
A Refinement Theory for Timed-Dataflow Analysis with
Support for Reordering

Joost P.H.M. Hausmans §
joost.hausmans@utwente.nl

Marco J.G. Bekooij § ¶
marco.bekooij@nxp.com

§ University of Twente, Enschede, The Netherlands
¶ NXP Semiconductors, Eindhoven, The Netherlands

ABSTRACT
Real-time stream processing applications executed on embed-
ded multiprocessor systems often have strict throughput and
latency constraints. Violating these constraints is undesired
and temporal analysis methods are therefore used to prevent
such violations. These analysis methods use abstractions of
the analyzed applications to simplify their temporal analysis.

Refinement theories have enabled the creation of determin-
istic abstractions of stream processing applications that are
executed on multiprocessor systems. Prominent examples
of such abstract models are deterministic timed-dataflow
models which can be efficiently analyzed because they only
have one behavior.

An important aspect of a stream processing application
can be that it makes use of reordered data streams between
tasks. An example is the bit-reversed ordered stream pro-
duced by a Fast Fourier Transform (FFT) task. However,
existing abstraction/refinement theories do not support such
reordering behavior or do not handle this type of behavior
correctly. This is because existing refinement theories assume
that the temporal behavior of applications is orthogonal to
their functional behavior, whereas this orthogonality does
not always hold in the case of reordered data streams.

In this paper we introduce a new refinement theory in which
the potential interaction between temporal and functional be-
havior is taken into account. The introduced theory supports
reordering of data and can therefore be used to validate
existing systems with such reordering. Furthermore, the
theory enables showing that deterministic dataflow models
that do not apply reordering can be used as valid abstractions
of systems in which reordering takes place.

The applicability of the refinement theory is demonstrated
by creating deterministic timed-dataflow model abstractions
of a Digital Video Broadcasting Terrestrial (DVB-T) applica-
tion, and a communication network in which data is reordered.
With these dataflow models the guaranteed throughput and
buffer capacities of implementation options are compared.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968489

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms
Performance, Theory, Verification

Keywords
Abstraction-Refinement Theory, Timed-Dataflow

1. INTRODUCTION
The design of modern real-time stream processing applica-

tions requires the use of temporal analysis methods to ensure
that they meet their temporal constraints. Such analysis
methods rely on temporally conservative abstractions of
the application. Timed-dataflow models can be used as
conservative abstractions. In these models actors introduce
a delay [22, 26]. Refinement theories are used to ensure the
conservativeness of abstractions. This conservativeness guar-
antees that the arrival times of data are overapproximated.

In current stream processing applications reordering of
data can occur. For example, a buffer can be shared between
concurrent writing tasks. The interleaving of such tasks is
schedule dependent. Therefore also the order in which data
is stored in the buffer depends on the schedule of the tasks.
Another example is that the tasks do not produce data in
the order that it is consumed. An example of such a task
is one that performs a Fast Fourier Transform (FFT) and
which produces data samples in a bit-reversed order while
these samples are consumed in-order.

Implementations are made robust against this reordering.
This is achieved by making use of indices that are associated
with the data samples. Based on these indices the data can
be retrieved from buffers in the required order [3].

Next to the implementation also the used refinement the-
ory should treat this reordering correctly. However, this is
not the case for existing refinement theories. Either they
exclude reordering [14, 26] or they assume the temporal and
functional behavior of tasks to be orthogonal [10, 23, 24].
This orthogonality does not always hold because an in-time
arrival of data does not necessarily imply that values arrive
in the required order.

This is illustrated with the example in Figure 1 which
shows the response of two different components A and A′ on
a certain input. When only the times of events are considered
it seems as if component A′ generates an earlier output than
component A. However, when we look at the indices of the
output events we notice that A′ produces the output events

time (τ): index (ι): value (ϑ):

10
1
3

0
0
7

25
0
7

15
1
3A′

τ
ι
ϑ

10
1
3

0
0
7

30
1
3

20
0
7A

τ
ι
ϑ

Figure 1: Two components illustrating that reorder-
ing couples functional and temporal behavior.

in a different order than A. Consider a component that con-
sumes the produced events. When such a component requires
the events in-order (first index 0), suddenly component A′

does not generate an earlier output. Component A′ is thus
not a valid refinement of component A.

Note that the order of the output events can be important.
Consider a consuming component which subtracts the values
of subsequently arriving input data. If the events are read
in the order of the indices then the result is equal for both
components A and A′ (7 − 3 = 4 for these two events).
However, if data is read in the order of arrival then the result
with component A would be different than the result with
component A′ (3− 7 = −4).

Refinement theories should thus take the indexed order of
event streams into account to support reordering correctly.
However, existing refinement theories that do not exclude
reordering, assume the temporal and functional behavior to
be orthogonal, which prevents to use an indexed order of
events.

In this paper we introduce a new refinement theory in which
the functional behavior as well as the temporal behavior are
taken into account. The introduced theory uses events that
consist of a timestamp, an index and a value. Events in
streams are related by matching their indices. This allows
us to reason about consequences of reordering of events.
Furthermore, we introduce a reorder-back component and
the concept of receptivity which enables creation of in-order
abstractions, of systems in which reordering takes place. We
furthermore present a simplified refinement relation for a
practically relevant subclass of components. This subclass
allows to abstract from data-value-dependent input and
output behavior, multiple inputs and outputs, and reordered
input and output streams. The applicability of the approach
is demonstrated by creating deterministic timed-dataflow
model abstractions of a DVB-T receiver application, and a
communication network in which reordering takes place. The
timed-dataflow model can be used to compute the guaranteed
throughput and minimum buffer capacities.

The organization of this paper is as follows. In Section 2 we
discuss related refinement theories. In Section 3 we present
the basic idea and intuition behind our approach which
is formalized and evaluated in the remaining sections. In
Section 4 we formalize the component model. Section 5
presents refinement of streams and components and discusses
preservation of refinement when components are composed.
We also define receptivity of ports and reorder-back com-
ponents. In Section 6 we present the simplified refinement
relation. The two case studies are presented in Sections 7
and the conclusions are stated in Section 8.

2. RELATED WORK
In this section we discuss existing refinement theories and

their relation to ours.
The concept of creating deterministic abstractions of run-

time scheduled systems with non-deterministic temporal be-
havior is introduced in [25, 26]. Deterministic timed-dataflow

models are used as a temporally conservative abstraction of
applications. The idea is that finish times of actors in the
dataflow model are later than all possible finish times of the
corresponding tasks in the application. However, a transitive
refinement relation is not introduced in [25, 26]. Such a
transitive refinement relation is required to have multiple
levels of abstraction. Furthermore, this method does not
support reordering of data.

