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Abstract
We explored the automatic analysis of vocal non-verbal cues of
a group of children in the context of engagement and collabora-
tive play. For the current study, we defined two types of engage-
ment on groups of children: harmonised and unharmonised. A
spontaneous audiovisual corpus with groups of children who
collaboratively build a 3D puzzle was collected. With this
corpus, we modelled the interactions among children using
network-based features representing the centrality and similar-
ity of interactions. The centrality measures how interactions
among group members are concentrated on a specific speaker
while the similarity measures how similar the interactions are.
We examined their discriminative characteristics in harmonised
and unharmonised engagement situations. High centrality and
low similarity values were found in unharmonised engagement
situations. In harmonised engagement situations, we found low
centrality and high similarity values. These results suggest that
interactional network features are promising for the develop-
ment of automatic detection of engagement at the group level.
Index Terms: children, engagement, social network, non-
verbal

1. Introduction
The state-of-the-art in social signal processing has contributed
to the development of social robots facilitating engagement
among a group of people [1]. For example, a robot could play
the role of a side-participant and support interactions of a par-
ticipant who is not engaged with others, called “weak engage-
ment” in triadic interactions [2]. In child-child interactions,
this weak engagement problem could often be observed since
children (6–9 yrs) are still developing social skills at their own
pace. Moreover, children learn social interactions in collabo-
rative play in which “harmonised and unharmonised engage-
ment” [2] can often occur. “harmonised engagement” is de-
fined as the situation where children interact substantially and
keep their connections during play. On the other hand, in “un-
harmonised engagement”, a child is left out of the interaction
(weak engagement). However, due to the great heterogene-
ity and temporal dynamics of engagement in a group of chil-
dren [3], it might be challenging to point out who is harmonised
or unharmonised among a group. Hence, as a first step, we ex-
plore features and characteristics on a group-level: how can we
model characteristics of engagement in group members’ inter-
actions in the context of collaborative play?

Engagement types are characterised by the way children in-
teract with each other in a group. Hence, we focus on a feature
representation capturing these group interactions rather than in-
dividual behaviours. In social network analysis (SNA), central-
ity and similarity measures were introduced to characterise in-

teractions among nodes [4]. SNA has been previously applied
in other applications: bioinformatics and conversational analy-
sis [5, 6, 7]. For instance, turn-taking patterns were modelled
in a social network to predict social traits automatically [6], and
the centrality of turn-taking was used to measure social verti-
cality [7]. We employ SNA to analyse engagement types of a
group since SNA characterises interactional flows which could
be utilised to model turn-taking, i.e. maintenance of connection
in engagement [1].

Although SNA achieved reasonable performances for mod-
elling interactions in a large group of adults, it remains unknown
if SNA is feasible for modelling spontaneous social behaviours
in small groups of children who may display unpredictable be-
haviours compared to adults. To the best of our knowledge, the
study of the automatic analysis of engagement types of children
in the context of collaborative play still remains largely unex-
plored. In this study, we explore automatic analysis of engage-
ment types in small groups of children using two network-based
features: centrality and similarity to take the group interaction
of each child into account.

This paper is structured as follows. In Section 2, related
studies are introduced, and we present an audiovisual corpus of
groups of children and identified engagement types in Section 3.
Section 4 defines network-based features modelling interactions
among a group. Analysis results are presented and discussed in
Section 5, and conclusions are drawn in Section 6.

2. Related work
Modelling of engagement has been extensively studied in the
field of Human Robot Interaction (HRI) and Social Signal Pro-
cessing (SSP) [1, 8, 9, 10, 11]. In [8], various visual cues, e.g.
gaze and gesture, were utilised to detect individual and group
engagement in 500 ms long segments. However, their fea-
tures were limited to hand-coded labelling while we are aiming
for automatic engagement detection. More importantly, turn-
taking between children was not studied although turn-taking is
strongly associated with social behaviours [12].

