks that can preempt and delay any of the executions of 𝜏𝑖
within the interval [𝜀(𝜄𝑛+𝑞−1

𝑖 ), 𝜀(𝜄𝑛+𝑞−1
𝑖 ) +𝑤′

𝑖(𝑞)]. Using the
WCETs of the task 𝜏𝑖, of the tasks 𝜏𝑗 ∈ ℎ𝑝(𝑖) and the function
𝛾𝜏𝑗→𝑤′

𝑖(𝑞)
we can consequently write 𝑤′

𝑖(𝑞) as follows:

𝑤′
𝑖(𝑞) = 𝑞 ⋅ 𝐶𝑖 +

∑
𝜏𝑗∈ℎ𝑝(𝑖)

𝛾𝜏𝑗→𝑤′
𝑖(𝑞)

⋅ 𝐶𝑗

Note that 𝑤′
𝑖(𝑞) is computed iteratively until a fixed-point is

found. This is due to the fact that the larger 𝑤′
𝑖(𝑞) becomes,

the more higher priority tasks 𝜏𝑗 ∈ ℎ𝑝(𝑖) can interfere with
𝑤′

𝑖(𝑞), leading to an even larger 𝑤′
𝑖(𝑞).

Next we can substitute 𝑤𝑖(𝜀(𝜄
𝑛−𝑞+1
𝑖 ), 𝑞) in Equation 5

using Equation 6 and 𝑤∗
𝑖 (𝜀(𝜄

𝑛−𝑞+1
𝑖 )) using Equation 7, which

results in the following upper bound on the finish time of an
iteration 𝜄𝑛𝑖 (with 𝜀 a shorthand notation for 𝜀(𝜄𝑛−𝑞+1

𝑖 )):

𝑓(𝜄𝑛𝑖 ) = max
𝑞≥1

( max
𝜀∈ℰ(𝜄𝑛−𝑞+1

𝑖 )
(𝜀 + 𝑤𝑖(𝜀, 𝑞)))

= max
𝑞≥1

( max
𝜀∈ℰ(𝜄𝑛−𝑞+1

𝑖 )
(𝜀 + 𝑠𝑖 + (𝑛 − 𝑞 + 1) ⋅ 𝑃𝑖 − 𝜀 + 𝑤′

𝑖(𝑞)))

= 𝑠𝑖 +max
𝑞≥1

(𝑤′
𝑖(𝑞)− (𝑞 − 1) ⋅ 𝑃𝑖) + 𝑛 ⋅ 𝑃𝑖 = 𝑓𝑖 + 𝑛 ⋅ 𝑃𝑖

Note that due to the same reasoning as in [21] 𝑤′
𝑖(𝑞) only has

to be considered if it holds that 𝑤′
𝑖(𝑞 − 1) > (𝑞 − 1) ⋅ 𝑃𝑖.

Furthermore, the dependence on specific external enabling
times 𝜀(𝜄𝑛−𝑞+1

𝑖 ) is removed, making the maximum finish time
calculation practically usable. As 𝑤′

𝑖(𝑞) is independent of a
specific iteration 𝜄𝑛𝑖 it follows that 𝑓(𝜄𝑛𝑖 ) is indeed a periodic
upper bound on the finish time of a task 𝜏𝑖 with respect to both
interference of higher priority tasks and self-interference. We
can use this bound to compute the maximum firing durations
required in step 3 of our analysis flow as 𝑓𝑖 − 𝑠𝑖.

Finally, to guarantee that our flow terminates we require
that maximum external enabling times increase monotonically
throughout iterations of the analysis flow. Considering the LP
in Equation 2 it can be seen that this holds if the maximum
firing durations also increase monotonically. The term −𝑠𝑖 in
the computation of 𝛾∗

𝜏𝑗→𝑤′
𝑖(𝑞)

, however, can lead to decreasing
maximum firing durations. For that reason we have to clamp
the maximum firing durations. Let 𝜌𝑘−1

𝑖 be the maximum firing
duration computed in iteration 𝑘−1 of the analysis flow. With
𝜌0𝑖 = 𝐶𝑖 we can compute the maximum firing duration in
iteration 𝑘 as follows:

𝜌𝑘𝑖 = max(𝜌𝑘−1
𝑖 , 𝑓𝑖 − 𝑠𝑖)

= max(𝜌𝑘−1
𝑖 ,max

𝑞≥1
(𝑤′

𝑖(𝑞)− (𝑞 − 1) ⋅ 𝑃𝑖))

E. Iterative Buffer Sizing

The iterative buffer sizing in our analysis flow makes use of
the equations from [25], which are presented in this section.
We denote a number of initially empty containers estimated
in iteration 𝑘 of the analysis flow as 𝛿𝑘𝑗𝑖. Numbers of empty
containers are initialized to 𝛿0𝑗𝑖 = 1 if 𝛿𝑖𝑗 = 0 and to 𝛿0𝑗𝑖 = 0
otherwise. The reason for this assignment is that any smaller
initial values would create cycles with zero tokens in the
corresponding dataflow model, which would cause deadlock.
Based on this the numbers of initially empty containers are
estimated in step 3 of the analysis flow as follows:

𝛿𝑘𝑗𝑖 =

⎧⎨
⎩
max(

⌈
𝑠𝑗+𝜌𝑗−𝑠𝑖

𝑃𝑗

⌉
, 0) buffer with non-

blocking writes

max(
⌈
𝑠𝑗+𝜌𝑗−𝑠𝑖

𝑃𝑗

⌉
, 𝛿𝑘−1

𝑗𝑖 ) buffer with
blocking writes

It is thereby differed between buffers with blocking writes, i.e.
buffers that block a writing task whenever the buffer is full, and
buffers with non-blocking writes. For buffers with blocking
writes a clamping of initially empty containers by the initially
empty containers of the previous iteration of the analysis flow
is required. Otherwise, monotonicity and therefore termination
of the flow would not be guaranteed.
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Fig. 6. HSDF graph of the packet decoder of a WLAN 802.11p transceiver.

V. CASE STUDY

This section demonstrates the benefits of our approach
in a case study. At first we discuss the performance of our
approach for acyclic applications in more detail, again using
the example in Figure 1 that was already briefly introduced in
Section II. Then we address a more complex, cyclic application
and relate our approach to other approaches applicable for
cyclic applications. Finally, we discuss the run-times of our
analysis approach in different scenarios.

A. Acyclic Applications
Let us reconsider the example depicted in Figure 1. It is no

surprise that our approach and MAST compute the same end-
to-end latencies for the presented task graph, as both rely on
the same principles: Both approaches make use of a notion of
dynamic offsets that is combined with an explicit exclusion of
interference due to precedence constraints. In fact, sometimes
MAST can even have slightly more accurate results than our
approach for acyclic applications because it determines the
critical instant and makes use of external enabling intervals.
We make use of execution intervals and consequently do not
need to compute critical instants. This comes at the cost of a
slight over-approximation, but simplifies the combination with
arbitrary (cyclic) precedence constraints and thus allows to
perform a more accurate analysis for cyclic applications.

The SymTA/S approach has a significantly worse analysis
accuracy than our approach for the given example. This is due
to the fact that SymTA/S does not have a notion of explicit
interference exclusion, which is especially relevant if large
jitters, i.e. jitters that are larger than the source period, are
involved. In some cases, however, e.g. if the priorities of tasks
𝜏𝑖 and 𝜏𝑘 were reversed [15], the SymTA/S approach can still
outperform both our approach and MAST. The reason for
this is that we make use of periodic bounds, which implies
the assumption that bursts of input values that occur due to
large input jitters are processed periodically, with the frequency
of the source. Therefore our computed end-to-end latencies
cannot be smaller than the input jitter plus the time to process
one value. SymTA/S instead can take into account that a burst
of multiple input values can be sometimes processed faster
than with the source frequency, leading to smaller end-to-end
latencies.

However, as it was already explained in Section II, we
can apply an iterative buffer sizing on acyclic task graphs.
This makes acyclic task graphs cyclic, such that approaches
like MAST or SymTA/S are not applicable anymore. The
iterative buffer sizing introduces additional backward depen-
dencies, which are exploited by our algorithm to further limit
interference between tasks. This can lead to more accurate
analysis results than both MAST and SymTA/S can achieve.