In [14] a transitive refinement relation is introduced that
considers both functional and temporal behavior of compo-
nents. The inclusion of functional behavior enables to relate
events of different abstraction layers. Based on this relation
temporally conservative abstractions are defined. However,
all event streams are compared by means of production times
of events, which prevents a correct handling of reordering.

Another refinement relation is presented in [10]. This
refinement relation allows to relate the non-deterministic
temporal behavior of applications to the deterministic tem-
poral behavior of analysis models. Such a relation can be
established by making use of the the-earlier-the-better prin-
ciple: a component is “better” when its production moments
are earlier. An example of non-deterministic behavior is a
varying execution time of a task in the application which
can be deterministically abstracted in a dataflow model by
using the Worst-Case Execution Time (WCET) of that task.
The refinement relation in [10] does not forbid reordering of
events. However, the assumption of the theory is that the
temporal and functional behavior of abstractions is orthog-
onal. Therefore events only consist of timestamps, which
prevents to distinguish a stream that produces events in-
order and a stream that produces events at exactly the same
timestamps but in which certain events are swapped and
thus reordered. In contrast to [10], an event is in our paper
a triple of time, index, and value. Therefore, our component
model is an instance of the general tagged-signal model [20].
Because of the index in the triple, the dependencies between
components remain unchanged even if events are reordered
in time.

A refinement theory for modular real-time systems that are
modeled as acyclic graphs of components is presented in [23].
This theory characterizes traffic and provided/remaining
service by using arrival and service curves. An important
difference with our approach is that we describe event arrivals
in the time domain instead of the time-interval domain such
that the correlation between events is maintained. This cor-
relation improves accuracy and enables the analysis of cyclic
graphs [15, 17]. Resource usage and resource sharing are
not considered in our refinement approach, but the effects of
resource sharing can be taken into account in the delays that
components introduce between input and output streams.
The delays for each component can be computed in isolation
in case only schedulers from the class of starvation-free sched-
ulers are applied [25, 26]. An example of a starvation-free
scheduler is a Time-Division Multiplexing (TDM) scheduler.
The delays can be computed using an iterative approach
in case fixed priority preemptive scheduling is applied as
described in [15, 17]. The approach in [23] considers only
temporal behavior and therefore implicitly assumes that
functional behavior is orthogonal and that no reordering of
events takes place.

The work on relational interfaces [24] forms a basis for
many refinement theories. The relational interfaces specify
the relations between inputs and outputs of synchronous
components. Such synchronous components communicate
by assigning variables that are synchronized at the end of
a synchronous round. The length of such a synchronous

round forms a notion of implicit time. The refinement
theory presented in this paper is suitable for components
that synchronize on the arrival of events instead of such
synchronous rounds. The arrival and production times of
these events form an explicit notion of time. The functional
and temporal behavior of the components in this paper can
be non-deterministic and is described by relations.

There are a number of other Model of Computations
(MoCs) that allow reordering of events. An example is the
PTIDES MoC [27] which allows the handling of events in a
different order than their time-stamp order. A difference is
that our approach does not make use of time-stamps in the
implementation and only requires the use of indices where
reordering can take place.

3. BASIC IDEA
In this section we present the basic ideas behind our

approach. First we discuss the relevance of a refinement
theory for temporal analysis, after which we provide the
intuition behind our refinement theory. A formal description
of the theory is presented in Section 4.

3.1 Background
Timed-dataflow models [25, 26] are used to compute the

guaranteed throughput of stream processing applications
which are executed on run-time scheduled multiprocessor
systems. These dataflow models are functionally and tempo-
rally deterministic because only actors with constant firing
durations and sequential firing rules [19] are applied. Next
to that, actors can only communicate using FIFO queues.
The constant firing durations prevent reordering of tokens
because tokens cannot overtake each other inside actors [1].
The sequential firing rules guarantee that the functional
behavior of actors is independent of the arrival times of tokens.
Efficient throughput and buffer size analysis techniques [5]
have been defined for these deterministic dataflow models.
Using the refinement theory of Hausmans [14] it can be
shown that the guaranteed throughput of an application
executed on predictable multiprocessor systems [8, 13] can
be computed using such dataflow models, despite varying
execution times of tasks as well as scheduling anomalies.

Unfortunately the refinement theory of Hausmans [14] is
not applicable for applications and multiprocessor systems
in which reordering of data occurs. Therefore it is currently
not possible to derive the worst-case temporal behavior of
such systems using timed-dataflow models.

In this work we present a new refinement theory which
modifies and extends [10], such that the interaction between
temporal and functional behavior as a result of reordering
can be taken into account. For space reasons mainly the
modifications and additions are presented in this paper. In
the next subsection we present the intuition behind our
refinement theory.

3.2 Intuitive description of refinement theory
To be able to reason about the interaction between tem-

poral and functional behavior we associate each event with
an index, a value and a timestamp. Events are part of event-
streams. Each event is stored at a location in such a stream.
We define that one stream a′ refines another stream a when
all events in these streams having the same index contain
the same value and the timestamps in a′ are not later than
in a. This refinement is denoted as a′ v a. A variable x can
also denote a trace, which is a set of streams. We define that
x′ v x in case x′ and x consist of an equal number of streams

A′

A′′ R v A

Figure 2: The serial composition of A′′ and R results
in a component A′ that produces an in-order output
trace.

and each individual stream that belongs to x is refined. The
set of traces over the set of ports P of a component is denoted
by Tr(P). By adding a top and a bottom to Tr(P) the lattice
(Tr(P),v) is obtained.

Given the refinement of traces we define the refinement
of components. The idea of component refinement is that if
a refined component is used as a substitute of an abstract
component then this does not result in later production mo-
ments of data. Components are similar to dynamic dataflow
actors [19], but without a notion of firing rules. Components
consume and produce traces and introduce a delay between
the arrival of events in an input trace and the arrival of
events in an output trace. We define that a component A′

refines a component A if for every valid input trace of A and
A′ we have that A can produce events later than A′. Besides
a later trace, component A can produce output traces that
are earlier given the same input trace because the behavior
of A can be non-deterministic. However, there must be at
least one possible trace that A can produce whose events
are never earlier than in all the possible traces that can be
produced by A′.

The behavior of components is described by relations. If
a is an input trace of component A and b a corresponding
output trace then we write aAb. In our theory the compo-
nents in the abstraction are required to be monotone (more
precisely v-monotone and v-continuous). A component A
is v-monotone if for all traces a, a′ with a′ v a and a′Ab′,
there also exists a b for which holds that aAb and b′ v b,
or in words, an earlier input trace may not result in the
fact that A can produce a later output trace. That refined
components are not required to be monotone is needed to be
able to make abstractions of systems with run-time scheduled
tasks in which scheduling anomalies [11] occur.