To model speaker-changes between more than two partici-
pants, centrality of interactions was employed in social role and
dominance detection tasks [7]. While the centrality achieved
limited performances, there is still room for improvement of
modelling turn-taking. Moreover, social network analysis has
been employed to capture structural information about interac-
tions [6]. In particular, speaker traits were clustered using sim-
ilarity of their turn-taking styles. However, the usage of simi-
larity for modelling small groups remains unexplored.

The aforementioned studies investigated child-robot or
child-computer interactions. More significantly, important as-
pects of social behaviours among small groups, i.e. tempo-
ral dynamics and relative levels of behaviours, were often ne-



glected. First of all, in a similar way as for the temporal dy-
namics of speech, temporal patterns of social behaviours vary
occasionally [3]. For instance, it is rare to observe the same
level of engagement from the beginning to the end of each task
or play. Since the engagement of children alters dynamically
over time, it is not desirable to point out who is highly engaged
for each session [3] although such a rough approach was often
employed [1, 13].

Furthermore, a child can show differing social behaviours
depending on who participates in play [14]. To be more spe-
cific, individuals vary their non-verbal behaviours depending on
whom they interact with and in the situation. For instance, the
behaviours of a child low in engagement rely on other people
showing more or less engagement in specific contexts. In other
words, the context surrounding people greatly affects their be-
haviours and one of the most significant contexts is the group of
people who they interact along with at any given time. Hence,
we first focus on modelling engagement on a group-level using
centrality and similarity measures rather than modelling indi-
vidual engagement.

3. Data
3.1. Corpus collection

We designed a 3D puzzle task facilitating children’s sponta-
neous social interactions. Using 3D magnetic cube blocks,
children were asked to build given shapes of animals together.
Dutch children (9 female and 12 male, n = 21) aged 5 - 8
(6.95 ± .95) were recruited from a primary school. Children
were first clustered according to age and then assigned ran-
domly to mixed-gender groups of three for each session in order
to maximize the diversity in social interactions. Finally, eight
sessions were chosen for subsequent analyses, leading to ap-
proximately 3 hours of audiovisual data. More details of the
setup are presented in [15].

3.2. Annotation

By employing the concept of engagement, the process by which
multiple participants maintaining perceived connection during
verbal and non-verbal interactions [1], engagement can be ob-
served in various forms characterised by multi-modal interac-
tions. In our work, we identify engagement types by focusing
on exchanges of attention among the children during the play.
First, we looked into the difficulty of individual engagement
coding due to the great variability of their interactions within
groups. To prevent judgement biased to speech, we did not give
two coders any access of individual speech recordings but the
description of engagement and videos. They were asked to code
levels of engagement of each child in an absolute manner, i.e.
{low, medium, high}. As expected, it was difficult to judge the
level of engagement of a group member in the absolute man-
ner, resulting in poor inter-rater agreement (kappa) between two
coders (.57). Hence, we designed an annotation based on ranks,
which measures a relative level of engagement as follows (from
low to high level of engagement):

• 1: giving relatively less attention to others and receiving rel-
atively less attention from others.

• 2a: giving relatively less attention to others but receiving at-
tention from others.

• 2b: giving attention to others but receiving relatively less at-
tention from others.

• 3: giving attention to others and receiving attention from oth-
ers.

By using these descriptions, children in a group can be or-
dered from a low to a high level of engagement. Only if no
differences could be observed among the three children, ties
were allowed (e.g. {1, 1, 1}, {3, 3, 3}). We treated the classes
{2a} and {2b} as equally ranked (in level of engagement) and
merged them into one class {2}.

A suitable size of a segment for annotation varies on the
context. For instance, 0.5 and 5 seconds (sec) long sized
segments were used to predict engagement and roles, respec-
tively [8, 16]. Through several pilot coding sessions, we found,
on an empirical basis, that 5 sec long segments were suitable for
the annotators to observe various levels of engagement.