B. Cyclic Applications
This section demonstrates the benefits of our approach

for cyclic real-time streaming applications. We analyze the
task graph of a WLAN 802.11p transceiver [1]. WLAN
802.11p transceivers are used in safety-critical automotive

applications like automated braking systems, which imposes
the requirement to give guarantees on the temporal behavior
of such transceivers. A WLAN 802.11p transceiver has sev-
eral modes and is executed on a multiprocessor system for
performance reasons. According to the standard usually two
identical transceivers are required, one for a control and one
for a data channel, that must be executed in parallel. We only
consider the part of the task graph that is active during packet
decoding mode. An HSDF model corresponding to the task
graph of the packet decoding mode used in both control and
data parts is shown in Figure 6.

A periodic source models the input of this dataflow graph.
The source frequency 𝑓 at which the transceiver operates is
typically 125 kHz. For illustration purposes, however, we vary
the source frequency between 80 kHz, 100 kHz and 125 kHz.
Furthermore, we consider an optional Direct Memory Access
(DMA) unit between the A/D converter at the source and the
filter task that can introduce bursts of up to three simultane-
ously arriving symbols. This behavior can be modeled by an
input jitter of 𝐽 = 2/𝑓 .

The dataflow graph contains a feedback loop as the settings
of the channel equalizer (EQ) for the reception of symbol 𝑛
are based on an estimate of the channel (CHEST). The channel
estimate is in turn based on the received symbol 𝑛−2 and the
reencoded symbol 𝑛− 2, which is obtained by reencoding the
error-corrected bits of symbol 𝑛 − 2 produced by the viterbi
channel decoder (VIT).

The BCETs and WCETs of the tasks, which are denoted
next to the corresponding dataflow actors, represent theoretical
bounds on actual execution times on the Starburst platform [4].
The bounds adhere to the requirements given in Section IV-A,
i.e. they are temporally conservative, independent of schedules
and include communication times. On the Starburst platform
these requirement can be satisfied if the considered processors
are uncached, if SDRAM is not used and if communication
scheduling is done in a round-robin fashion.

Our analysis flow allows for the quick verification of
different task-to-processor mappings and priority assignments.
In the following we assume that the tasks of both control
and data parts of the transceiver are mapped to eight different
processors. At first, we consider the case that the control and
the data transceiver are executed independent from each other,
i.e. the tasks of the control part are mapped to a different
set of four processors than the tasks of the data part. One
such mapping on four processors is exemplified in Figure 6,
with different colors of actors indicating different processors. If
multiple tasks are mapped to a shared processor (have the same
color) then they are scheduled by a static priority preemptive
scheduler, with the priorities denoted as 𝜋1 (lowest) to 𝜋4

(highest).
Due to the cyclic data dependency introduced by the

feedback loop none of the offset-based approaches discussed
in Section II is applicable on this example. Moreover, the
approach in [9] is applicable in principal, but determines a
constraint violation for all considered cases.

Consequently, we can only relate our approach to the one
from [26], which combines a period-and-jitter interference
characterization with an explicit consideration of precedence
constraints (case PJ), and to the approach from [25], which
additionally applies an iterative buffer sizing under the as-
sumption that all used FIFO buffers block on writes (case
PJ+iBS). For comparison we also apply our approach, which
combines execution intervals with precedence constraints, with
or without using the iterative buffer sizing (cases EI and
EI+iBS). Finally, we verify the temporal conservativeness of



𝐽 / µs 0 25 20 16

𝑓 / kHz 80 100 125 80 100 125

PJ
𝐿 = 25 constraint constraint constraint constraint constraint
Δ = 13 violation violation violation violation violation

PJ+iBS
𝐿 = 19 𝐿 = 19 constraint 𝐿 = 44 𝐿 = 39 constraint
Δ = 12 Δ = 13 violation Δ = 14 Δ = 15 violation

EI
𝐿 = 12 𝐿 = 12 𝐿 = 14 𝐿 = 49 constraint constraint
Δ = 12 Δ = 12 Δ = 13 Δ = 17 violation violation