We can lift the refinement of individual components to
the refinement of graphs of components by proving that
refinement is preserved by serial, parallel, and feedback com-
position. The number of components in an arbitrary graph of
components can be reduced to a single component. This can
be achieved by repetitive application of serial and parallel
composition of two components, after which one component
is obtained with potentially a feedback loop from its outputs
to its inputs. Then this component can be compared to an
abstract version of the component by making use of the fact
that if two components refine each other without feedback
loop, they also refine each other with feedback loop.

The proofs of refinement under serial composition, parallel
composition, and given feedback loops are kept as similar
as possible to the proofs in [10] by a careful redefinition of
streams and the refinement of streams. There is however an
important difference between our refinement theory and the
refinement theory in [10]. The theory of [10] requires that if
component B consumes a trace produced by component A
that then an output trace of the refined component A′ is a
valid input trace for the component B. This requirement is
not fulfilled for components that produce reordered streams
in a trace and that are abstracted by components that do not
allow reordered streams as input. To resolve this issue we
introduce a so-called reorder-back component which produces

by construction an in-order stream by delaying events. Such
a reorder-back component R is placed at the outputs of
component A′′ and this serial composition results in a new
component A′ as shown in Figure 2. Furthermore, it is
shown in [10] that the serial composition of two monotone
components is a monotone component and therefore A′ is
monotone if A′′ and R are monotone. In Section 5.3 it is
shown that R is monotone.

A′

A′′ R vv
A′′ v A′ v A =⇒ G′′ v G

G′′ G′ G
A′′ A

re-order
in and out

re-order
in

in-order
in and out

in-order
out

Figure 3: Creation of an abstract component model
G without reordering.

We can show that a timed-dataflow model, e.g. a Syn-
chronous Dataflow (SDF) model, in which no reordering
takes place, can be a valid abstraction of a system in which
components can produce reordered streams. This is shown
by making use of an intermediate abstraction layer which
consists of components that have internally reorder-back
components R, as shown in Figure 3. By showing that
each component A′ refines A and A′′ refines A′ we conclude
that G′′ refines G′ which refines G. By using the fact
that refinement is transitive we conclude that G′′ refines
G, although in G′′ streams can be reordered whereas the
streams in G are in order.

The output of component A′ in Figure 3 can be offered as
input to component A′′ inside A′ because we consider the
set of streams in which events are in-order a subset of the
set of streams in which events are potentially reordered. The
output of A′ can also be offered as input to a component B
which only accepts in-order streams. We define the concept
of receptivity to indicate that the output stream of A′ is
accepted as input stream of B. By making use of this concept
of receptivity we allow that A′′ v A′, despite that an in-
order stream is produced by A′ and a reordered stream
is produced by A′′. Therefore the usual requirement that
a refined component must have a more restrictive output
guarantee than the abstract component [6], is not satisfied.

However, the components in the intermediate layer G′ in
Figure 3 must be monotone. Otherwise, it cannot be shown
that an abstract graph G, in which events do not reorder, can
be created from a graph G′′ in which events are potentially
reordered. Therefore it must hold that the component A′′ is
monotone. This can be achieved by creating another layer
in which we introduce monotonic components A′′ which are
valid abstractions of non-monotone components A′′′. The
components A′′ and A′′′ can both reorder events.

These intermediate levels are modeling constructs that
do not have to be implemented. They enable to create a
deterministic abstraction G of systems in which the com-
ponents have a non-monotone behavior, introduce a non-
deterministic delay between arrival and production of events,
and in which the components can produce and consume
reordered streams. The deterministic abstraction G can be a
timed-dataflow model that produces and consumes streams
in FIFO order. These dataflow models can be used to derive
the guaranteed throughput and minimum buffer sizes with
existing algorithms if G is an analyzable model such as a
dynamic dataflow model like SADF [9] and BPDF [2] or a
static dataflow model like CSDF [4] and SDF [18].

4. TIMED COMPONENT MODEL
In this section we first give a formal definition of streams

which is then used to formalize the refinement of timed
components. We then prove that component refinement
is preserved by serial, parallel, and feedback composition.
Furthermore we introduce receptivity of ports and define the
behavior of reorder-back components.

4.1 Streams
Events in a stream consist of a value, an index, and the

production time of the event in the form of a timestamp.
Streams are ordered using the timestamps of the events
and different streams are compared by matching the indices
of events. This allows to correctly compare streams with
different orderings of events.

We use a continuous time domain T with an ordering ≤
and a minimal element 0. We also use a maximal element
∞ such that ∀t∈T : t <∞. We use T ∞ = T ∪ {∞}. Next to
that the values of events are chosen in a domain O.

A stream is a total mapping x : N → T ∞ × N ×O. For
a stream x we use τx : N→ T ∞, ιx : N→ N and ϑx : N→
O to retrieve the timestamp, index and value of an event,
respectively.

The considered streams are weakly monotone, i.e., for
each stream x holds that ∀k,l : k ≤ l =⇒ τx(k) ≤ τx(l).
Furthermore, each event in a stream x has a unique index:
∀k,l : k 6= l =⇒ ιx(k) 6= ιx(l).

Streams are formally defined as an infinite sequence of
events. However, they can also be seen as finite. We define
an event at location n to be absent when τ(n) =∞ which
given monotonicity of streams implies that also later events
are absent. The length of a stream can then be defined
as |x| = min{n | τx(n) = ∞}. We denote with τa(k) the
timestamp of the event in stream a with index k, i.e., τa(k) =
τa(i) with ιa(i) = k. The prefix, earlier-than, and refinement
ordering relation for streams are defined as follows:

a′ � a ≡ |a′| ≤ |a| ∧ ∀i<|a′| : τa′(i) = τa(i) ∧
ιa′(i) = ιa(i)

(1)

a′ ≤ a ≡ |a′| = |a| ∧ ∀i<|a| : τa′(ιa(i)) ≤ τa(i) (2)

a′ v a ≡ ∀i : τa′(ιa(i)) ≤ τa(i) (3)

A stream ordering relation E can be lifted to traces x′, x ∈
Tr(P) as follows:

x′ E x ≡ ∀p∈P : x′(p) E x(p)

The presented stream/trace relations have the same prop-
erties as in [10], which implies that we can re-use the results
of [10] that are based on these properties. The set of traces

Tr(P) forms a lattice with the v-relation. The streams ~0 and
ε on all ports are the least and greatest elements, respectively.
In ~0, all timestamps are equal to 0 and in ε they are equal
to ∞.

Next to refinement of timestamps also the values in refined
and abstract streams should correspond. This can be checked
separately. Similar to τ we use ϑa(k) for the value of the
event in stream a with index k. For value correspondence in
refined streams it can for example be defined that the values
are required to be equal:

∀i<|a| : ϑa′(ιa(i)) = ϑa(i) (4)

Furthermore, in this paper the set of in-order streams is
used which is a subset of reordered streams and is defined as
follows:

Definition 1 (In-order stream). A stream a is in-order if
∀i : ιa(i) = i.

