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Abstract 

In this note we introduce the Dynamic Disturbance Decoupling Prob- 
lem for nonlinear systems. A local solution of the problem is given. A 
compensator solving the problem can be obtained by means of Singh's 
algorithm. 

1 Problem formulation 

Consider a square nonlinear multi-input-multi-output control system 
of the form 

(1) x = f(.) + 4")" + P(.)P { Y = h(.) 
where 2 E X, an open subset of B", the inputs U E R", the outputs 
y E R", the disturbances q E Er,  f and h are vector-valued analytic 
functions and g and p are matrix-valued analytic functions, all of ap- 
propriate dimensions. In the Disturbance Decoupling Problem (DDP) 
one searches for a regular static state feedback 

'U. = a(.) + P(z)v (2) 

with v a new m-dimensional control and P(z )  a nonsingular m x m 
matrix for all x, so that in the feedback modified dynamics 

x = f(.) + !7(.)a(2) + s(.)P(.). + d.)P (3) 

the disturbances q do not affect the outputs y. A local solution of 
the DDP using differential geometric tools has led to a more or less 
complete understanding of this problem, see e.g. [6],[7]. The nonlinear 
DDP forms a direct generalization of the linear DDP, cf. [9]. 

The purpose of this note, which summarizes the preprint [5], is to give 
a dynamic version of the Disturbance Decoupling Problem for a square 
invertible nonlinear system (1). That is, instead of a static feedback 
law (2) we allow for a regular dynamic state feedback 

(4) 
{ i = a(.,z)+P(.,z)w 

U = Y(z,z)+q.,z)v 

with z the p-dimensional compensator state and v an m-dimensional 
new control, and the regularity of (4) means that the system (4) with 
inputs v and outputs u is invertible for all r and z. In the Dynamic 
Disturbance Decoupling Problem (DDDP) we require that in the mod- 
ified dynamics 

( 5 )  
x = f(.) + g(.h(z,.) + 9(.)6(z, Z b  + P(.)P { i = a(.,z)+P(.,z)v 

the disturbances q do not influence the outputs y. Clearly the static 
DDP forms a special case of the DDDP by assuming that p = 0. 

In this note we describe a set of necessary and sufficient conditions for 
the local solvability of the DDDP. 

2 Main result 

In this section we give our main result. Instrumental in the solution 
of the DDDP is what we like to call a Singh compensator, which can 
be obtained via the so called Singh's algorithm. Singh's algorithm has 
been introduced in [8] for calculation of a left-inverse of a nonlinear 
system. It is a generalization of the algorithm from [4], which was only 

applicable under some restrictive assumptions. We give Singh's algo- 
rithm for the system (1) without disturbances, i.e. q E 0, following [3]. 
However, our notation is slightly different from the notation employed 
in (31. 

Step 0 

Define eo := y, ijo := 0. 

Step k+l 

Suppose that in Steps 0 through k, i o , .  . . , i j f ) ,  ijp) have been defined 
so that 

y p  

jjy4 = yk - ( k )  (2, {gy' I 1 < i < k, i < j < k}) 

= q z ,  {@ I 1 < i < k - 1, i < j < k}) 
(6) 

+&k(z, {$' I 1 < i < k - 1, i < j < k - l})u 

Suppose also that there exist &) (1 < i 5 k - 1, i < j < k - 1) such 
that the matrix B k  := [ b r , .  . . , &ElT has full rank pk on a neighborhood 
of (IO, {@!!) I 1 5 i < k - 1, i 5 j < IC - 1)). Then calculate 

and write it as 

ijy1) = ak+l(z, {ijp) I 1 < i < k , i  5 j < k + 1)) 
(8) 

Sbkfl(2, {gy' I 1 _< i 5 k, i < j < k} )u  

Define Bk+l := [ E ~ , b ~ + l ] T ,  and suppose that there exist (1 < 
i < k,i < j < k) such that B k + l  has constant rank pk+l on a neigh- 
borhood of (zo,{ij:$ I 1 < i < k , i  < j < k}). Permute, if nec- 
essary, the components of so that on this neighborhood the 
first pk+1 rows of Bk+l are linearly independent. Decompose cy1) 
as df'') = ( ijl,(')' YE1)* )T where ijE1) consists of the first 
s k + l  := (pk+l - p k )  rows. Since the last rows of Bk+l are linearly 
dependent on the first Pk+l rows, we can write 

$1 = iil(.)+&(Z)U 

-(k+1) - - 
~ k + ~  - ak+l(i, {#' I 1 < i < k, i < j < k + 1)) 

(9) 
+ & k + l ( ~ ,  {ij!" I 1 5 i < k, i < j < k } ) u  

Y ~ + ~  -(k+l) = Y~')(x,{!$) - 11 < i 5 k +  l , i  < j  5 k +  1}) 

where once again everything is rational in Yj". Finally, set &+I := 
[B%,@+l]T. End of Step k + 1. 

