
Parallel Handling of Integrity Constraints

Paul W.P.J. Grefen Jan Flokstra
Peter M.G. Apers

University of Twente

Abstract

Integrity constraints form an important part of a data model. Therefore, a complete in-
tegrity constraint handling subsystem is considered an important part of any modern DBMS.
In implementing an integrity constraint handling subsystem, there are two major problem areas:
providing enough functionality and delivering good performance in constraint enforcement. In
the PIt.ISMA project, an integrity constraint handling subsystem for a relational DBMS is devel-
oped, that meets both requirements. Functionality is reached through a modular and extensibte
architecture of the subsystem. Performance is reached through extensive use of parallelism in
various constraint enforcement algorithms.

1 I n t r o d u c t i o n

In databases a part of the real world is modeled. The real world model consists of structures,
operations, and constraints [Tsich82]. The structures represent the real.world entities and relations
between them. The operations allow manipulation of the structures to model changes in the real
world. The constraints guarantee the validity of the real world model represented by the database,
by constraining the allowed operations on the database. As such, the constraints describe (part of)
the semantics of this model [Tsich82], or, in other words, the knowledge of application properties
[Simon87].

Especially in the relational data model integrity constraints are necessary to describe the se-
mantics of the applications, because this data model has very little implicit semantics [Tsich82].
The growing complexity of modern database applications further increases the need for powerful
constraint handling mechanisms. Therefore, a complete constraint handling mechanism is consid-
ered an important part of any modern DBMS, and is thus included in the PRISMA DBMS, called
PRISMA/DB.

There are two general problem areas in implementing a constraint handling mechanism in a
DBMS. At the first place, performance of constraint enforcement is a great problem. At the second
place, providing a complete functionality is a problem. Solutions for these two problems are the goat
of the research towards constraint handling in the PRISMA project:

• high performance of the constraint enforcement mechanism is achieved through extensive use
of parallelism in various algorithms;

• complete functionality is reached through a very modular design of the constraint handling
subsystem, guaranteeing a high degree of flexibility and extensibility.

°The work reported in this document was conducted as part of the PRISMA project, a joint effort with Phi|ips
Research Laboratories Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek
(SPIN)"

243

There has been some research in the field of integrity constraint handling already for centralized
and traditional distributed database systems, e.g. [Stone75, Zloof78, Simon85, Morg84, Simon87].
In the context of parallel database systems the topic is new. This paper combines the theory of
integrity constraint handling with the theory of query execution in parallel database systems, and
adds some new ideas to obtain a full-fledged integrity constraint handling mechanism for parallel
database systems with fragmented relations.

The paper starts with a discussion of the ideas that form the basis for constraint handling in
PRISMA/DB; these ideas lead to the approach taken for design and implementation of the constraint
handling subsystem in PRISMA/DB. Next, the architecture of the constraint handling subsystem is
described in the context of the full DBMS architecture. Then, the various algorithms for constraint
enforcement are discussed. The combination of these algorithms provides a good combination of
functionality, flexibility and efficiency. The paper ends with some conclusions.

2 PRISMA approach to constraint handling

In this section the approach to constraint handling as taken in the PRISMA project is discussed.
We start with a short discussion of the PRISMA/DB context. Next, the requirements to constraint
handling are identified. From these, the approach chosen in the project follows.

2.1 T h e P R I S M A / D B c o n t e x t

In the PRISMA project a parallel, main memory database management system is developed, called
PRISMA/DB [Kers87, Apers88]. The system is designed to run on a shared-nothing multi-processor
hardware architecture [Bron87]. To support parallelism in query execution, PRISMA/DB uses hori-
zontally fragmented relations. Figure 1 shows the simplified base architecture of PRISMA/DB. The
following components can be identified:

Data Dictionary (DD) the DD forms the central storage of all system information, such as in-
formation on relations and their fragments; the DD is also responsible for the creation and
deletion of new fragments (OFMs);

Concurrency Controller (CC) the CC is responsible for the seriallzability of concurrent transac-
tions; a two-phase locking protocol is used with fragments as the locking granularity [Date83];

User Interface (UI) the UI is the interface that enables interactive communication with one of
the user language parsers of the system (here only the SQL interface is shown);

SQL Parser (SQL) the SQL parser translates SQL queries into the internal relational language
of PRISMA/DB; further, the SQL parser informs the DD about the creation and deletion of
relations;

Query Opt imizer (QO) the QO deals with resolving fragmentation transparency, view removal,
translation of recursive expressions, and, of course, the traditional optimization of queries;

Transaction Manager (TM) the TM manages the execution of schedules produced by the QO;
for this purpose, the TM builds execution infrastructures out of OFMs and tuple transport
channels; the TM also provides transaction serializability through locking and transaction
atomicity through a two phase commit protocol [Date83];

One Fragment Manager (OFM) the OFM manages a single base fragment or intermediate result
in the database; all fragment data is kept in main memory; disk storage is used for logging and
checkpointing only; the OFM also executes all relational operators.