4.2 Timed Components
The temporal and functional behavior of a component A

is defined by the relation RA between its input ports and
output ports. Unlike in [10] we use the term component in
this paper instead of actor to prevent confusion with actors
from the timed-dataflow theory, of which SDF actors are an
example. A component is defined as follows:

Definition 2 (Component). A component is a tuple A =
(P,Q,RA) with a set P of input ports, a set Q of output ports
and RA ⊆ Tr(P)× Tr(Q) with Tr(P) and Tr(Q) the set of
all possible traces over the ports P and Q. We use xAy to
denote (x, y) ∈ RA with x ∈ inA and inA = {x ∈ Tr(P) |
∃y ∈ Tr(Q) : xAy}.

A component A is v-monotone if ∀x,x′∈inA,y
′ : x′ v x ∧

x′Ay′ =⇒ ∃y : xAy ∧ y′ v y. Furthermore, a component A
is v-continuous, if for every pair of ordered sets of traces {xk}
and {yk} with respect to (Tr(P),v) and (Tr(Q),v) for which
it is the case that xkAyk, it holds that (

⊔
v{x

k})A(
⊔
v{y

k}).

4.3 Component Composition
Component interfaces can be composed to yield new com-

ponent interfaces. These interfaces are defined as follows for
parallel, serial, and feedback composition.

Definition 3 (Parallel Composition). Let A and B be two
components with disjoint sets of input ports PA and PB and
disjoint sets of output ports QA and QB, respectively. Then
the parallel composition A||B is a component with input ports
PA ∪ PB , output ports QA ∪ QB, and relation RA||B =
{(x1 ∪ x2, y1 ∪ y2) | x1Ay1 ∧ x2By2}.

Definition 4 (Serial Composition). Let A and B be two
components with PA and PB the disjoint sets of input ports
and QA and QB the disjoint sets of output ports, respectively.
We have that Θ is a bijective function from the output ports
of A, QA, to the input ports of B, PB. The serial composition
AΘB is a component with input ports PΘ = PA, output ports
QΘ = QA ∪QB and the relation between input and output
ports as follows:
RAΘB = {(x, y1 ∪ y2) ∈ inΘ × Tr(QΘ) | xAy1 ∧Θ(y1)By2}
with inΘ = {x ∈ inA | ∀y : xAy =⇒ Θ(y) ∈ inB}.

Note that in the definition of inΘ we use, equal to [10],
a “demonic” interpretation of non-determinism which states
that an input x is allowed for AΘB if any intermediate output
of A is a valid input of B.

Next to parallel and serial composition we define feedback
composition. We use x ↑ p for the trace x without the stream
that is the input of port p.

Definition 5 (Feedback Composition). Let A be a com-
ponent with input ports PA and output ports QA, and let
p ∈ PA and q ∈ QA. The feedback composition of A on (p, q)
is the component with input ports PA(p=q) = PA \ {p}, with
output ports QA(p=q) = QA and the relation between input
and output ports as follows:
RA(p=q) = {(x ↑ p, y) | xAy ∧ x(p) = y(q)}

5. TIMED COMPONENT REFINEMENT
In this section we present the timed component refinement

relation and we prove conditions under which refinement is
preserved over compositions. After that, we use the concept
of receptivity as a weaker condition that still ensures that
compositions preserve refinement. This weaker condition is
especially important for timed-dataflow abstractions which
are not input-complete as we will discuss in the last subsec-
tion. In that subsection we also introduce the reorder-back
component.

5.1 Refinement
A component A can be replaced by component A′ when

A′ refines A. Using A′ instead of A will not worsen the
worst-case behavior, i.e., A′ may not produce its output data
later than A. Component refinement is defined as follows:

Definition 6 (Component refinement). Component A′ re-
fines a component A, i.e., A′ v A, if the following two
conditions hold:
(1) inA ⊆ inA′

(2) ∀x∈inA∀y′ : xA′y′ =⇒ ∃y : xAy ∧ y′ v y

In the following lemmas it is shown that refinement is
preserved by parallel, serial and feedback composition.

Lemma 1. A′ v A and B′ v B implies A′||B′ v A||B.

Proof. Follows trivially from the fact that parallel composi-
tion does not involve communication between the components
and therefore the refinement, monotonicity, and continuity
properties of the components are preserved by parallel com-
position.

For refinement preservation of serial composition we intu-
itively sketch the proof presented in [10].

Lemma 2. (I) If A′ v A and B is input-complete and
v-monotone then A′ΘB v AΘB. (II) If B′ v B then
AΘB′ v AΘB.

Proof. (I) Because A′ v A it is possible to define intermediate
traces z′ and z, z′ v z, which are outputs of A′ and A,
respectively, and are both valid inputs of B. Because B
is v-monotone, we have that A′ΘB v AΘB. (II) Both
serial compositions give the same intermediate traces and an
intermediate trace that is accepted by B is also accepted by
B′. Because B′ v B there always exists an output trace of
B which is not earlier than any output trace of B′.

Given this lemma, it is possible to show that if B is input-
complete and v-monotone then A′ v A ∧ B′ v B =⇒
A′ΘB′ v AΘB. This holds only if first the component A is
refined and then the component B.

The proof that feedback composition preserves refinement
under the conditions provided in [10] is not valid. It is
erroneously assumed that an input of A′ can be used as an
input of A if A′ v A. We show that a similar proof as in [10]
is valid if A is input-complete, i.e., it accepts all streams.
We use z = x[p→ y(q)] to denote that the trace z is equal
to trace x in which the stream for port p is replaced by the
stream at port q in trace y, i.e., y(q).

Lemma 3. If component A is input-complete, v-monotone
and v-continuous then A′ v A =⇒ A′(p = q) v A(p = q).

