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Abstract 
This paper describes a part of the development of an 
adaptive autonomous machine that is able to move in an 
unknown world, extract knowledge out of the perceived 
data, has the possibility to reason, and finally has the 
capability to exchange experiences and knowledge with 
other agents. The agent is not pre-programmed by its 
designer but was given simple rules of l$e i.e. what is 

1. Introduction 
It is a great challenge to develop creatures that show 

intelligent behaviour and have a learning capacity. Since 
many years researchers are trying to give (artificial) life to 
beings that have autonomous behaviour [l-9, 11-14, 17- 
211. But all trials so far have a major drawback. The 
developers put in these creations too much of their own 
knowledge in more or less static structures. As a 
consequence the creations do not come to artificial life in 
an appropriate way. That is to say their learning capacity 
is limited and they cannot survive in a strongly changing 
environment. 
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good and what is bad. By evaluating its sensor inputs 
these rules of life were transfomzed into a rule based 
reactive system. Simulations of the system showed that the 
agent is able to learn by its own experience. By 
representing the leamed knowledge in an appropriate 
way, the acquired knowledge could be judged on its 
effectiveness and also this knowledge could be shared 
with other, less experienced, agents. 

To meet this goal the following demands have to be 
met by the system: The system may not incorporate 
human world knowledge, everything the system learns 
must be based on own experiences. The agent starts as a 
“tabula rasa”. Learning how to move is based on the state 
of mind of the agent. This state of mind resembles natural 
feelings of creatures like happiness, loneliness, sadness, 
etc. In order to store the information the system learns, a 
“dynamic data structure” is needed that enables the 
system, not only to store all kind of information, but new 
behaviours as well. 
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1.1 The new approach 
The agent, as we want to see it, has a layered brain. 

One of the layers is the so called rule-based reactive 
system. It enables the robot to wander in an unknown 
environment. The rule-based reactive system consists of 
three functional blocks. The first block filters several 
conditions out of the raw sensor data, these conditions are 
used by the system to encode the situation. The last block 
translates an action in the corresponding actuator values. 
The block connecting these two blocks must learn 
associations between situations and actions. For this 
block, a simple learning mechanism is needed, based on 
reinforcement learning systems, that evaluate each 
situation action pair based on an internally generated 
reinforcement signal. Experiences of the system are stored 
by combining situations with actions. Simulations show 
the robot is able to learn the correct behaviour. It 
formulates “life-rules’’ that contain information and 
knowledge usable at a higher level of the brain. 

2. Rule-based reactive system 
Two words comprise the major problem of intelligent 

behaviour; when and what. When must the agent do 
something and what should it do? Natural creatures are 
performing all the time a process of answering this 
question, consciously or unconsciously. Looking at their 
motoric system, some situations cause a pre-defined 
action like a reflex, this is an innate behaviour. More 
complex innate behaviours are ascribed to instinct. Other 
behaviours have the same affect as reflexes but can be 
leamed; these are called conditioned reflexes. 
Consciousness and reason have almost no effect on these 
behaviours, in contrast to other behaviours that require a 
complicated decision making process. Reflexes enable the 
agent to respond quickly to specific situations. Obviously 
these reflexes contribute to the changes for self- 
preservation of the agent. 

2.1 Life-rules 
Looking in a system manner to reflexes, the following 

remarks can be made: A system that can perform motoric 
actions is able to endanger itself, e.g. by hitting a wall. 
Quick reactions are needed to avoid such situations. The 
response should be as quickly as possible, hence almost 
no complex thinking process is permitted. In general, such 
“reflexes” should have a fixed response that can be either 
pre-defined or learned. In correspondence with living 
creatures such reflexes can be activated at all times. These 
kind of behaviours can be labelled “reactive behaviours” 
and the system that is comprising such behaviours can be 
called a “reactive system”. If a system is build with 
increasing complexity and intelligence, the reactive 
system can be viewed as the lowest level in a hierarchy of 

intelligent behaviours. As it uses almost no complex 
decision making process, the reaction time can be very 
short. The answers to the previously defined questions 
will be called rules. A rule gives a direct answer what to 
do in a specific situation. A verbalised version of such a 
rule can be stated as follows: “IF (moving to a wall) 
THEN (turn left). This rule gives a direct answer when to 
perform what action. Once the situation is recognised, no 
time is needed to think about this situation, the answer is 
available immediately. A reactive level containing several 
rules can produce a system that is able to maximise the 
system’s change for self-preservation in a specific 
environment. Hence, these rules can be regarded as the 
“rules-of-life’’ or “life-rules” for this particular system. “A 
robot that develops associations between specific sensory 
inputs and responses which are driven by learning criteria 
provided by a pre-defined value system can develop 
anticipatory behaviour as an emergent property”. [ 151. A 
behaviour system can be formed with condition-action 
pairs. Hence, a rule is formed by connecting a condition 
with an action. Rules can be stored as plain data and a 
process can continuously test conditions and -if found 
true- perform the corresponding action of the rule. Now, 
imagine several agents working together, one of them has 
learned a new life-rule. If this rule can be transferred 
using some means of communication, this information can 
have direct effect on the behaviour of other agents. A life- 
rule is clear and compact and is easy to handle. Like 
people could transfer a life-rule saying “if a car 
approaches, don’t cross the street”, agents could transfer a 
life-rule saying “IF (moving to a wall) THEN (turn to 