[
244

UI

)FM

Figure 1: PRISMA/DB base architecture

An important role in PRISMA/DB is played by its internal relational language, called eXtended
Relational Algebra (XRA) [Wils90a]. As its name suggests, XRA is an extension to the normal
relational algebra; the extensions allow using the language as an operational language. XRA is
used as the interface language for the interfaces between SQL Parser, Query Optimizer, Transaction
Manager and One Fragment Manager.

2 .2 Requirements
The PRISMA project provides an experimental research environment for the development of a DBMS.
In this research two main issues can be identified. At the first place, the use of parallelism to improve
the performance of a main memory relational DBMS is investigated. At the second place, the
feasibility of the implementation of a full blown DBMS in a high level object oriented programming
language is aaa issue under investigation.

The main goals in the field of integrity constraint handling can be deduced from these general
project goals. At the first place achieving high performance through the use of parallelism in con-
straint enforcement is important. Further, using the implementation environment to obtain a com-
plete functionality is considered a main topic. So, the constraint handling subsystem in PRISMA/DB
has to meet the following requirements:

* the subsystem must be able to make extensive use of parallelism in the enforcement of con-
straints to obtain high performance;

• the subsystem should allow a high degree of expressiveness in constraints, to be able to model
complex applications;

• as experimenting with the functionality is considered very important, a high degree of flexibility
and extensibility should be available;

• as the base architecture of PRISMA/DB already exists, the subsystem must fit easily into the
modular PRISMA/DB architecture;

245

• since integrity constraint handling is one of several research topics in the PRISMA context, the
implementation effort for the subsystem should not be too large.

2.3 Approach taken

As lined out above, the approach to constraint handling as taken in the PRISMA project is based
on performance on the one hand and on functionality and flexibility on the other hand.
To achieve high performance, a two track approach to parallelism is employed:

• parallelism in constraint enforcement can be obtained in the same way it is obtained in regular
query execution if constraints can be translated to normal query constructs in XRA; in this
case constraint enforcement is controlled explicitly by the Transaction Manager; therefore, we
call this form of enforcement ezplicit constraint enforcement; this approach allows a high degree
of functionality and flexibility;

• parallelism can be obtained by having a 'self-checking' data layer; in PRISMA/DB terms this
means that the One Fragment Managers containing the base fragments enforce their constraints
autonomously; this form of constraint enforcement is called implicit constraint enforcement; this
approach allows a high degree of efficiency.

Good functionality and flexibility are achieved by having a strict decomposition of the tasks involved
in constraint handling; the following tasks are identified:

• translation of constraints from the form as specified by the user to the form fit for dircet
enforcement by the system;

• storage of constraints in both source as translated form;

• enforcement of the translated constraints within the transaction mechanism.

3 A r c h i t e c t u r e for constra int handl ing

The architecture of the constraint handling subsystem is deduced from the approach described in
the previous section. Below we first describe how this architecture is integrated into the existing
PRISMA/DB architecture. Next, attention is paid to the constraint translation module, the only
fully new module needed for constraint handling.

3.1 Global architecture
As mentioned before, there are three important tasks to be performed for constraint handling in our
approach:

• constraint translation

• constraint storage

• eonstraint enforcement

Because a two way approach to constraint enforcement is adopted in PRISMA/DB, we can split up
the last task into explicit and implicit constraint enforcement. So, in total four tasks can be identified.
These four tasks and their allocation in the PRISMA/DB architecture are discussed below. Figure 2
shows the modifications to the base architecture as shown in Figure 1.

Constraint translation is considered a fully new task with respect to the base architecture of
PRISMA/DB. Therefore, a new component is designed for this task; this module is called the Con-
straint Compiler (abbreviated as C2, to avoid confusion with the abbreviation for the Concurrency

246

4,

l !

Figure 2: PRISMA/DB extended architecture

Controller component). The C2 component receives constraint specifications at the relation level
in source format as its input from the Data Dictionary (DD), and returns optimized constraint
specifications at the fragment level in internal format to the DD.

Constraint storage is considered part of the storage of data definitions. Since this task is already
allocated with the Data Dictionary, constraint storage is also handled by this component. The
DD receives constraint specifications at relation definition time and stores them. Further, the DD
activates the C2 module to obtain constraint definitions in internal format. Performing the translation
at constraint definition time avoids large overhead at constraint enforcement time. As shown in the
figure, the DD is extended with a constraint storage module (cs).

Explicit constraint definitions are stated in XRA, just like ordinary queries. Therefore, it is
obvious that explicit constraint enforcement is handled in the same way as regular queries. So explicit
constraint enforcement is handled by the Transaction Manager (TM). The TM is extended with a
constraint enforcement module (ce) for this purpose. The TM retrieves the constraint definitions in
XRA format from the DD, as shown by the thin arc in the figure.