Proof. Requirement (1) of Definition 6: Because A′ v A and
A is input-complete we have that A′ is also input-complete.
Because of this also A′(p = q) is input-complete, which
implies that inA(p=q) ⊆ inA′(p=q).
Requirement (2): We have to show that, for each allowed
input, A(p = q) can produce an output trace that is conser-
vative (w) to all possible output traces of A′(p = q). Let
x ↑ p ∈ inA(p=q). Then there is an x such that xA′y′ with
x(p) = y′(q). Furthermore, because A is input-complete
and A′ v A there exists an y such that xAy with y′ v y.
Because x(p) = y′(q) and y′ v y we know x(p) v y(q), but
x(p) is not necessarily equal to y(q). Hence, x ↑ pA(p = q)y
does not have to be a valid behavior. Nevertheless, we can
construct a valid behavior x′′Ay′′ with x′′ ↑ p = x ↑ p and
x′′(p) = y′′(q) as follows. We define for k ≥ 0 an xk for
which holds that xk ↑ p = x ↑ p and only xk(p) is modified.
We start with x0 = x[p → y(q)] and because x(p) v y(q)
we have x v x0. Component A is v-monotone, thus there
exists an y0 such that x0Ay0 and y v y0. Let us now define
xk+1 = xk[p → yk(q)]. We have xk+1(p) = yk(q) and that
if xk(p) v yk(q) then xk v xk+1. If this is the case we have
xk+1Ayk+1 with yk v yk+1 given the v-monotonicity of A.
Then also yk(q) v yk+1(q) and thus xk+1(p) v yk+1(q) from
which we can derive all the above properties for xk+2 and
yk+2. We thus have ∀k≥0 : x v xk ∧ y′ v y v yk and given

v-continuity of A we know x′′ =
⊔
v{x

k}, y′′ =
⊔
v{y

k} and

x′′Ay′′. Then x′′ ↑ p = x ↑ p, y′ v y′′ and x′′(p) = y′′(q).

5.2 Receptivity
We use receptivity of ports as another property for which

component compositions preserve component refinement.
We first define receptivity of ports and components. Then
we prove that component refinement is preserved by serial
composition and feedback composition if ports/components
are receptive.

Definition 7 (Port receptivity). Port q of component B is
receptive to port p of component A when ∀x∈inA∀y : xAy =⇒
∃s∈inB : s(q) = y(p).

Definition 8 (Component receptivity). Component B is
receptive to component A in the serial composition AΘB when
all connected ports are receptive, i.e., ∀x∈inA,y : xAy =⇒
Θ(y) ∈ inB. We then have inΘ = inA.

We now show that serial composition preserves component
refinement when components are receptive.

Lemma 4. When B is receptive to A′ and B is v-monotone
then A′ v A =⇒ A′ΘB v AΘB.

Proof. (1) B receptive to A′ so inA′ΘB = inA′ for which
holds inA′ ⊇ inA ⊇ inAΘB . (2) Let x ∈ inAΘB then given
property (1), there exists a z′ for which we have xA′z′ and
Θ(z′)By′. Furthermore, there exists a z for which xAz and
z′ v z, due to A′ v A. Given the definition of inAΘB we
know that Θ(z) ∈ inB and because B is v-monotone there
exists an y such that Θ(z)By and y′ v y.

We also show that component refinement is preserved by
feedback composition when feedback ports are receptive. We
use the receptivity property twice. The first is in Lemma 5
where we use receptivity of port p of A′ to port q of A′ to
show that the allowed input set is refined. This replaces
the input-completeness of A′ in Lemma 3. The second time
that the receptivity property is used is that port p of A is
receptive to port q of A′ which is used in Lemma 6 instead
of input-completeness of component A in Lemma 3.

Lemma 5. If for feedback composition A′(p = q) we have
that port p is receptive to port q then ∀x∈inA′ : (x ↑ p) ∈
inA′(p=q)

Proof. Straightforward.

Lemma 6. If ports p of both components A and A′ are
receptive to port q of A′ and A is v-monotone and v-
continuous then A′ v A =⇒ A′(p = q) v A(p = q).

Proof. Requirement (1): From A′ v A follows that inA ⊆
inA′ and given Lemma 5 we know that inA′ is not changed,
except than that port p is removed from the input set.
Therefore also inA(p=q) ⊆ inA′(p=q) holds. Requirement
(2): Let x ↑ p ∈ inA(p=q). Then there is an x such that xA′y′

with x(p) = y′(q). Because port p of A is receptive to port
q of A′ we know that x with x(p) = y′(q) is also a valid
input for A. Because A′ v A there exists an y such that
xAy with y′ v y. Because x(p) = y′(q) and y′ v y we know
x(p) v y(q). Again x(p) is not necessarily equal to y(q) but
we can construct a valid behavior x′′Ay′′ with x′′ ↑ p = x ↑ p
and x′′(p) = y′′(q) as is shown in the proof of Lemma 3.

5.3 In-Order Temporal Dataflow Model
In timed-dataflow abstractions all streams must be in-order

and actors are in general only monotone when they restrict
their inputs to in-order streams. In the last proof of the
previous section, receptivity is assumed between abstraction
layers and therefore timed-dataflow models cannot directly be
valid abstractions for models with reordering. As discussed
in Section 3, we introduce reorder-back components in an
additional abstraction layer to overcome this shortcoming.
A reorder-back component delays the output streams to the
earliest possible allowed in-order stream:

Definition 9 (Reorder-back component). The reorder-back
variant of a v-monotone component A = (P,Q,RA) is
defined as A′ = (P,Q,RA′) with

RA′ = {(x, y) | xAy′∧
y = min{ȳ | y′ v ȳ ∧ ∀i∈N : ιȳ(i) = i}}.

The reorder-back component is by constructionv-monotone
because a later input stream can only delay the output stream
further. This is a result of that it always produces the earliest
allowed output stream.

6. SIMPLIFIED ACTOR REFINEMENT
In the previous sections refinement of components has

been defined based on the properties of their input and
output streams. However, showing that one component
refines another component, requires knowledge about the
internals of the component because the properties of the
components must hold for every possible input and output
stream. Showing that components refine each other can be
complicated for a number of reasons. For example, the
components can have a data-value-dependent input and
output behavior, the components can have multiple input
and output streams, and the components can consume and
produce reordered streams. In this section we show that for
a subclass of components it is possible to abstract from these
complicating factors. This is achieved by reasoning in exter-
nal enabling and finish conditions of components. Using the
external enabling and finish condition a simplified refinement
condition can be defined. This condition has been used in

1
1

1

1
1

input 1output

A
Θ

11

ρ

Figure 4: A latency-rate actor component A with
latency parameter Θ and rate parameter ρ.

a number of papers [25, 26, 21] to show that an abstract
component can be defined of a scheduled task, independent
of the input-output behavior of the task. However, the
simplified refinement condition differs from the component
refinement conditions in Definition 6. We will derive in this
section that the simplified refinement conditions are stronger
than the component refinement conditions of Definition 6.
This allows to conclude that if these simplified conditions
hold also the properties from our refinement theory can be
applied.