EI+iBS
𝐿 = 12 𝐿 = 12 𝐿 = 14 𝐿 = 37 𝐿 = 32 𝐿 = 30

Δ = 12 Δ = 12 Δ = 13 Δ = 14 Δ = 14 Δ = 15

SIM
𝐿 = 12 𝐿 = 12 𝐿 = 14 𝐿 = 29 𝐿 = 29 𝐿 = 28

Δ = 12 Δ = 12 Δ = 13 Δ = 14 Δ = 14 Δ = 15

TABLE I. TEMPORAL ANALYSIS RESULTS FOR FIGURE 6 (𝐿 IN µs).

our results by comparing them to the times obtained from
the high-level system simulator Hapi (case SIM). The Hapi
simulator was initially a dataflow simulator [2], but was
recently extended with the addition of processor sharing, which
allows for the simulation of task graph executions on arbitrary
platforms. Note that in our simulations we assume the same
buffer capacities as computed in the case EI+iBS.

The different analysis approaches are applied for each
combination of source jitter and frequency. The analysis results
are then used to compute end-to-end latencies 𝐿 and sums of
all buffer capacities Δ. The respective end-to-end latencies
and sums of buffer capacities of the control part are presented
in Table I (the results for the data part of the transceiver are
equal since both parts are executed on independent sets of
processors). Note that for some cases the analyzed latencies
grow so large that the throughput constraint imposed by the
feedback loop is violated, which is indicated by the “constraint
violation” entries in the table.

What immediately catches one’s eye is that the combination
of execution intervals, a consideration of precedence con-
straints and an iterative buffer sizing (case EI+iBS) produces
the most accurate results, whereas the approach from [26]
(case PJ) generates the worst. The usage of execution intervals
allows for a more accurate interference characterization than
achievable with period-and-jitter. This is due to the fact that
in the period-and-jitter characterization all interfering tasks are
assumed to be externally enabled simultaneously, whereas our
approach rules out interference between tasks if no overlap
between execution intervals and maximum busy periods is
detected. The effect of using execution intervals on analysis
accuracy becomes apparent by comparing the cases PJ and EI:
Not only does our algorithm converge in more cases without a
violation of temporal constraints, but also the computed end-
to-end latencies are much smaller (up to 52% for 𝑓 = 80 kHz
and 𝐽 = 0 µs). The simulation results (case SIM) are equal to
our analysis results (case EI+iBS) if the input jitter is zero.
This does not only confirm that our results are temporally
conservative, but also that our analysis results are indeed very
accurate in this case.

It can be seen that the iterative buffer sizing is especially
helpful when the source jitter 𝐽 becomes larger, as it effec-
tively reduces interference between the tasks FFT and EQ by
limiting the buffer capacity between the two. Moreover, our
approach with iterative buffer sizing (case EI+iBS) produces
consistently more accurate results than the approach from [25]
(case PJ+iBS) (the computed end-to-end latency is up to 37%
smaller). This shows that execution intervals can provide a
more accurate interference characterization than achievable by
an iterative buffer sizing only. The latter is especially true for
the tasks DEMAP, DEINT and VIT on the feedback loop,
whose finish times are severely overestimated in the cases
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Fig. 7. Processor sharing between control and data parts of WLAN 802.11p
transceiver packet decoders.

𝑓 / kHz PJ PJ+iBS EI EI+iBS SIM

80
constraint 𝐿 = 24 𝐿 = 20 𝐿 = 20 𝐿 = 16

violation Δ = 13 Δ = 12 Δ = 12 Δ = 12

TABLE II. TEMPORAL ANALYSIS RESULTS FOR FIGURE 7 (𝐿 IN µs).

without execution intervals. Finally, simulation results (SIM)
again confirm that our results are temporally conservative.
The deviation between analysis and simulation results can be
explained by the fact that our analysis uses periodic bounds
and hence assumes that bursts of input values are processed
periodically, with the period of the source, whereas actually a
faster processing may be possible.

Now consider the example depicted in Figure 7, which
represents the dataflow models of both control and data parts
of the transceiver decoding modes. Most of the tasks are still
executed in isolation, except for the DEMAP tasks, whose
mappings are swapped between the control and data parts.