Implicit constraint enforcement is performed at the data level in the DBMS. Therefore, this task
is allocated with the OFMs managing the base fragments in the system. The OFM component is ex-
tended with a constraint enforcement (ce) module. This module contains special purpose algorithms
for local constraint enforcement. Constraint specifications are passed to the OFM at its creation
time.

3.2 Constraint compiler

The Constraint Compiler (C2) performs the translation and optimization of constraints in external
format at the relation level to constraints in internal format at the fragment level. Since PRISMA/DB
employs two different kinds of constraint enforcement, there are two internal constraint formats:

• for explicit constraint enforcement, the constrMnts are translated to XRA constructs; these
constructs are optimized to avoid query optimization overhead at constraint enforcement time;
further, constraints are labeled with triggers that indicate when they have to be enforced to

247

I i ' 1 user 1 ,m, relation - implicit
constraint -- constraint

autonomy level
control

[eoXPnli~itaint
compiler

Figure 3: Constraint compiler architecture

explicit 1 fragment
constraint

implicit 1 fragment
i constraint

avoid unnecessary constraint enforcement; the translation from external form to XRA is treated
in detail in Sections 4.2 and 4.3;

• for implicit constraint enforcement, the constraints are translated to special purpose data struc-
tures for the OFM components; these data structures are interpreted by the OFMs; the trans-
lation from external form to OFM constraints is described in Section 5.1.

To obtain maximum flexibility, both translation types are fully separated in the C2 component. This
may be inefficient, but since constraint translation is done statically (at constraint definition time
only), performance is not an issue here. The way constraints are split up into explicit and implicit
constraints is fully dynamically controllable by the user of the system. So, per relation one can
decide what part of the constraints should be enforced explicitly or implicitly. The architecture of
the constraint compiler is depicted in Figure 3.

4 Explicit constraint enforcement
For explicit constraint enforcement, constraints specified by the user are translated to XI~A con-
structs; this involves the following two steps:

• translation of the constraints to the fragment level;

• mapping the translated constraints to XRA constructs;

The XRA constructs are executed by the Transaction Manager at the end of a transaction to enforce
the constraints. The whole process of translating and enforcing explicit constraints is illustrated by
two important classes of example constraints, domain constraints and referential integrity constraints;
these constraints are presented below.

4 . 1 E x a m p l e cons tra in t s

Constraints are denoted as a pair 1 = [t, r], with the following elements:

• t is the set of triggers of the constraint; this set specifies the update types that may violate the
constraint;

248

• r is the rule of the constraint; the rule is a boolean function with a part of the database schema
as its domain.

A more formal description of this notation can be found in [Gref89, Gref90a].

Using this notation, a domain constraint is defined at the relation level as follows:

l l ~ t = [tlr~t, r l~t]
t l~ t = { I N S (R) , U P D (R) }
rl~ot = (vx e R. i) (c(x))

in which c(x) is some boolean condition over x. The trigger set of this constraint states that constraint
enforcement is necessary whenever a transaction performs an insert or update operation on relation
R; clearly, a delete operation cannot violate a domain constraint. The rule of the constraint specifies
that each value in attribute i of relation R has satisfy condiction c.

A referential integrity constraint as defined in [Date$1] can be formulated in our notation as
follows:

I2~el = [t2~e~,r2~t]
t2~t = { I N S (R) , U P D (R) , D E L (S) , U P D (S) }
r2,.ot = (Vx E R.i I x # n~,tt)(3y ~ s.j)(z = y)

In this definition, S.j is a key (unique attribute) of relation S. The constraint states that every
foreign key in relation R that is not equal to null, must have its counterpart in relation S.

4 . 2 T r a n s l a t i n g c o n s t r a i n t s t o t h e f r a g m e n t l e v e l

Constraints defined by the user are formulated in terms of relations. Because enforcement of con-
straints takes place at the fragment level of the system, a translation to this level is necessary.
The translation of constraints is comparable to the translation of queries from the relation to the
fragment level [Ceri84]. The objective of the entire translation is to obtain a specification of the
constraints that can straightforwardly be used for constructing efficient enforcement algorithms for
the constraints.
The constraint translation is accomplished in the following steps:

• translation of the constraint at the relation level into canonical fragment form; this step brings
the definition of the constraints from the external specification level (stated in terms of rela-
tions) to the internal level (stated in terms of fragments);

• distribution of the canonical form to the fragments; this step makes the semantics of the
constraint fragment oriented; the result of this step is a set of constraints;

• optimization of the distributed fragment form; this step tries to obtain possibilities for a more
efficient enforcement of the constraints;

These steps are treated in detail in [Gref89, Gref90a]. Here we limit ourselves to an illustration of
the translation by means of the two example constraints.