6.1 Simplified refinement condition
The simplified refinement relation is defined in combination

with so-called actor components [25]. An actor component
contains functionally deterministic dataflow actors [19] that
are depicted as nodes and communicate using unbounded
FIFO queues depicted as directed edges. An example of an
actor component is shown in Figure 4 and is used in [25] as
an abstraction of a task. On the internal queues of an actor
component the actors produce one token and consume one
token per firing. The actors produce these tokens on the
internal queues in-order. The values in the tokens that the
actors produce are a function of the values in the input tokens.
The actors in the components have positive firing durations
and the firing durations of the actors are either constant or
the actors have a self-edge with one initial token to prevent
that tokens can overtake each other inside an actor as a result
of auto-concurrency [1]. An actor component has one input
actor to which all incoming edges of the component lead
and it has one output actor from which all outgoing edges
originate, as depicted in Figure 4. An actor component must
contain a directed path without initial tokens from its input
actor to its output actor. Given such a path and because
reordered production of tokens is excluded by construction,
the i-th firing (also called execution) of the input actor will
result in the i-th firing of the output actor.

An actor component is externally enabled when sufficient
input tokens have arrived to enable its input actor, excluding
inputs produced by actors inside the actor component. The
quantum of an incoming (outgoing) edge is equal to the
number of tokens consumed (produced) from (on) an edge
per actor firing. All the quanta in Figure 4 are equal to 1.

By making use of the external enabling moment of the input
actor we can abstract from multiple inputs, the consumption
quanta, and the consumption order if it is ensured that the
refined component uses the same number of inputs, consump-
tion quanta, and consumption order. The production moment
of an actor component is defined as the moment at which
the output actor finishes its firing. Using the production
moment we can abstract from the number of output queues,
the production quanta, and also the production order of the
tokens if it is guaranteed that they are the same for the
refined component.

In [25, 26, 21] actor components have been presented to
create a deterministic dataflow abstraction of a task sched-
uled on a processor. Refinement of these models has been
shown by making use of Equation 5.

∀i∈N : e′〈i〉 v e〈i〉 =⇒ f ′〈i〉 v f〈i〉 (5)

In this equation the notation a′〈i〉 v a〈i〉 is used for ∀j≤i :
a′(j) ≤ a(j). Therefore Equation 5 states that if all external
enabling moments of the refined component are not later than
the external enabling moments of an actor component up to
and including the i-th enabling that then also the production
moments should not be later. Knowledge about external
enabling moments of actors with a lower index than i are used
in the proofs in e.g. [25, 21] that are based on mathematical
induction and that refer to production moments of tokens
during previous firings. However, Equation 5 is different
from the conditions in Definition 6. Despite this, we show in
the following lemma that if Equation 5 holds and under the
assumption that inA ⊆ inA′ that then A′ v A.

Lemma 7. If ∀i∈N : e′〈i〉 v e〈i〉 =⇒ f ′〈i〉 v f〈i〉 holds
and the actors in the component A are deterministic then
A′ v A.

Proof. The actor component A is deterministic so there will
be one stream f of finish moments of the output actor for
a stream e of external enabling moments of the input actor.
Next to that we have that e′A′f ′ and eAf . Equation 5 can
also be written as:

∀e′∈inA′∀e∈inA∀f ′ : e′ v e ∧ e′A′f ′ =⇒ eAf ∧ f ′ v f

If e′ = e then e′ v e holds and therefore the previous equation
can be rewritten into:

∀e∈inA∀f ′ : eA′f ′ =⇒ eAf ∧ f ′ v f

Which implies A′ v A.

7. CASE-STUDIES
In this section we apply our refinement theory to create an

abstract (C)SDF model of a DVB-T channel decoder applica-
tion and a communication network in which reordering takes
place. These models can be used to compute the minimum
FIFO capacities that are needed to satisfy a throughput
constraint or to prevent deadlock.

7.1 DVB-T channel decoder
The task graph of a DVB-T channel decoder application is

shown in Figure 5. The decoder is a functionally deterministic
stream-processing application that produces one unique out-
put stream given an input stream. The DVB-T application
is a real-time application because it has to process a periodic
data stream from an Analog-to-Digital Converter (ADC) that
runs at a fixed frequency. The application is executed on a
Software-Defined Radio (SDR) multiprocessor platform in
which tasks execute data-driven and have non-constant exe-
cution times. Each task is executed on its own processor and
tasks cannot start their execution when there is insufficient
space in their output buffers.

ADC DFE FFT DM DEI VIT OUT

Figure 5: Task graph of a DVB-T decoder applica-
tion.

All tasks in Figure 5 produce a stream that is consumed
in the same order by the subsequent task, except for the
Fast Fourier Transform (FFT) task. To demonstrate our
refinement theory we assume that a pipelined FFT [12] is

used which produces a stream in a bit-reversed order while the
De-Mapper (DM) task consumes samples in-order. Therefore
all communication buffers between the blocks can be FIFO
buffers, except for the buffer between the FFT and the DM
task which uses indices to preserve dependencies. All task
are described as sequential programs, like in a Kahn Process
Network (KPN) [16], and use reads and writes that block
until the requested data/space becomes available.

Sufficiently large buffer capacities given a throughput con-
straint can be computed using a temporally and functionally
deterministic SDF model of the decoder application. This
SDF model should take into account that the FFT task
produces samples in a different order than the DM task
consumes the samples. Therefore we will focus on this com-
munication between the FFT and DM tasks in the subsequent
paragraphs.

FFT′′

FFT′′′reorder

reorder

non-constant execution times

constant delays

in-order
non-constant delays

in-order
constant delays

G

G′
FFT′

FFT DM

DM′

DM′

DM′′

FFT′′ R

Figure 6: Component models of the FFT/DM sub-
graph.

To create a suitable SDF model we introduce two in-
termediate abstraction layers between the task graph and
the dataflow graph G, as shown in Figure 6. At the first
intermediate level varying execution times are replaced by
constant delays that are equal to the Worst-Case Execution
Times (WCETs) of the tasks such that a v-monotone com-
ponent model is obtained. Adding the reorder block R inside
the FFT′ component results in an in-order stream. However,
as discussed below, the delay of the FFT′ component is
non-constant as a result of the reorder component.

The top-level model in Figure 6 is a valid abstraction if
the components refine each other at lower abstraction levels.
That the FFT component is refined at lower abstraction levels
is shown as follows. We will assume for ease of understanding
that a 4-point FFT is used instead of the 2048-point FFT
in the real application. The location (i) and index (ι) of
the input and output stream of the FFT′′′ component are
shown in Figure 7 as s1 and s2 respectively. This figure
shows that the FFT component needs 3 input samples before
it produces the first output sample. From the 4-th sample
onwards it consumes and produces every execution a sample.
The produced stream is not in-order. After adding a reorder
component, the stream s3 is obtained in which the production
of some of the samples is delayed one execution compared to
s2.

To conclude refinement of the graph G′ by G in Figure 6
it must be shown that the FFT′ and DM′ components are
refinements of the corresponding FFT and DM SDF actors,
despite that the FFT′′′ component produces a reordered
stream.