Again, to prevent any judgement relying on speech, we pro-
vided the coders with only the videos and descriptions. The
coders coded every 5 sec segment using the ELAN tool [17].
The agreement level (kappa) was reported as 0.82. Further-
more, we removed speechless segments that do not contain any
vocal cues and selected only those segments whose labels were
agreed by both coders. From these relative levels of individual
engagement, we derive group level engagement: harmonised
engagement (HE) and unharmonised engagement (UE). When
there is no child who is less engaged than others, i.e. 3-3-3,
this would be considered HE. All other cases were categorised
into UE. In UE, some children were not engaged in the interac-
tions and often played alone, i.e. 1-1-1. The resulting data set
contains a total of 1017 segments (HE: 304 and UE: 713).

4. Features
As mentioned previously, we do not have pre-knowledge of fea-
tures for engagement types on groups of children; thus, we
investigate sets of vocal non-verbal features and acoustic fea-
tures based on related works [12, 15]. Based on these, we ex-
plored three different feature sets: individual non-verbal (base-
line), network-based non-verbal, and acoustic features, as sum-
marised in Table 2.

4.1. Automatic extraction

We aim to develop the automatic analysis of interactions among
a group of children. Therefore, we extract our features from
every 5s long segment [15] in an automatic way. First, we ex-
tract each child’s speech segment using voice activity detection
from each child’s lapel microphone recording. Then, in order
to correct errors caused by noise and channel-inferences, we
applied automatic speaker identification using iterative model
update and manual correction. In a similar way as described in
[18], we use Mel-frequency cepstral coefficients (MFCC) fea-
tures and Gaussian-Mixture-Model (GMM) to detect segments
from different speakers. As a result, we obtain “Inter-Pausal
Units (IPUs)” (0.5 sec of the minimum length for speech and
silence) of speech in each segment [12]. We bridge two speech
segments only if there is a short silence (< 0.5 sec) between
them. Based on IPUs, we extract features for subsequent analy-
ses. Then, these are normalised into frequency, denoted as FQ
(= the number of IPUs / 5 sec), mean duration of IPUs (MD),
and PR (= total duration of IPUs / 5 sec) [15]. Note that 5 sec
is the duration of each segment for both types: harmonised and
unharmonised engagement.



Af(i,j) C1 C2 C3

C1 self-silence C2 → C1 C3 → C1

C2 C1 → C2 self-silence C3 → C2

C3 C1 → C3 C2 → C3 self-silence

Table 1: Interactional flow matrix for a feature: f

4.2. Network-based turn-taking features

To model the interactivity among children in a group, we fo-
cus on the centrality and similarity of interactions in a group.
The centrality measures how interactions among group mem-
bers are concentrated on a specific speaker while the similarity
measures how similar the interactions are. Since we focus on
the types of the group conversation instead of individual types,
we need to derive overall (i.e. group-level) centrality and sim-
ilarity of interactions. We expect the overall centrality to show
lower values for HE than for UE: rather than having a rela-
tively centralised interactions, in harmonised engagement, in-
teractions are expected to be more equally distributed among
the children. On the other hand, the overall similarity is ex-
pected to be higher in the case of HE than in that of UE.

To model the centrality and similarity, we devise an interac-
tional flow network and matrix as shown in Table 1. Let us de-
noteAf(i,j) as an interactional flow that j’th child precedes i’th
child, i.e. Cj → Ci in the matrix. Each type of flow is repre-
sented by a feature (f ) among “clear speaker change (change)”,
“unclear speaker change with overlap (change-ov)”, “successful
interruption (s-int)”, and “unsuccessful interruption (u-int)”, se-
lected in [15]. Note that change-ov occurs when there is mutual
self-silence between children preceded or followed by speech-
overlaps. Moreover, we add “self-silence” [15] (pause), which
is regarded as a self-interactional flow Af(i,i) in order to model
the maintenance of turns. Eventually, each feature has its own
matrix to model interactional flows among a group. In the ma-
trix, a row vector: xi describes all flows from other children to
child i (e.g. x1 = [Af(1,1), Af(1,2), Af(1,3)]).