4.2.1 Translation from relation to fragment level

Constraints specified in terms of relations have to translated to constraints specified in terms of
fragments. The first step is translation to the canonical form. Assuming that relation R is fragmented
into n fragments, the canonical form for domain constraint 11 is the following:

I t ,~ , = [t l~ , , r l ,~ ,]
t l ~ = {INS(R,),...,INS(I~),

UPD(R,),... ,UPD(P~)}
rlc~, = (Vx e (R , . i U . . . U R~.i))(c(z))

249

This constraint is defined in terms of fragments, but the semantics are still relation-oriented. To
obtain fragment-oriented semantics, the canonical form is distributed to a set of fragment constraints,
containing one constraint for each fragment in the relation. The constraint for fragment Rk obtained
by distributing Ilc=~ is the following:

Ilnk = [tlp~,rlnk]
t l ~ = { I N S (R k) , U P D (R ~) }
,'ln~ = (w e nk.i)(c(x))

The same steps can be applied to referential integrity constraint I2. The construction of the canonical
fragment form is straightforward; the construction of the distributed fragment form is different,
however. In constraint I2 two relations are involved that play different roles: introduction of new
values in relation R may cause a constraint violation, whereas deletion of existing values in relation
S can violate the constraint. Therefore, separate constraints are constructed for the fragments Rk
of relation R and Sk of relation S:

I2nk = [t2n~,r2nk]
t2R~ = { I N S (R k) , U P D (R k) }
r2nk = (Vx E Rk.i l x 7 ~ nutl)

(3y e (S, . j U . . . U S~.j))(x = y)

I2sk = [t2sk,r2sk]
t2sk = { D E L (S k) , U P D (S k) }
r2s~ = (vx e (Rl.i u . . . u ~ . i) t x ¢ Null)

(3y e (SI. j U . . . U S~.j))(x = y)

The rule of I2sk cannot be simplified in the general case, due to the fact that referenced values
from Sk may be inserted again into another fragment of S within the same transaction (i.e. tuple
migration between the fragments of a migration to keep the fragmentation consistent).

4.2.2 Optimization of const ra in ts

The constraint definitions that are the results of the translation as described above are not very
efficient for enforcement. Therefore, optimization of these constraints is necessary. Constraints at
the fragment level can be optimized in a number of ways:

i the amount of data to be checked can be reduced by checking only those parts of fragments that
have been changed in a relevant way; this method has already been described as differential
test [Simon85, Simon87, Gard89];

• constraint rules can be algebraically manipulated to obtain forms that are cheaper in execution;
this technique is similar to regular query optimization by expression rewriting [Ceri84];

• constraint rules can be simplified in some cases if knowledge about the fragmentation of relations
is used; this is similar to removing 'empty' subtrees from query trees in query optimization
[Ceri84].

As an example, we show how referential integrity constraint I2n~ as defined above can be optimized.
The amount of data to be checked is reduced by replacing Rk by the differential set containing only
the new values in Rk; this differential set is denoted as R +. Next, the rule is manipulated by pushing
the existentM quantor through the union operation; this makes it possible to perform the existence
check local to the fragments (opening the possibilities for parallelism). These optimizations result
the following constraint definition:

I2nk = [t2nk,r2nk]
t2nk = { I N S (R k) , U P D (R k) }
~2R, = (w e R t . i l ~ # null)

(V~=, ((Y e S~. j) (x = y)))

250

If relation R is fragmented using fragmentation constraints defined only on attribute R. i , and relation
S is fragmented using the same fragmentation constraints defined only on S . j , we know that references
from Rk are always to Sk; therefore, we can simplify the referential integrity constraint I 2 n , as shown
above to the following:

I2nk = [t2nk,r2nk]
t2ak = { I N S (R ~) , U P D (R k) }
r2Rk = (Vx e R t . i l x # .~ l l) (3y e S~.i)(~ = U)

It is clear, that enforcement of this constraint is much easier (and cheaper) than the enforaement of
the constraint in its previous form. This leads to the observation, that integrity constraints should
be taken into account in relation fragmentation design.

4 . 3 T r a n s l a t i o n t o X R A c o n s t r u c t s

Constraints are specified by the user in a non-procedural form. To be able to execute the constraints,
they are translated to a procedural form in XRA. The XRA necessary for this is only a minimal
extension to the XRA needed for normal query execution.

The use of XRA as an enforcement vehicle gives several important advantages over specialized
hard coded algorithms:

• XRA provides an abstraction level that makes straightforward translation of constraints into
enforcement algorithms possible;

. enforcement via XRA makes use of modular building blocks for the enforcement algorithms,
thus ensuring flexibility and extensibility;

• for enforcement via XRA software building blocks are used that are already available for reg-
ular query processing to a large extent; this minimizes implementation overhead for integrity
constraint handling on the one hand, and maximizes the use of parallel algorithms on the other
hand.

4.3.1 Basic X R A cons t ruc ts

For constraint enforcement in XRA, we make use of the regular relational algebra operators, such
as union and difference. Further, we make use of a few extensions to the normal relational algebra.
Apart from one, the alarm operator, all these extensions are also used for normal query processing
in PRISMA/DB.