The analysis results for this example are presented in
Table II, again for the control part only (results for the data part
are also equal again, since the mappings of the DEMAP tasks
are swapped symmetrically). At first, one can see that although
the modification compared to Figure 6 is minimal, the results
are much worse compared to the case that the task graphs are
executed in isolation: Latencies and sums of buffer capacities
are consistently larger than the ones presented in the first
column of Table I. Moreover, the frequencies 𝑓 = 100 kHz and
𝑓 = 125 kHz, as well as jitters of 𝐽 = 2/𝑓 , do not even appear
in the table, as all considered approaches report a violation
of constraints for these cases. Note that this difference does
not only come from an analysis inaccuracy, but the fact that
the DEMAP tasks become indeed uncorrelated with the other
tasks on their processors. This means that the DEMAP tasks
actually can experience more interference than in Figure 6,
which becomes apparent by comparing the simulation results
between Table II and the first column of Table I.

Finally, the results for execution intervals are still better
than the results for period-and-jitter, although the gap between
the results is smaller than in the single task graph case. The
latter is due to the fact that for uncorrelated tasks the period-
and-jitter characterization is very similar to the characterization
described by 𝛾∗

𝜏𝑗→𝑤′
𝑖(𝑞)

. In fact, in some cases period-and-
jitter can be even slightly more accurate for interference over
multiple task graphs. This, as well as the conclusion from
the following section that run-times of interference computa-
tions are small compared to the overall algorithmic run-times,
suggests that a combination of period-and-jitter and execution
intervals can lead to an even better analysis accuracy if an
application consists of multiple task graphs.



C. Analysis Run-Times
The presented analysis algorithms were executed on a PC

with an Intel® Core™ i7 processor. All measured run-times are
in the microsecond range, which shows that our approach is
indeed capable of a quick temporal analysis for cyclic real-time
streaming applications. Although the measured run-times are
neglectably small, we can still make some observations about
their influencing factors. The invocations of the algorithms PJ
and EI for the graph in Figure 6 all take around 65 µs, inde-
pendent of source frequencies and jitters. This implies that the
interference computations only take marginal portions of the
run-times, since no differences can be observed between jitter-
and-period and the computationally more complex execution
interval characterization. The combinations with an iterative
buffer sizing take around 25% longer (around 80 µs in all
cases), which can be explained by the additional, repetitive
invocations of the Floyd-Warshall algorithm.

For the example in Figure 7 the run-times are in all cases
less than 100% larger compared to the case in Figure 6
(around 110 µs without and around 160 µs with iterative buffer
sizing), although the number of analyzed tasks is doubled. This
indicates that the run-times scale well in numbers of tasks,
allowing for the quick analysis of even larger sets of tasks
than considered in this case study.

VI. CONCLUSION

This paper presented a temporal analysis approach for
cyclic real-time stream processing applications executed on
multiprocessor systems with processor sharing and static pri-
ority preemptive schedulers.

The approach introduces a notion of execution intervals,
which are a generalization of dynamic offsets, to the temporal
analysis of cyclic applications. It was shown that such execu-
tion intervals can be extracted from dataflow graphs that are
used to model the best-case and worst-case temporal behavior
of an analyzed application. Execution intervals are temporally
conservative, which makes them suitable to bound interference
between tasks on shared processors in a temporally conserva-
tive manner.

Furthermore, execution intervals were integrated with an
explicit consideration of precedence constraints. While execu-
tion intervals are defined relative to executions of the source,
precedence constraints establish a direct relation between in-
terfering tasks. Taken together, execution intervals and prece-
dence constraints produce an interference characterization that
leads to a significant improvement of analysis accuracy for
cyclic streaming applications, compared to state-of-the-art.
Finally, if FIFO buffers with blocking writes are used for inter-
task communication and if an iterative buffer sizing is applied
on these buffers, then also significantly better analysis results
can be achieved for acyclic applications.

The applicability and performance of the presented ap-
proach were evaluated in a case study using a WLAN 802.11p
transceiver application. It was shown that if an iterative buffer
sizing is applied up to 25% higher throughput guarantees and
up to 37% smaller end-to-end latencies can be determined
compared to state-of-the-art. If iterative buffer sizing is not
fully applicable (for instance because the usage of FIFO
buffers with blocking writes is not available) then even an
improvement of up to 56% in throughput guarantees and up
to 52% in end-to-end latencies can be observed.
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