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Abstract - The quickest detection problem is for- 
mulated for processes defined on a two-dimensional 
lattice. Solutions are given when only the class of 
sequential probability ratio tests is considered. 

I. INTRODUCTION 
For a process that evolves in time, there is a natural way to 
formulate the quickest detection problem. Quickest detection 
of changes then consists of finding a test statistic that mini- 
mizes the difference between the time of first occurrence of the 
change and the detection time. For a process that is defined 
on a twwdimensional lattice, several methods of processing 
the data, so-called sample paths, may exist. Therefore, not 
only do we have a freedom in choosing the test statistic, also 
the sample path may be selected to achieve quickest detection 
in some sense. Possible applications may be found in image 
processing, or the detection of faults on surfaces. 

11. QUICKEST DETECTION PROBLEM 
Where classical quickest detection problems are specified by 
minimizing the delay of detection, in these multi-path situa- 
tions a more suitable definition is to minimize the number of 
data points needed to detect a change. We define the average 
site number ( A S ” )  as the expected number of data points 
processed before processing is stopped, given that a change 
is present. Clearly, some constraints on the detection quality 
have to be imposed in order for this definition to be of any 
use. 

Here we only consider statistical tests for which the prob- 
ability of false alarm is bounded by some constant. This way 
we may define a class of stopping rules for each sample path. 
For each sample path, we try to find the optimal stopping 
rule, i.e., the stopping rule that minimizes a certain cost func- 
tion. If this cost function would be entirely determined by the 
number of data points needed to detect a change, the solution 
to this problem would be degenerate; simply stop after the 
first sample and choose the acceptance region such that the 
probability of false alarm attains its desired value. To avoid 
this undesirable behavior, there are two possible approaches 
to solve this problem. 

The first one, the Neyman-Pearson approach, consists of 
adding another constraint on the miss-probability. The quick- 
est detection problem may then be written as the minimiza- 
tion of the average site number, given that the error probabil- 
ities are bounded by some given constants. 

The second one simply includes the probability of detection 
in the cost function. The cost function is chosen as 

V = A S N + c ( l  - 0 )  

where 0 denotes the probability of detection. The constant c, 
defined as the miss-cost, determines the relative importance 

of the probability of detection with respect to the average site 
number. 

111. APPROXIMATE SOLUTION 
The solution of the quickest detection problem may be shown 
to be extremely complicated. Therefore, we limit the class of 
stopping rules to the more tractable class of sequential prob- 
ability ratio tests (SPRT). These tests are parameterized by 
two thresholds a and b. If the likelihood ratio becomes smaller 
than a,  the null hypothesis is accepted. Alternatively, if it be- 
comes larger than b, the alternative hypothesis is accepted. 
The thresholds a and b have to be chosen such that the error 
constraints are satisfied. In the Neyman-Pearson approach 
both thresholds are determined by these constraints. For the 
second approach, this leaves us one degree of freedom, so that 
we may actually find an optimal stopping rule in this class by 
finding the combination (a, b) for which the cost is minimal. 
Since this optimization procedure is in general computation- 
ally expensive, in our examples we choose to ffix the lower 
threshold a, so that the class of stopping rules contains only 
one SPRT. 

The case where the process is independent and identically 
distributed under both hypotheses on the field is examined 
here. The null hypothesis is assumed to be simple, and the 
alternative hypothesis may be composite. In case of a compos- 
ite hypothesis, we assume th.e prior conditional distribution of 
the changes to be known. Assuming that the changes are 
parameterized by the set 8, this gives us 

((0) = :Pr[Blchange] 

for all B E 8. 
Expressions are derived !For the detection and fake alarm 

probabilities, for given thresholds a and b. A similar expres- 
sion has been derived for the average site number. Using these 
expressions, the optimal values of a and b may be calculated 
for both approaches. Consequently, we may calculate the cost 
for each sample path. The optimal sample path may then 
easily be selected as the one resulting in the minimal cost. 

If we furthermore restrict the class of sample paths to the 
one that contains only sample paths with constant sample 
sizes, we may find some asymptotic results. The recursive 
equations obtained for the cost function may now be replaced 
by a Fredholm integral equation of the second type, which 
is easier to approximate in a numerical way. ‘This way we 
may determine the asymptotically optimal sample size for the 
quickest detection of a change. 
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