XRA contains two operators that take care of distributing tuples of a source operand to several
destination operands; these operators are functionally equivalent to a combination of regular rela-
tional algebra operators, but, as is shown below, operationally extremely important for obtaining
parallelism. The first of these operators, copy, copies the source operand to each of the destination
operands:

copy (src, d s t~ , . . . , ds tn)

This operation is functionally equivalent to the following sequence of assignments:

ds t l ~ s rc

dst~ *-- s r c

The second distributing operator, split, splits up the source operand over the destination operands
given the fragmentation constraints of the destination operands:

sp l i t (s r c, d s t l , condl , dst~, cond2, . . . , ds tn , condn)

251

In this operation, all conditions condi are mutually disjoint and together complete with respect to
the source relation src; in other words, the conditions define a partition of the source relation. This
operation is functionally equivalent to the following sequence of assignments:

dSt l ~'- a~da src

ds t . ~ - - O ' e o n d n src

Finaly, we have an operator that has as its sole functionality that it causes a transaction abort if its
operand is not empty:

alarm (oper)

Using the XRA operators, logic constructs as appearing in constraint definitions can be translated
to XRA constructs. Transformation rules as shown below are used for this. These rules give a few
examples that can be used in the context of the example constraints of this paper.

(W e R)(e(x)) ~ a larm (a-~(~)(R)) (1)

(w e R)(3y e S)(= = u) alarm (unique(R) - S) (2)

(Vx E R)(V~=a(3y E Si)(x = y)) --* copy (un ique(R) ,T1 , . . . ,T , ,) (3)
alarm ((711 - 5'1) f ' l . . , n (T~ - S~))

4.3.2 T r a n s l a t i n g c o n s t r a i n t s to X R A

Here we show how the example constraints can be translated to XRA constructs. Domain constraint
I1 is taken as a first example; the definition of this constraint is:

I1R~ = [tlRk,rlRk]
tlak = { I N S (R k) , U P D (R k) }
rlR~ = (W e R+.i)(c(=))

The rule of this constraint can easily be mapped onto the following XRA construct using transfor-
mation 1 as shown above:

alarm (cr.c(~)(~r/(R+)))

We take referential integrity constraint I2Rk as a second example; the form based on general frag-
mentation of the involved relations was described above as follows:

I2Rk = [t2ak,r2Rk]
t2Rk = { I N S (R k) }
r2Rk = (V x e R + . i t x ~ n u l l)

(V~=~((3y e S~. j) (x = y)))

Using transformations 1 and 3 as listed above, we can map the rule of this constraint onto the
following XRA construct:

copy (unique(~ri(ai#,~t(R+))), tempa, . . . , temp,~)
alarm ((tempi -- ~j(Sl)) n . . - n (t~r~p, - ~(&)))

Note, that the copy operator takes care of distributing the differential set of Rk; this is used to obtain
pipeling parallelism, as discussed below. The form of constraint I2Rk that was optimized with respect
to matching fragmentation of the involved relations is the following:

12R~ = [t2R,,r2R~]
t2R~ = { I N S (R ~) , U P D (R ,) }
r2Rk = (Vx E R+.i [z # nulI)(3y q S~. j)(x = y)

252

In this case, the resulting XRA construct can be:

8plit(unique(~ri(alCnu,t(R+))), tempi , f l , " " , tempn, fn)
alarm(temp~ - r~(S~))

~ l ~ n (t~.~p~ - ~ ~(s~))

The differential set R + is not sent completely to every fragment of S, but is split up over the
fragments of S, thereby reducing tuple transport; further, the costly intersection operation is not
necessary here.

4.4 Enforc ing cons tra int s

The XRA constructs used for explicit constraint enforcement as presented in the previous section
can straightforwardly be implemented using XRA execution infrastructures in PRISMA/DB. This
section discusses the way this is reMized and the possibilities for parallelism in this method.

4.4.1 Building the infrastructure

The infrastructure for constraint enforcement at the OFM level consists of three types of building
blocks:

• permanent OFM : used for the storage of fragments of permanent relations (base fragments);

• temporary OFM : used for execution of relational operators and storage of intermediate results
of operations;

• channels : used for the transportation of tuples between OFMs.

The permanent OFMs contain the fragment data on which integrity constraints must be enforced.
These OFMs contain algorithms to automatically maintain the differential sets; this means that
these sets are already constructed during transaction execution on a local basis in the fragments.
The temporary OFMs are used for the execution of the XRA operators needed for the constraint
enforcement structures. These OFMs can be created dynamically by the Transaction Manager when
needed. The channels are used as communication means to transport tuples from one OFM to
another. Both OFMs and channels are designed to make optimal use of pipelining in executing XRA
[Wils89, Wils90b].