The behavior of the described FFT′ component cannot be
modeled with an SDF actor because the FFT′ component
has an aperiodic behavior. However, a conservative, i.e.,

ι1(i1)
s1
i1

ι3(i3)
s3
i3 0 1,2 3 4 5,6 7

0 1,2 3 4 7

ι2(i2)
s2
i2 0 2 3 4 6 7

0 12 3 4 56 7

5,6

1 5

ι4(i4)
s4
i4 0

0

2 3 41 5

2 3 41 5

6

6

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Figure 7: Input and output streams of the FFT
component.

pessimistic, abstraction in the form of the SDF model in
Figure 8 can be created by making use of a negative number
of initial tokens [7]. A negative number of initial tokens
delays the enabling of an actor because more tokens need to
be produced before the actor is enabled. The resulting input
stream of the DM actor is s4 in Figure 7 in which the first
sample is one FFT execution delayed compared to s3. The
number of tokens in the SDF model is in this example −4 of
which −3 are due to the pipelined behavior of the FFT task
and −1 is added to obtain a stream in which one token is
produced every execution after an initial phase.

1 1
vFFT vDM

11

δ

−4
1 1

11

Figure 8: SDF model of the FFT and DM compo-
nents.

Using the SDF model in Figure 8 we can compute buffer
capacities. In this figure there are δ initial tokens on the
edge (vDM , vFFT). To provide some additional insight we
will explain the derivation of the minimum buffer capacity
for deadlock-free execution. For deadlock-free execution we
can make use of the fact that there should be at least one
initial token on every cycle in an Homogeneous Synchronous
Dataflow (HSDF) graph and that the considered subgraph
in Figure 8 is actually an HSDF graph. Using this rule we
find that at least 5 initial tokens are needed. From this
we conclude that the buffer capacity should be at least 5
samples, because −4 initial tokens were used to model the
effect that the FFT does initially not produce data and does
also not produce the samples in order. Therefore we conclude
that the capacity of the buffer should be 1 sample larger
compared to the case that the FFT task would produce data
in-order.

The refinement theory is also applicable for components
that consume reordered streams. For example, also pipelined
FFTs exist that consume data in a bit-reversed order and
produce in-order streams. In this case samples need to
be reordered in the buffer between the DFE and the FFT
components because the DFE produces an in-order stream.
As abstraction, an FFT SDF actor can be created that
consumes in-order streams. In the SDF model there are −3
initial tokens introduced for modeling that the FFT actor
produces tokens after the 4-th token is produced by the DFE.
Therefore only 4 initial tokens are needed for deadlock-free
execution instead of the 5 tokens in the previous example.

7.2 Communication network
In this subsection we consider the communication network

depicted in Figure 9 in which there are two communication

paths from a source to a destination for the transfer of data
packets. There is also a network connection for the transfer
of credits from the consumer C to the producer P , which
is not shown in this figure. Which communication path is
selected for the transfer of a packet is dependent on the traffic
generated by other applications on the communication links
of the network and can therefore vary per packet. As a result
also the communication latency varies per packet and it can
occur that a packet that is later injected in input buffer b1
by task P arrives earlier in the output buffer b2. The task
C consumes the packets in index order from the buffer b2
despite that the arrival order of the packets is unknown at
design time. As soon as a packet is consumed by C, and
removed from the buffer b2, a credit packet is sent through
the network to the producer to indicate that there is space
in the buffers b1 and b2. The sizing of the buffer b1 and b2 is
an important design decision because it affects the maximum
throughput and the cost of the network. Furthermore we
would like to derive the improvement in throughput if two
instead of one connections are used.

Conn1

Conn2

C

NW

b1 b2P

Figure 9: Block diagram of a communication net-
work.

To compute the required buffer sizes a latency-rate model
can be created for a communication path in network (NW) if
the network provides guaranteed-throughput connections
based on resource reservation [13]. Bandwidth for each
network link can be reserved by making use of non-preemptive
round-robin scheduling per packet in each network router
given that the packets have a maximum length. The worst-
case temporal behavior of each guaranteed-throughput net-
work connection can then be modeled with a latency-rate
model [25].

P S

Conn1

Conn2

M C

NW

Figure 10: Component model of the communication
network.

We first consider the case that inside the network the
connection used for a packet transfer is selected randomly.
Therefore it is theoretically possible that all packets are
transferred by the same connection. A component model for
the transfer of data packets through the network is shown in
Figure 10. The selection component S in this figure models
that a packet is transferred through one of the connections,
and a merge component M receives packets from one of
the two connections and provides them as input to the
consumer component C. The packets arrive in an unknown
order because packets can be transferred by different network
connections, each introducing a varying, but bounded delay.

For throughput and buffer size analysis a deterministic
model should be created in which no reordering occurs.

However, unlike in the DVB-T example, the introduction of
a more abstract component model in which all components
introduce a constant delay does not result in a fixed arrival
order of packets because of the non-deterministic selection
of communication paths.

1 1
v00 v01

11
LR-data

1 1

11
LR-credit

δ v10v11

1

1

1

1

vC
1

1
1

1

vP
1

1
1

1Θ10 = 1ρ11 = 1

ρP = 1 ρC = 1

Θ00 = 10 ρ01 = 2

Figure 11: SDF model of the communication net-
work.

An alternative is the creation of a deterministic latency-
rate model of the whole network which abstracts from the
individual connections, as well as the selection and merging.
The two parameters in this latency-rate model are Θ and
ρ, of which 1/ρ determines the minimum processing-rate
and Θ is used to model the maximum communication la-
tency of a packet. To determine a conservative model of
the network we can make the assumption that all packets
are transferred through the same connection, which causes a
maximum delay as a result of queuing. Because it is unknown
which connection is selected, we make 1/ρ in the latency-rate
model equal to the minimum of the processing rates of both
connections and set Θ equal to L− ρ with L the maximum
of the latencies introduced by the two connections. This
results in the dataflow model in Figure 11 in which also the
transfer of credits is modeled using a separate latency-rate
model. With this model we can determine the number of
initial tokens δ which is equal to the minimum required buffer
capacity of b1 as well as b2.

1 1
v00 v01

11
LR-connection 1

1 1

11
LR-credit

δ v10v11

1

1

1

1

1 1
v20 v21

11
LR-connection 2

11

〈1, 0〉

〈0, 1〉
〈1, 1〉

〈0, 1〉

〈1, 0〉

〈1, 1〉

vP
〈1, 1〉

〈1, 1〉
vC

〈1, 1〉

〈1, 1〉
ρP = 〈1, 1〉 ρC = 〈1, 1〉

Θ10 = 1ρ11 = 1

Θ00 = 10 ρ01 = 2

Θ20 = 1

ρ21 = 2

Figure 12: CSDF model of the communication net-
work.