4.2.1. Centrality of interactions

Centrality of interactions can be explained by two terms: fre-
quency and duration of interactional flows, i.e. changes or in-
terruptions ({change, change-ov, s-int, u-int}). For example, if
speaker changes from other children to i’th child are frequent
or shorter, interactions are highly centralised on the focal child
(i.e. i’th child). The centrality of a feature (f ) of an i’th child
(Ci) among a total K number of children is measured as fol-
lows:

CT (f(Ci)) =
K − 1∑K
j=1 IFj→i

, ∀i = 1, 2, ...K (1)

where IFj→i is the intensity function of the feature (f ) repre-
senting the interactional flow from j’th child to i’th child, de-
noted as Af(i,j) in the matrix. The definition of the intensity
varies depending on the normalisation and feature types. We
use only two types of normalised values for each feature: fre-
quency (FQ) and mean duration (MD) since the proportion of
duration (PR) is already modelled in centrality. We have two
intensity functions (IF ): one for speaker changes and the other
for interruptions. Note that centrality should be higher when
interactions are centralised on a specific child.

First, for speaker changes: {change, change-ov}, the in-
tensity function (IF ) of mean duration is equal to MD of the
feature. This function increases the centrality when the dura-
tion of change decreases. In other words, the quicker the focal
child takes a turn from others, the higher the centrality becomes.
For the frequency (FQ), IF should be FQ−1, which increases
the centrality when the focal child takes turns from others more
frequently.

Second, for interruptions: {s-int, u-int}, the intensity func-
tion (IF ) of mean duration is MD−1 of the feature. This func-
tion increases the centrality when the duration of interruptions
increases. In other words, the longer the focal child interrupts
others, the higher the centrality becomes. For the frequency
(FQ), IF is equal to FQ−1 as the same as speaker changes.

Based on these features, we calculate the overall central-
ity (OCT ) of each feature (f ) in the network using Freeman’s
centrality [19] defined as follows:

OCT (f) =

∑K
i=1[CT ′ − CT (f(Ci))]

H
, ∀i = 1, 2, ...K (2)

where CT ′ is the maximum among the centrality of children
and H is the normalising factor, which varies on the topology
of the network. For simplicity, we use (K − 1) for H .

4.2.2. Similarity of interactions

To model the similarity of interactions, the normalised feature
sets are the same as those for centrality. Again, in the matrix,
a row vector: xi describes all interactional flows (of feature f )
from others to child i. Then, we measure similarity between row
vectors: xi and xj by using Gaussian kernel which is defined as
follows:

Kf (xi, xj) = exp(−γ‖xi − xj‖2) (3)

The parameter γ is used to control the kernel bandwidth:

γ =
γ̃

( 1
K2

∑K
i=1

∑K
j=1Af(i,j))

(4)

which means that we normalise the parameter by dividing it by
the average value of all interactional flows in the matrix. We
could set a bandwidth parameter, i.e. γ̃ using cross-validation
but use 1 for a practical reason. In addition, we added a mean
value ofKf (xi, xj) from possible combinations: {Kf (x1, x2),
Kf (x1, x3), Kf (x2, x3)} as overall similarity (OS).

Note that self-silence regulates high sensitivity for cases:
self-flow Af(i,i). For example, if we measure the simi-
larity of interactional flows for the first and second child:
Kf (x1, x2) without self-silence, which means Af(1,1) = 0
and Af(2,2) = 0, the similarity becomes highly sensitive to
Af(1,2) and Af(2,1) (since it calculates a distance between vec-
tors: [0, Af(2,1), Af(3,1)] and [Af(1,2), 0, Af(3,2)]).