To obtain complete transaction semantics with respect to atomicity, all constraints are enforced
at commit time in PRISMA/DB; note, that the techniques as presented in this paper can be used for
other approaches equally well. Enforcing constraints at the end of a transaction consists conceptually
of two phases:

• setup phase: in this phase the transaction manager builds the execution infrastructure needed
for constraint enforcement; a~tuMly~ this phase can already start during transaction execution;

• execution phase: in this phase the execution infrastructure processes the data to be checked;
similar to the execution of regular user queries, this operates in a fully parallel, pipelined fashion
[Wils90b].

The setup phase makes use of the same mechanisms that are used for setting up normal query
execution infrastructures in PRISMA/DB; this implies that constraint enforcement does not require
any architectural changes at the execution level [Gref90c]. Especially, the Transaction Manager does
not have to deal with any part of the database extension, thus avoiding a possible bottleneck in the
enforcement algorithms.

The previously presented example of the XRA construct used for enforcement of referential in-
tegrity constraint I2:

253

Ialarm]

Figure 4: XRA constraint enforcement infrastructure

copy (unique(cri(a,g=~,t(Rk +))), tempi , . . . , temp,)
a l a rm ((tempi -- ~ ($1)) n . - . n (temp~ - ~ j (&)))

can straightforwardly be implemented by the execution infrastructure as shown in Figure 4.

4.4.2 Parallelism in explicit constraint enforcement

We have seen that constraint enforcement is executed by an XtLA infrastructure. The relational
operators in these infrastructures are all independent processes, so parallelism can be employed
easily. Within the explicit constraint enforcement mechanism we can distinguish three types of
parallelism [Gref88, Wils89]:

• several independent constraints can be checked at the same time; this is possible because after
the setup phase, the enforcement process is fully asynchronous; at the constraint enforcement
level, we can consider this a form of multi-tasking;

• at the same level in a XRA infrastructure, several OFMs operate on the data of several frag-
ments in parallel; in the example of figure 4 we can see that all difference operators can work
in parallel; this kind of parallelism is called task spreading',

• because all operators operate in a pipelined fashion, several stages of the XRA infrastructure
can work in parallel too; we call this pipelining parallelism [Wils90b].

Further, improvements in response time for the entire transaction can be reached by executing
normal queries of the transaction and constraint enforcement queries in parallel. As such, an overlap
is created that shortens the overall transaction execution time. Take as an example a transaction
that first insert some tuples into two distinct fragments managed by OFMs OFM1 and OFM2, and
thereafter computes the join of both fragments on a third OFM OFM3. In this case the activity of
the OFMs can be as depicted in Figure 5.

254

0FM3

0FM2

OFM1

execution Lime

normal n cons t ra in t
queries enforcement

Figure 5: Regular query execution and explicit constraint enforcement

5 Implicit and hybrid constraint enforcement

In the previous section explicit constraint enforcement is discussed. This approach to constraint en-
forcement has a high degree of functionality and flexibility. This approach has however two drawbacks
with respect to high efficiency:

* there is overhead at constraint enforcement time in creating the necessary XR, A execution
infrastructure and in passing the XRA commands to the One Fragment Managers involved in
constraint enforcement;

o no specialized algorithms in the OFMs can be used for constraint enforcement to obtain high
efficiency, because all constraints are stated in regular XRA.

To overcome these drawbacks, PRISMA/DB also employs implicit constraint enforcement. This form
of enforcement is characterized by a high degree of autonomy of the involved One Fragment Managers:
the OFMs enforce constraints without intervention of the Transaction Manager. Implicit constraint
enforcement is however only applicable to very limited forms of integrity constraints. Therefore,
PRISMA/DB employs a third technique which is a combination of explicit and implicit constraint
enforcement; this form of enforcement is called hybrid constraint enforcement.

5 .1 T r a n s l a t i n g c o n s t r a i n t s f o r O F M s

As shown in Figure 3 the compilation process in the Constraint Compiler component is directed by
the autonomy level control. Four levels of OFM autonomy are distinguished by the C2 component
[Gref90b]:

1. The lowest level of autonomy is called no autonomy; in this case all constraints are handled
by ezplicit enforcement as described in the previous section; the OFM has no knowledge about
constraints.

2. In the case of strictly local autonomy, the OFM enforces standard constraints having a strictly
local scope with respect to the fragment managed by the OFM; this is a form of implicit
constraint enforcement.

3. If data reduction autonomy is used, the OFM also offers special purpose differential sets for ex-
plicit constraint enforcement; the OFM constructs these sets by performing a filtering technique
on the standard differentia~ sets; this is a form of hybrid constraint enforcement.

255

4. The highest level of autonomy is called process reduction autonomy; in this case the OFM uses
built-in logic, that can decide that explicit constraint enforcement for a specific constraint is
not necessary, because the specal purpose differential set is empty; this is also a form of hybrid
constraint enforcement.

Constraint sets for OFMs are produced by the Constraint Compiler in special purpose data structure
format. These constraints are passed to the OFMs at their creation time by the Data Dictionary.

