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ABSTRACT 

In this paper new adaptive importance sampling 
techniques are applied to the performance 
evaluation and parameter optimization of a 
wavelength division multiplexing (WDM) network 
impaired by crosstalk in an optical cross-connect. 
Worst-case analysis is carried out including all the 
beat noise terms originated by in-band crosstalk. 
Both input signal hypotheses are considered. The 
accurate bit-error-rate estimates, which are obtained 
in short run-times, indicate that the influence of 
crosstalk is much lower than that predicted by 
previous analyses. This finding has a strong impact 
on the design of WDM networks. Besides, a method 
is used to optimize the detection threshold, which 
turns out to improve the system performance 
significantly. The presented techniques also allow us 
to determine the power penalty due to the 
introduction of additional WDM channels. 

I. INTRODUCTION 

In wavelength division multiplexing (WDM) systems 
several information channels can be transmitted along 
the same optical fiber by using different wavelengths. 
The main advantage of WDM is that communication 
networks can be easily reconfigured to adapt to varying 
traffic demands, without changing the physical layout. 
A fundamental element in WDM networks is the all- 
optical wavelength router, also called optical cross- 
connect. For this purpose, an arrayed-waveguide grating 
(AWG) seems to he a good candidate (see, e.g. [l]). In 
this device, however, there will be crosstalk 
components originating from different information 
streams. The performance of WDM networks can he 
significantly degraded by this disturbance [Z]. 
The application of analytical techniques to the 
performance evaluation of WDM systems impaired by 
crosstalk is usually very difficult and often requires 
excessive simplification of the system model. On the 
other hand, building a hardware prototype is expensive, 
time-consuming and relatively inflexible. Owing to 
these difficulties, computer simulation represents an 
attractive alternative. 

The hit-error-rate (BER) is a fundamental performance 
parameter. The values of interest in optical 
communications are very small. Unfortunately, Monte 
Carlo simulation requires large run-times to yield 
accurate BER estimates. Therefore, it is desirable to 
find efficient variance-reduction techniques, such as 
those derived from importance sampling (IS), that lead 
to simulation speed-up. 
IS has found application in a variety of fields, such as 
optical fiber communications [3]-[4], reliability 151, 
queuing [61, detection [7]-[8], fading channels [9]-[10], 
and other issues in digital communications [111-[151. 
IS involves running a Monte Carlo simulation where 
probability density functions (pdf s )  are employed that 
are different from the actual ones, so that the 
probability that an error arises during simulation 
increases. An unbiased BER estimate is then obtained 
by weighing the results with the likelihood ratios of the 
actual to the IS densities. 
The principle of IS is simple, hut its efficient 
application to particular systems is a research issue. The 
researcher must decide which type of IS pdf to use, and 
then has to find the parameters of the pdf that yield a 
minimum estimator variance. 
In general, the performance of the IS estimator closely 
depends on the choice of the IS pdfs  and their 
parameters. Two main methodologies have been 
developed for the optimization of IS parameters: 
adaptive techniques [9], [ I l l ,  [16], and techniques 
based on Large Deviations Theory [17]. The advantages 
of the former are its generality and applicability to a 
wide range of systems. The latter often requires difficult 
analysis that is possible only for relatively simple 
systems. 
In this paper ihe search for optimal IS parameter values 
is made with new adaptive techniques based on 
stochastic Newton recursions. The techniques require 
some additional analytical work, but robust and easy-to- 
implement algorithms result. Therefore, simulation mn- 
time is traded for algorithm design effort. Furthermore, 
a conditioning technique, referred to as the g-method 
[7], is combined with the adaptive IS algorithm, so that 
knowledge of the distribution of the underlying random 
variables is more fully exploited. A related technique is 
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used for the optimization of system parameters. It 
involves the minimization, through simulation, of a 
suitable stochastic objective function with respect to 
parameters of interest 171. All these IS techniques are 
briefly explained in Section U. 
We use the presented IS techniques to determine the 
BER degradation due to crosstalk in the AWG. The 
system model is described in Section nI. In practical 
situations, out-band crosstalk can be neglected with 
respect to in-band crosstalk due to the demultiplexing 
process made before the receiver [Z]. Worst-case 
analysis is carried out including all the beat noise terms. 
Moreover, both input signal hypotheses are considered. 
Results are compared with the commonly used 
Gaussian approximation [2] and a recently developed 
Chemoff bound [IS]. Furthermore, we present novel 
results on optimization of detector threshold setting, 
which tuns out to have a relevant impact on system 
perfomiance. Besides, an accurate assessment is given 
of the power penalty due to the introduction of 
additional WDM channels. 