From the model in Figure 11 we can conclude that the
use of multiple connections in the network does not improve
the guaranteed throughput nor reduces the buffer capacities
compared to the use of only one network connection. The
guaranteed throughput could be improved if the connec-
tion for the transfer of packets are not selected randomly.
For example, if packets with an even index are transferred
through connection 1 and packets with an odd index through
connection 2. This deterministic selection of connections
for the transfer of packets does not guarantee that packets
arrive in order. However, because packets are consumed in
an order that is based on their indices we can abstract from

the non-deterministic merge performed by the buffer b2 and
use the deterministic CSDF model in Figure 12. Using this
model we can conclude that the guaranteed throughput of
the network increases, compared to the previous example, if
the capacities of the buffers b1 and b2 are made sufficiently
large. Otherwise the latency of one of the connections could
limit the maximum throughput of the network.

For example, consider that all phases of the actors have a
firing duration of 1µs, except for the actors v00, v01, and v21

which have a firing duration of respectively 10, 2, and 1µs.
Then with δ = 16 a throughput of 0.5 token/µs is obtained.
The network with the random connection selection achieves
the same throughput given only 8 initial tokens (δ = 8)
according to the dataflow model in Figure 11. However, this
is also its guaranteed throughput while the network with the
alternating connection selection can achieve a guaranteed
throughput of 1 token/µs according to its CSDF model in
case the buffers b1 and b2 have a capacity of at least 32
packets.

8. CONCLUSION
In this paper a refinement theory for timed component

models is presented that supports components consuming
or producing reordered data streams. Using this refinement
theory deterministic abstractions can be created in which no
reordering occurs, of systems in which components introduce
non-deterministic delays, have non-monotone temporal be-
haviors, and/or consume and produce reordered data streams.
Such deterministic abstractions can be used to compute the
guaranteed throughput and minimum buffer capacities using
existing timed-dataflow analysis techniques.

Refinement is achieved by making use of an intermediate
layer in which components are introduced that can reorder
streams, but which have a temporally monotone behavior.
Furthermore, a notion of receptivity is introduced to indicate
that one component accepts an output stream of another
component. The concept of receptivity enables that a compo-
nent which produces a reordered stream can be a refinement
of a component that produces an in-order stream.

Proving refinement of components can be difficult due
to their complex input-output behavior, which for example
includes reordered production of data. We show that for a
practically relevant subclass of components it is possible to
partially abstract from input-output behavior by reasoning
in external enabling and production moments.

The relevance and applicability of the presented refinement
theory is illustrated using a DVB-T receiver in which the
FFT component produces a reordered stream. Furthermore,
it is demonstrated that a deterministic SDF model can be
created of a communication network in which packets are
reordered as a result of non-deterministic packet selection
and merge operations.

References
[1] F. Baccelli et al. Synchronization and Linearity: an

Algebra for Discrete Event Systems. Wiley, 1992.
[2] V. Bebelis et al. BPDF: A Statically Analyzable

Dataflow Model with Integer and Boolean Parameters.
In EMSOFT, 2013.

[3] T. Bijlsma et al. Circular Buffers with Multiple Over-
lapping Windows for Cyclic Task Graphs. In HiPEAC,
2011.

[4] G. Bilsen et al. Cyclo-Static Dataflow. IEEE Trans. on
Signal Processing, 44(2):397–408, 1996.

[5] A. Dasdan. Experimental Analysis of the Fastest Op-

timum Cycle Ratio and Mean Algorithms. TODAES,
9(4):385–418, 2004.

[6] L. de Alfaro et al. Interface Theories for Component-
Based Design. In EMSOFT, pages 148–165. Springer,
2001.

[7] R. de Groote et al. Back to Basics: Homogeneous
Representations of Multi-Rate Synchronous Dataflow
Graphs. In MEMOCODE, pages 35–46, 2013.

[8] B. Dekens et al. Low-Cost Guaranteed-Throughput
Communication Ring for Real-Time Streaming MPSoCs.
In DASIP, pages 239–246, 2013.

[9] M. Geilen et al. Worst-Case Performance Analysis of
Synchronous Dataflow Scenarios. In CODES+ISSS,
pages 125–134, 2010.

[10] M. Geilen et al. The Earlier the Better: A Theory of
Timed Actor Interfaces. In HSCC, April 2011.

[11] R. Graham. Bounds on the Performance of Scheduling
Algorithms. Computer and job scheduling theory, pages
165–227, 1976.

[12] H. Groginsky et al. A Pipeline Fast Fourier Transform.
Trans. on Computers, 100(11):1015–1019, 1970.

[13] A. Hansson et al. Enabling Application-Level Perfor-
mance Guarantees in Network-Based Systems on Chip
by Applying Dataflow Analysis. Computers & Digital
Techniques, 3(5):398–412, 2009.

[14] J. Hausmans. Abstractions for Aperiodic Multiprocessor
Scheduling of Real-Time Stream Processing Applications.
PhD thesis, University of Twente, Enschede, The Nether-
lands, April 2015.

[15] J. Hausmans et al. Dataflow Analysis for Multiproces-
sor Systems with Non-Starvation-Free Schedulers. In
SCOPES, pages 13–22, 2013.

[16] G. Kahn. The semantics of a Simple Language for
Parallel Programming. In Proc. of the IFIP Congress,
volume 74, pages 471–475, 1974.

[17] P. Kurtin et al. Combining Offsets with Precedence
Constraints to Improve Temporal Analysis of Cyclic
Real-Time Streaming Applications. In RTAS, 2016.

[18] E. Lee et al. Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing. IEEE
Trans. on computers, 36(1):24–35, 1987.

[19] E. Lee et al. Dataflow Process Networks. Proc. of the
IEEE, 83(5):773–801, 1995.

[20] E. Lee et al. A framework for comparing models of
computation. Trans. on Computer-Aided Des. of Int.
Circuits and Syst., 17(12):1217–1229, 1998.

[21] A. Lele et al. A New Data Flow Analysis Model for
TDM. In EMSOFT, pages 237–246, 2012.

[22] S. Sriram and S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker,
Inc., 2000.

[23] L. Thiele et al. Real-Time Interfaces for Composing
Real-Time Systems. In EMSOFT, pages 34–43, 2006.

[24] S. Tripakis et al. A Theory of Synchronous Relational
Interfaces. TOPLAS, 33(4):14, 2011.

[25] M. Wiggers et al. Modelling Run-Time Arbitration by
Latency-Rate Servers in Dataflow Graphs. In SCOPES,
pages 11–22, 2007.

[26] M. Wiggers et al. Monotonicity and Run-Time Schedul-
ing. In EMSOFT, pages 177–186, 2009.

[27] Y. Zhao et al. A programming model for time-
synchronized distributed real-time systems. In RTAS,
pages 259–268, 2007.