5.2 Implicit enforcement of constraints

In implicit constraint enforcement, an OFM enforces local constraints without any intervention from
the TM. The constraint enforcement is triggered by the standard two-phase commit protocol; as
such, the enforcement is treated as a part of the local commit decision making in the OFM and does
not need any special communication with the TM. Implicit constraint enforcement can be applied
to the following types of constraints:

• domain and nonuU constraints: if the OFM is aware of the domains of the attributes of the
fragment it manages, it can easily check if the values in the tuples of the fragment match with
these domains;

• general tuple constraints: the same holds for constraints describing relations between values
within one tuple;

• local uniqueness constraints: the OFM can enforce an uniqueness constraint if the relation to
which the OFM belongs is not fragmented, or the relation is fragmented on the attributes on
which the uniqueness constraint is defined.

5.3 Hybrid enforcement of constraints

In hybrid constraint enforcement, local activities of the OFM are used to alleviate the process of
explicit constraint enforcement. The key to this is the maintenance of special purpose differential set
for specific constraints. These differential sets can then be used in two ways:

0 the sets can be smaller than the general purpose differential sets; this reduces the amount of
data to be processed in explicit constraint enforcement; this used in data reduction autonomy;

• the OFM can check whether a special purpose differential set is empty, thereby making explicit
constraint enforcement superfluous; this is used in process reduction autonomy.

The first of these protocols does not need any changes in the communication protocol between TM
and OFM. The only necessary change at this level, is to make both TM and OFM aware of the
fact that a special purpose differential set is used for a specific constraint. Because the Constraint
Compiler generates both the information for TM and OFM, this is rather easy.

The process reduction protocol is somewhat more complicated. The TM has to request a status
report from the OFM about the constraints used with process reduction. The OFM produces a
status report indicating the constraints having non-empty differential sets. These constraints are
then enforced by the TM in the usual way via XRA. And as usual, constraint violation will lead to
a transaction abort. The necessary communication primitives between TM and OFM are depicted
in Figure 6 [Gref90c].

We illustrate the idea of hybrid constraint enforcement with an example. Suppose we have a
relation Employer of which the attribute dept is a foreign key referring to the attribute name of
relation Department. Then we have the following constraint I :

I = It, r]
t = {INS(Employer),VPD(Employer),DEL(Department),VPD(Department)}
r = (Vx E Employer.dept Ix ~ null)(3y E Department.name)(x = y)

256

0

OFM

O

m

Figure 6: Communication for process reduction

To use hybrid enforcement for this constraint, all fragments of relation Employer are notified that
attribute dept forms a foreign key in a referential integrity constraint. Now suppose fragment
Employer~ contains the following tuples:

name
johnson
smith
richardson
crosby

empnr dept
64576 sales
64537 staff
24356 sales
48675 admin

If a transaction inserts two new tuples (jaekson,34567,sales) and (dundee,76545,prod) into Employerk,
the general purpose differential set contains two tuples. If data reduction is used, the OFM can de-
cide locally that the first of these two tuples can never violate the referential integrity constraint,
because the foreign key value of this tuple is already present in the fragment. So, the amount of data
to be checked in explicit constraint enforcement can be reduced. If a transaction inserts two new
tuples (jackson,34567,sales) and (hilbilly,32224,admin), the general purpose differential set contains
two tuples again. If data reduction is used, the OFM can decide locally that it can reduce the dif- -
ferential set for the referential integrity constraint to an empty set. If process reduction is also used,
the OFM can inform the TM that the constraint does not need any explicit enforcement.

6 C o n c l u s i o n s

In this paper we have lined out an approach to parallel handling of integrity constraints on fragmented
relations in a relational database system. The approach is designed such, that it meets both the
requirements of a high degree of functionality and flexibility as well as high performance.

The first requirement is met by using a strictly modular design of the integrity constraint handling
subsystem, in which a separate constraint compiler plays a central role, and by using regular query
execution techniques for the enforcement of constraints. This approach results in a clear separa-
tion of constraint definition preprocessing, constraint enforcement protocol handling and constraint
enforcement data processing.

The requirement of performance is met by having a two way approach to constraint handling
that heavily uses the possibilities of parallelism. In explicit constraint enforcement, constraints are
enforced using relational algebra operators, employing the same means for parallelism as in normal

257

query execution. In implicit constraint enforcement, a high degree of autonomy of the data manage-
ment layer of the DBMS is used to obtain parallelism an~ to use special purpose algorithms. For
maximum flexibility, a integration of both techniques is found in hybrid constraint enforcement.

The techniques have been implemented in the PRISMA/DB parallel main memory DBMS. The
integration of the constraint handling subsystem has been easy due to the modular design of this
subsystem. Currently, the subsystem supports the following types of constraints:

• domain constraints

• general tuple constraints

• nonull constraints

• uniqueness constraints

• referential integrity constraints

These constraint types cover the structural constraints of the relational data model [Gard89].
There are two main issues to be investigated in the future. In the first place, the performance of

the various constraint enforcement protocols has to be evaluated. This will enable tuning the overall
integrity constraint enforcement process. Further, the evaluation should make clear the advantages
of parallelism in constraint enforcement in a quantitative sense. In the second place, the usability of
the presented techniques for a broader range of constraint types has to be investigated, thus showing
the general applicability of the approach.