4.2.3. Acoustic features and baseline

We extracted F0, energy, HNR, ZCR, jitter, and shimmer and
added their {∆, ∆∆} by using openSMILE [20] as a repre-
sentative set of acoustic cues of social behaviours [11]. For
these features, we cannot use the centrality or similarity mea-
sures since they do not have interactional flows. Instead, we
simply obtained mean and standard deviation (SD) values of the
feature vectors for each child as individual features. Finally, for



Category Features
non-verbal individual features (18)
(baseline) speech (9), self-silence(9)

centrality of features (32)
network speaker change (8),
features speaker change with overlaps (8),

successful interruptions (8),
unsuccessful interruptions (8)
similarity of features (32)
speaker change (8),
speaker change with overlaps (8),
successful interruptions (8),
unsuccessful interruptions (8)

acoustic SD of features (18)
F0 (3), energy (3), ZCR (3),
HNR (3), jitter (3), shimmer (3)
Mean of features (18)
F0 (3), energy (3), ZCR (3),
HNR (3), jitter (3), shimmer (3)

Table 2: Feature sets (number of features)

(a) Proportion in unharmonised engagement (UE)

(b) Proportion in harmonised engagement (HE)

Figure 1: Proportion of speaking time of each child

the baseline set, we used normalised frequency (FQ), mean du-
ration (MD), and proportion (PR) of speech and self-silence,
which are all widely used in engagement detection [11].

5. Analysis
In this section, we analysed interactions of children in har-
monised and unharmonised engagement situations. First, we
investigate the individual features known to be associated with
engagement [21]. Next, we look into the network-based fea-
tures modelling turn-taking between children and present sta-
tistical significances of differences of feature values between
harmonised and unharmonised engagement.

5.1. Baseline: proportion of speaking

Among the baseline features, the proportion of speaking time
has been associated with engagement [21]. However, as men-
tioned in [22], one of the participants in a group might be less
active in engagement than the others even if the level of speak-
ing activity is high. Therefore, we first looked into how the
proportion of speaking time (PR) is distributed in each group

of children and whether this could be used as an indicator of the
engagement types.

In Fig. 1, PR is shown for each child in a session. Note that
PR 1, 2, and 3 are extracted from first, second, and third child
in a group, respectively. Based on previous studies, one could
assume that in cases of UE, the distribution of speaking time
for three children might be unequal and show a higher variance
than for HE. However, we observe that in both UE and HE, the
distribution of speaking time is relatively unbalanced and that
no clear patterns can be found. To discover if PR is distinc-
tive between the types, we conducted Kruskal Wallis tests on
the standard deviation (SD) of PR 1, 2, and 3 in each group.
This revealed that there is no significant difference (p = .344)
of PR between the types. Unlike in previous studies, the sim-
ple individual features (e.g. the proportion of speaking time)
did not prove to be discriminative. We conducted the same
tests for all other features: “clear speaker change (change)”,
“unclear speaker change with overlap (change-ov)”, “success-
ful interruption (s-int)”, and “unsuccessful interruption (u-int)”
[15]. However, we could not find any significant differences
(p < .05). This analysis led us to elaborate on network-based
features, to attempt to model engagement types of a group.

5.2. Network-based turn-taking

Types OCT-
change-MD

OCT-
change-ov-
MD

OCT-s-int-
MD

OCT-u-int-
MD

(****) (****) (*) (.)
UE +.029 +.034 +.007 +.077
HE -.069 -.080 -.003 -.033

OCT-
change-FQ

OCT-
change-ov-
FQ

OCT-s-int-
FQ

OCT-u-int-
FQ

(****) (****) (****) (.)
UE +.047 +.031 +.016 +.036
HE -.089 -.058 -.008 -.019

Table 3: Analysis of overall centrality (OCT)

To interpret the behaviour of certain features in the HE and
UE, we conducted Kruskal Wallis tests (df = 1) to investi-
gate the distinctiveness of these features. Since our focus is on
the network-based features, we first address overall centrality
(OCT ) and similarity (OS) of turn-taking features. We calcu-
lated the mean values of z-scores of the features of the HE and
UE (∗ ∗ ∗∗: significance level p < .0001).

First, Table 3 shows the overall centrality of turn-taking fea-
tures. Note that the OCT of all features shows higher values for
UE than HE. In other words, in UE, interactional flows are in-
deed more centralised on a specific child rather than showing
equal distribution. In particular, speaker-change related fea-
tures: {OCT-change-MD, OCT-change-ov-MD} showed sig-
nificant differences (p < .0001).