It should be noted that the integers p1,. . . , Pk,. . . defined above do 
not depend on the particular permutation of the rows of y?") we 
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employ, cf. [3]. Thus, using the algorithm we obtain a uniquely defined 
sequence of integers 0 5 p1 5 . . . I: pk 5 . . . 5 m. We associate a 
notion of regularity with Singh's algorithm which in the following way. 
Definition 2.1 Let a point xo E X be given. We call xo a strongly 
regular point for (1) if for each application of the algorithm the con- 
stant rank assumptions of the algorithm are satisfied. H 

Consider an invertible system ( l ) ,  i.e. pn = m. Then we define a Singh 
compensator for (1) as follows. Let xo be a strongly regular point for 
(1) and apply Singh's algorithm to (1) with q E 0. This yields at the 
n-th step: 

where p,, = ( ~ r , .  . . , ~ p - ~ ) ~  ) and where B,  is invertible on a neigh- 

borhood of (xo,{&) I 1 < i < n - l , i  < j < n - 1)) for some ?$!) 
( 1  5 in, i 5 j I n). Then from (10) we obtain on this neighborhood: 

u = B ; ' [  +,-in] = : 4 ( x , { ~ p ) l l ~ i 5 n , i 1 ~ 1 n } )  (11) 

Let 7; be the lowest time-derivative and 6; the highest time-derivative 
of y, appearing in (11). Then it can be shown that 4 is of the form 

4(x, {yp) I 1 5  i 5 m,y; 5 j 5 6;)) = 

41(z, {Y?) I 1 5 i I m,yi I j I 6i - 1 ) ) t  (12) 

E 4zt(xr {Y?) I 1 5 i I m,yi I j 56; - I } ) Y ~ )  
i=l 

Let z; ( i  = 1 , .  . . , m) be a vector of dimension 6; - yi and consider the 
system: 

withinputs v~,~~~,vm,outputsu,(A,,E,) (i = l , . . . , m ) i n  Brunovsky 
canonical form, and z;(O) = (y!:),...,y!:-')). Then (13) is called a 
Singh compensator for (1) around 20. This compensator performs the 
left-inversion of the system ( l ) ,  cf. [8]. Our main result can now be 
stated as follows. 

Theorem 2.2 Consider the square invertible system (1). Let xo be a 
strongly regular point for (1). Then the Dynamic Disturbance Decou- 
pling Problem is locally solvable around xo if and only if it is solvable 
by means of a Singh compensator around 20. 

Proof See [5]. m 

3 Comments 

1. As noted before, the theory on the nonlinear DDP is very much 
based on a proper extension of the linear Disturbance Decoupling 
Problem. One could therefore think that similarly the nonlinear 
Dynamic Disturbance Decoupling Problem naturally extends the 
DDDP for linear systems. However one can show that for linear 
systems the DDDP is solvable if and only if the DDP is, see 
[1],[2]. Although a similar result holds for scalar output nonlinear 
systems, this conclusion is no longer true in the multivariable 
case. In other words when the number of outputs (=number of 
inputs) exceeds one, it may happen that the nonlinear DDDP is 
locally solvable whereas the nonlinear DDP is not. 

2. It is straightforward to extend the result of Theorem 2.2 to non- 
square systems, i.e. systems with a different number of input 
and output channels, see [5]. 

3. Theorem 2.2 forms one -computationally direct- way of check- 
ing the local solvability of the DDDP. In [5] equivalent algebraic 
and differential geometric conditions for the solvability of the 
DDDP are given. Also one may find in the same reference an 

analogous treatment of the so called Dynamic Disturbance De- 
coupling Problem with disturbance measurements (DDbPdm) 
for nonlinear systems. 
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