11. IMPORTANCE SAMPLING 

A. Basics of IS 

Consider estimating the quantity G = E { g ( X ) } <  +, 
where g ( X )  is a real-valued function. For notational 
convenience, we assume that X is a random variable 
with density f . The extension to random vectors is 

straightforward. An unbiased IS estimator d of G is 
given by 

6 = L $ g ( X , ) W ( X , , @ ) ,  X ,  -f.(x,@), (1) 

where f. denotes a biasing family of densities 
parameterized by 8, the function W is the likelihood 
ratio W (x, 8)= f (x)/ f. (x, 8) used as a weighing 
function, and K is the IS simulation length. The 
notation X - f  denotes that X is drawn from a 
distribution with density f . The estimator variance is 
given by 

varG=-[I(8)-G2], 

K t-i 

(2) 
- 1  

K-1 
where 

I ( 8 ) = E { g 2 ( X ) W ( X , 8 ) )  
= K { g '  ( X  )W' ( X ,  e)} (3) 

and E. denotes expectation with respect to f.. If g() 

represents the indicator or some event, say {X zr},  
then G = P(X 2 r )  and d is an estimator of a t a l  
probability. 

The first step in the application of IS is to select a 
family of densities f . ( x , 8 )  that enhances the tail 
probability in an adequate manner. In an application, 8 
could represent a set of parameters. Once f.(x,S) is 
chosen, the IS problem centers around determining the 
value of 8 that minimizes the variance in (2) or 
equivalently I @ )  in (3). 

B. Adaptive IS 

The algorithmic minimization of I ( 8 )  can be done in 
the followisg way. From (3) we have 

I @ ) =  E{g2 ( X ) W ' ( X , 8 ) }  

= E. {g2 ( X  ) W ' ( X ,  8)W (X , B)}, (4) 
where prime indicates derivative with respect to 8 .  
Similarly, 

~ " ( ~ ) = ~ , { g ' ( X ) W " ( X , ~ ) W ( X , 8 ) ) .  (5 )  
Estimators of these derivatives can he set up as 

~ ( ~ ) = ~ ~ g ' ( X , ) W ( X , , B ) W ' ( X , , B X  K 1-1 X ,  -f. , 16) 

and 

~ . ( ~ ) = ~ ~ P ' ( X , ) W ( X , , B ) W " ( X , , B ) ,  1-1 X ,  - f. . (7) 

We can now use a root finding algorithm in the form of 
stochastic Newton formula recursions to estimate an 
optimum 8 ,  Such an algorithm is given by 

where the rate factor 6, controls convergence speed 
and noisiness. As is typical of stochastic approximation 
procedures, convergence of this algorithm is 
characterized by a small random oscillation around the 
optimum. For a large class of IS problems the function 
I (8)  has a single minimum and the algorithm can 
locate it. The function I (8)  does not need to be convex. 
Other numerical methods are available (e.g. 191, [ill) 
that can be combined with IS simulation procedures to 
minimize the estimator variance. On the other band, the 
Brent's method and the Golden Section Search method, 
which are meant for deterministic function 
minimization, do not yield SatisfactoIy results. 

C. The g-Method 

In some applications, the system performance can be 
characterized as a probability in the form 
p ,  = P(Z + X 2 r), where 2 is a random variable with 
known density, and X represents a random variable or 
function of random variables. The variable z 
represents some system parameter, for example, a 
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threshold level in a digital receiver. It is assumed here 
that Z and X are independent. Then we can write 

where g , ( x ) = P ( Z T z - n )  is a continuous function of 
I .  In analogy with (l), we have the IS estimator Bq of 

P, as 

p, = E{P(Z 2 T - x  I x)}= E{~,(x)}, (9) 

The estimator exploits knowledge of the density of Z , 
with IS being performed on X . In contrast to this is the 
normal IS estimator given by 

z, - f,.G,s), x, - fx.(x.@), ( 1 1 )  
where l,(y)=l for y T T  and l , (y)=O otherwise (this 
is usually called the indicator function). Here IS is 
performed on 2 and X . It has heen shown 171 that for 
any biasing scheme the estimator in (10) yields a 
smaller variance than that in (1 1). 