In Table 4, the overall similarity (OS) indicates lower values
for UE rather than HE. We can interpret this finding to indicate
that interactions are more equal and similar to each other dur-
ing HE. In particular, all features {OS-change-MD, OS-change-
ov-MD, OS-s-int-MD, OS-u-int-MD} showed significant dif-
ferences between the types although the overall centrality of
unsuccessful interruptions (u-int) did not show significant re-
sults. In summary, we found that highly focused interactional



Types OS-change-
MD

OS-change-
ov-MD

OS-s-int-
MD

OS-u-int-
MD

(****) (****) (****) (****)
UE -.123 -.131 -.122 -.120
HE +.289 +.308 +.288 +.281

OS-change-
FQ

OS-change-
ov-FQ

OS-s-int-
FQ

OS-u-int-
FQ

(****) (****) (****) (****)
UE -.102 -.115 -.102 -.104
HE +.193 +.218 +.193 +.197

Table 4: Analysis of overall similarity (OS)

Types energy-SD energy-M HNR-SD zcr-SD
(****) (****) (*) (****)

HE -.223 -.224 -.057 -.196
UE +.117 +.118 +.030 +.103

Table 5: Analysis of acoustic features, SD (standard-deviation),
M (mean)

flows occur in UE. However, turn-taking patterns between chil-
dren were similar to each other’s in HE. Compared to centrality,
similarity showed more significant differences between UE and
HE.

Furthermore, we studied differences of acoustic features be-
tween UE and HE. We presented significant results in Table 5;
energy, HNR, and ZCR related features showed differences. We
found that children’s speech showed higher variances of the fea-
tures in UE compared to HE. Moreover, the unweighted aver-
age of energy was higher in UE. In future work, we will study
modelling group-interactions by using these features, which are
expected to be more conclusive.

5.2.1. Summary and discussion

In this section, we analysed how distinctive network-based turn-
taking and acoustic features are among (un)harmonised engage-
ment types. We observed that interactions are more centralised
on a specific child in UE (higher overall centrality) than in HE.
Also, interactions are more similar to each other in HE (higher
overall similarity) than in UE. From our findings, we conclude
that network-based turn-taking features are able to capture char-
acteristics of interactions in spite of the small number of partic-
ipants (N = 3). Moreover, acoustic features related to energy,
HNR, and ZCR demonstrated considerable differences between
UE and HE. Hence, not only the network-based turn-taking fea-
tures but also acoustic features seem to be promising features
for the automatic classification of the types. However, since
acoustic features are extracted from shorter frames (e.g. 20ms)
compared to turn-taking features (e.g. speaker-change), various
methods for integration of all features should be investigated as
future work.

6. Conclusions
In this study, we explored the automatic analysis of engagement
types among children using network-based turn-taking features.
We collected a spontaneous audiovisual corpus with child-child
interactions and defined group-level properties: harmonised and
unharmonised engagement. To characterise children’s interac-
tions in these types, we developed interactional network fea-
tures to represent levels of both centrality and similarity of in-
teractional flows. In particular, these features modelled turn-
taking flows among a group of children.

First, we explored whether the proportion of speaking time
of individuals was discriminative of engagement types. How-
ever, we could not find any statistically significant differences
of features between the types, which means that individual fea-
tures are not capable of modelling interactions among a group.
Next, we found that centrality and similarity of turn-taking fea-
tures showed significant differences between the types. In the
unharmonised engagement type, centrality showed higher val-
ues while similarity showed lower values compared to the har-
monised engagement type. In other words, children tend to
show similar turn-taking patterns when they are engaged in
a harmonised way. On the other hand, they demonstrate un-
balanced or centralised turn-taking patterns in cases of unhar-
monised engagement.

In future work, based on the results of our analysis, we will
develop statistical models classifying the engagement types. In
particular, we will investigate integration of turn-taking features
and acoustic features. Moreover, to extend our study to HRI,
we will conduct a new data corpus, i.e., collection of not only
child-child but also child-robot interactions.
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