Acknowledgements
We wish to thank the PRISMA project members for providing a challenging environment and pro-
ductive cooperation with the teams from Philips Research Laboratories Eindhoven, the University
of Amsterdam and the Centre for Mathematics and Computer Science Amsterdam in the develop-
ment of our DBMS. In particular, Carel van den Berg is acknowledged for his ideas about local
constraint enforcement in the One Fragment Manager component. Further, we wish to thank dr.
A.J.Nijman for bringing academia a~d industry together, dr. H.H.Eggenhuisen for providing good
project management and for stimulating the interaction between the various subprojects.

References
JApers88] P.M.G. Apers, M.L. Kersten, H.C.M. Oerlemans; PRISMA Database Machine: A Dis-

tributed Main Memory Approach; Proceedings International Conference on Extending
Database Technology; Venice, Italy, 1988.

[Bron87] W.J.H.J. Bronnenberg, L. Nijman, E.A.M. Odijk, R.A.H.v. Twist; DOOM: A Decen-
tralized Object-Oriented Machine; IEEE Micro; October 1987.

[Ceri84] S. Ceri, G. Pelagatti; Distributed Databases, Principles and Systems; McGraw-Hill, 1984.

[Date81] C.J. Date; Referential Integrity; Proceedings of the 7th Conference on Very Large Data
Bases; Cannes, France, 1981.

[Date83] C.J. Date; An Introduction to Database Systems, Volume II; Addison-Wesley, 1983.

[Gard89] G. Gardarin, P. Valduriez; Relational Databases and Knowledge Bases', Addison-Wesley,
1989.

[Gref88]

[Gref89]

[Gref90a]

[Gref90b]

[Gref90c]

[Kers87]

[Morg84]

[Simon85]

[Simon87]

[Stone75]

[Tsich82]

[Wil~S9]

[Wils90a]

[Wils90b]

iZloofTs]

258

A.N. Wilschut, P.W.P.J. Grefen~ P.M.G. Apers, M.L. Kersten; Implementing
PRISMA/DB in an OOPL; Memorandum INF 88-69; University of Twente, The Nether-
lands, 1988.

P.W.P.J. Grefen; Integrity Constraint Handling in a Parallel Database System; Memo-
randum INF 89-59; University of Twente, The Netherlands, 1989.

P.W.P.J. Grefen, P.M.G. Apers; Parallel Handling of Integrity Constraints on Frag-
mented Relations; Proceedings DPDS'90; Dublin, Ireland, 1990.

P.W.P.J. Grefen; Design Considerations for Integrity Constraint Handling in
PRISMA//DB1; PRISMA Document P508; University of Twente, The Netherlands,
1990.

P.W.P.J. Grefen, C. v.d. Berg; PRISMA//DBI TM-OFM Interface; PRISMA Docu-
ment P517; University of Twente, Centre for Mathematics and Computer Science, The
Netherlands, 1990.

M.L. Kersten et ai.; A Distributed Main Memory Database Machine; Proceedings of the
5th International Workshop on Database Machines; Karuizawa, Japan, 1987.

M. Morgenstern; Constraint Equations: Declarative Expression of Constraints with Au-
tomatic Enforcement; Proceedings of the 10th Conference on Very Large Data Bases;
Singapore, 1984.

E. Simon~ P. Valduriez; Integrity Control in Ditrlbuted Database Systems; MCC Tech-
nical Report Number DB-103-85; MCC, Austin, USA, 1985.

E. Simon~ P. Valduriez; Design and Analysis of a Relational Integrity Subsystem; MCC
Technical Report Number DB-015-87; MCC, Austin, USA, 1987.

M. Stonebraker; Implementation of Integrity Constraints and Views by Query Modifica-
tion; Proceedings of the 1975 SIGMOD Conference; San Jose, USA, 1975.

D.C. Tsichritzis, F.H. Lochovsky; Data Models; Prentice-Hall, 1982.

A.N. Wilschut, P.W.P.J. Grefen, P.M.G. Apers, M.L. Kersten; Implementing
PRISMA//DB in an OOPL; Proceedings of the 6th International Workshop on Database
Machines; Deanville~ France, 1989.

A.N. Wilschut, P.W.P.J. Grefen; PRISMA//DB1 XRA Definition; PRISMA Document
P465; University of Twente, The Netherlands, 1990.

A.N. Wilschut, P.M.G. Apers; Pipelining in Query Execution; Proceedings of the Par-
Base'90 Conference; Miami Beach, USA, 1990.

M.M. Zloof; Security and Integrity within the Query-by-Example Database Management
Language; IBM RC 6982; Yorktown Hrs., USA, 1978.