D. Optimization of System Parameters 

The differentiability, with respect to T , of the estimator 
in (10) permits optimization of the system parameters to 
achieve a desired performance. Suppose that q is the 
desired value of performance probability p ,  , which is 
obtained at T = T~ < +m . To estimate T~ we form the 
stochastic objective function 

and minimize J ( )  with respect to z using the 
J(T) -  [i% -41' (12) 

This approach was proposed in 171 as the inverse IS 
problem. On the other hand, if p, represents an error 
probability in a communication system that is to be 
minimized. then the algorithm 

can be used. The estimates of the derivatives in these 
algorithms can be obtained from (10). 

111. SYSTEM MODEL 

Consider the schematic of a 4 x 4  AWG in Fig. 1. 
There are 4 nodes connected to the cross-connect. Each 
node includes a multi-wavelength transmitter (4 light 
Sources and a multiplexer) and a multi-wavelength 
receiver (a demultiplexer and 4 photo-detectors). The 
router can send any wavelength from any input port to 
any output port 121. 

Worst-case analysis implies considering that the 
interfering channels are in the ON-state. The out-band 
crosstalk is neglected. The phase of the desired optical 
signal is assumed to he zero without any loss of 
generality, and the phases of the interfering signals are 
independent and uniformly distributed in [0,2n). The 
extinction ratio is assumed infinite. The optical field of 
the desired input channel is 

s,(t)=a,Excos(kf,f). O < t < T ,  (15) 
where a? E {OJ} is the information hit, E is the pulse 
amplitude, and T is the symbol period. Each of the 
M - 1 interfering channels has an optical field 

sm(t )  = &amE x cos(kf,t + $* ( t ) ) .  (16) 
The factor E accounts for the amount of crosstalk. 
Within the symbol period, the phase Gm(t) is assumed 
to be constant, i.e. @ m ( f ) =  $m. Worst-case analysis 
implies, under both signal hypotheses, that 
a,=l, m = 2  ,..., M .  

Fig. 1. Schematic of a 4 x 4  AWG. Thick and thin lines 
indicate signal and crosstalk components, respectively. 
Only one wavelength is shown. 

The photocurrent generated by a photodiode with unity 
quantum efficiency at one of the outputs of an M X M  
AWG will he 121 .. 

E d  . =I a E Z  +t&a,E2xcos(@m) 
2 n=* 

Y EZ 
m = *  2 

+ CEE*XCOS(@~-~~~)+(M- I )E-+~, ,  (17) 
nm 

where n, is the additive white Gaussian noise (AWGN) 
of the receiver, which is independent of the signal and 
the crosstalk components. The second term in (17) is 
the signal-crosstalk heat noise and the third term is the 
crosstakcrosstalk beat noise. 

IV. ANALYSIS AND RESULTS 
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1 
2 

=-e& 

The usual Gaussian approximation [Z] assumes that the 
third and fourtb terms in (17) can be neglected (small 
E) .  When the decision threshold a is set at half the 
ON-signal output current (symmetric setting, i.e. 
z = E' 14 ), the system BER can be assumed to be equal 
to half the probability that the ON-symbol is detected 
erroneously. The Gaussian approximation is then given 
bv 

a - 
her‘ 

, (18) 
a 

2 ~: + (M - ~ ) E ~ E '  

where 0; is the variance of the receiver noise. The 
Chernoff bound [ 181 is 

, (19) 

where Io() is the zero-order modified Bessel function 
of the first kind. 
In contrast with the two approximate methods in (18) 
and (19), the IS experiments include all the terms in 
(17). Moreover, error probabilities are obtained for both 
the ON (a,=l) and the OFF (a ,=O) signal 
hypotheses. Estimating the error probability for the OFF 
case represents a challenge because this probability 
possesses a very low BER floor when a = E' 14 . 
The system was simulated with modified biasing 
densities for the M-1 phases of the interfering 
components. All modified phase densities were 
identical Gaussian pdf's, with means at n, and with 
common variance to be determined with the stochastic 
Newton formula (8). In this way, the probability 
densities of the phases are concentrated in the region 
where the second term in (17) yields the largest 
negative values and the third term yields the largest 
positive values. Under hypothesis a, = 1, the second 
term is much more significant than the third term, so 
that smaller values of id will become more probable. 
When a, = 0 ,  the second term in (17) is zero, therefore 
the described modification of the phase densities will 
tend to increase the third term and thereby id , The tails 
outside the interval [ O , h )  will only affect the 
estimator accuracy when the error probability is very 
high. 
The g-method is applied to the AWGN component, n, , 
hence reducing the IS parameter optimization problem 
to one dimension: the variance of the modified phase 
densities. The function defined in Section II-C becomes 

E 2  
2 

- (M-1)E- 11 
where a = 1 for the ON hypothesis and a = -1 for the 
OFF hypothesis. The weighing function and its two first 
derivatives can be easily found analytically. 
Let us first consider a 4-channel WDM router with a 
symmetric threshold setting. In Fig. 2 we show the 
BER, for a particular value of the receiver noise 
variance U:,  as a function of the crosstalk-to-signal 
ratio XSR=lOxlog~.  The different curves were 
obtained with the Gaussian approximation (18), the 
Chernoff bound (19), and our IS techniques. All the IS 
values shown where obtained with the same rate factor 
Se, and yielded an accuracy better than k 3% for 95% 
confidence level. A run-time of 10 seconds per value on 
a Pentium PC was sufficient to achieve this accuracy. 
This high accuracy is maintained through low BER 
values, indicating that the IS strategy is close to the 
optimum. 

10-l' 

-50 4 5  40 3 5  30 -25 -20 -15 
XSR (dB) 

Fig. 2. BER curves obtained with the Gaussian 
approximation in [2] (GA), the Chernoff bound in [ 181 
(CB), and our adaptive IS techniques. 

As expected, the Gaussian approzmauon results shown 
in Fig. 2 coincide with the IS results for very low 
crosstalk levels. The lack of tightness of the Chernoff 
bound can be observed: this upper bound is more than 
one order of magnitude above the true BER at practical 
crosstalk levels (around XSR = -25dB ). The practical 
implication of the results in Fig. 2 is that our techniques 
allow the network designer to employ optical cross- 
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connects with almost twice as large crosstalk levels 
than those predicted by the approximation methods. 
The performed IS experiments indicated that, with the 
symmetric threshold setting used, the probability of 
error for the OFF signal hypothesis is much smaller 
than that of the ON case. Therefore, threshold 
optimization can he expected to improve the BER 
significantly. We find the optimal threshold for a given 
XSR and AWGN level by applying the technique 
described in Section ILD. 
The impact of the threshold setting can be appreciated 
in Fig. 3. Shown in this figure are BER curves for 
symmetric threshold as well as for optimal thresholds 
obtained at three XSR values: -20 dB, -25 dB, and -30 
dB. The number of channels and the AWGN level are 
the same as in Fig. 2. The influence of the threshold 
setting is quite significant. We also ohserve that the 
tolerable crosstalk level increases further by 3 dB, for a 
wide range of XSR values. This is equivalent to a 5 dB 
improvement with respect to the value predicted by the 
Chemoff hound. 
An important parameter in WDM networks is the 
number of channels. In Fig. 4 we can appreciate the 
power penalty due to the introduction of an additional 
channel. The curves were obtained with XSR = -25 dB 
and the threshold being optimized at SNR = 22 dB for 
each of the curves. In this example, the introduction of 
a fifth channel requires additional S N R  of ahout 1 dB to 
maintain the BER at IO-'. 

Fig. 3. Effect of threshold optimization. The threshold 
was optimized at the indicated XSR values. 

,o.,s- 
18 19 20 21 22 23 

SNR (dB) 

Fig. 4. Impact of the number of channels. 

I 

V. CONCLUSIONS 

We investigated the performance degradation in a 
WDM network due to crosstalk in an AWG working as 
an optical cross-connect. Worst-case analysis was 
carried out and, in contrast with the approximation 
methods in the literature, all the beat-noise terms in 
(17) were included. 
Appropriate IS strategies were developed that give 
accurate BER estimates in short simulation run-times. 
After conditioning with the g-method, the optimization 
of IS parameters was done using stochastic Newton 
recursions. BER estimates were obtained with high 
accuracy in 10 seconds run-time, for practical values OF 
system parameters. The IS results indicate that, at 
practical XSR levels, more than twice as much crosstalk 
can be tolerated than predicted by the approximation 
methods. 
Because both input signal hypotheses are included, 
different threshold settings could he considered, which 
turned out to have a strong impact on the system 
performance. Due to the effectiveness of the IS 
techniques, a minimum search algorithm can he used 
along with IS to perform threshold optimization. This 
resulted in a further relaxation of 3 dB for the crosstalk 
requirements. 
Finally, the IS techniques also proved to be useful for 
the determination of the power penalty due to the 
introduction of additional WDM channels. 
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