2.2 Conditions and actions 
Life-rules can be regarded as associations (see 

quotation McFarland) between conditions and actions. 
These associations can be implemented in several ways. 
Also these associations can be generated dynamically. 
This opens the possibility to put a mechanism between all 
conditions and possible actions that will “learn” these 
associations. Each association has a strength that varies 
during its lifetime but for now only weak and strong 
associations will be mentioned. A strong association 
signifies that there is a strong relation between the 
associated conditions and actions. At a system level this is 
expressed by a high positive or negative reward for the 
chosen action. At an agent’s level this action causes 
strong positive or negative feelings. A weak association 
signifies a weak relation between some conditions and an 
action. This is possible when in a real-world there is no 
relation between the two components or it depends highly 
on each specific real-world situation. On the other hand it 
is possible that the mechanism is inadequate to learn the 
proper associations. 

ieft)97. 
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Figure 1: The functional model of the rule-based reac 

2.3 Functional model 
The mechanism that makes the associations between 

conditions and actions (the middle block in figure 1) is 
preceded by a functional block that derives the condition 
from the sensor data. The chosen actions are translated in 
another functional block that will return the aplpropriate 
actuator commands. The first block in this model is the 
perceptual condition filter (PCF). The information from 
the sensor data is represented as perceptual conditions. 
The designer will have great influence in the design of 
this filter and the selection of the sensors. Sensor 
processing is only allowed in this block. Another 
functional block is necessary to translate the chosen action 
to the appropriate actuator command is called the action- 
to-actuator converter (AAC). If an actuator is controlled 
by a voltage or current signal the possible number of 
actions is extremely large. In the same way as in the 
perceptual conditions filter a reduction of possible actions 
can be obtained. Also in the AAC functional bllock, the 
designer can apply all kind of techniques to obtain a small 
action space with great functionality. States of the 
system, like speed of a motor or battery voltage level, can 
be offered to the system as conditions too. Thus, the 
system can make its decisions based on exteirnal and 
internal information. The action selection mechanism 
(ASM) connects the “input” block and the “output” block 
based on the before mentioned life-rules. Levels above the 
reactive level also belong to the action selection 
mechanism. Thus, action selection not only incorporates 
selecting the best action from a number of possible actions 
(arbitration) but, for example, learning sequences and 
reasoning about behaviours belong to it as well. The 
action selection mechanism must select the best action for 
every condition. The life-rules are used to make this 
selection, therefore one task of this mechanism is to apply 
the existing rules. As our goal is to make a learning 
system, life-rules should be created dynamically. Only in 

:tive system. 

this way a system can be made that generates behavioural 
code dynamically and uses a dynamic data structure to 
store this information. For this two additional tasks are 
necessary. First, it must learn new rules and second it 
should evaluate the existing rules. Life-rules must be 
checked on their correctness through evaluation. But what 
should this evaluation be based on? Some existing 
systems use a feedback signal from the system, but a 
feedback signal is not always available. Other systems 
define the goals the agent should reach, but these goals are 
from an observer’s point of view. A solution close to 
nature is to define a state of mind for the agent. The state 
of mind expresses that an agent wants to “feel happy”, 
“not lonely”, etc. It closely resembles to existing feelings 
of intelligent beings and it could render some emergent 
behaviours that could not be expected by an observer. In 
order to define a state of mind comprising these feelings it 
must be able to sense them. Thus the state of mind is only 
related to things the agent can sense. 

2.4 Case: a simple sensory-motor system 
To show the credibility of the approach of a rule-based 

reactive system, a simple simulation will be explained 
using this approach for a basic sensory-motor system. A 
simulated agent has two wheels to perform four different 
actions: 
A1 STOP: no motor action 
A2 

A3 

A4 

FORWARD: both wheels turn with equal constant 
speed 
TURN-LEFT: both wheels move with opposite 
angular velocities 
TURN-RIGHT: same as TURN-LEFT but now in 
the other direction 

The simulated agent has three range sensors to ‘see’ 
objects left, in front or right of it; three whiskers to ‘feel’ 
objects in these three directions and one tactile ring to feel 
a collision in any direction. These sensors can give world 
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information that is encoded (by the PCF of the functional 
model) in the five conditions below. We deliberately 
combined the three whiskers into one condition (2.5 in 
order to make the case simpler and the learning process 
more interesting. 
C1 
C2 
C3 
C4 

C.5 

OBJECT-LEFT: object observed at left side 
OBJECT-FRONT: object observed in front 
OBJECT-RIGHT: object observed at right side 
COLLISION: the tactile ring is activated (position 
unknown) 
WHISKERS: one or more whiskers are activated 
(which one unknown) 

These five conditions can be coded as bits in a binary 
number ranging from 0 to 31, where the least significant 
number represents the truth of C1 and so on. We call these 
numbers states. State 28 (11100) means that an object at 
the right side touches the whiskers and the tactile ring. 
State 8 (01000) means collision at the back side, because 
that is the only place without whiskers! All other states 
with COLLISION imply WHISKERS to be true too, so 
states 9 to 15 never occur. Neither will state 16 and 24, 
because the truth of WHISKERS implies the object to be 
observed somewhere. 

The action selection mechanism has to apply its life- 
rules and learn new ones as well. The agent’s initial state 
of mind is defined by two rules: 
M1 
M2 
OR A3 OR A4 

“collision hurts so don’t collide”, that is NOT C4 
“moving is more fun than doing nothing“, that is A2 

Some discrimination is needed between these two 
rules; the agent must know what is more important. In 
general it is more meaningful to avoid life threatening 
situations or “negative feelings”, and then seek for 
situations that cause “positive feelings”. Hence, in this 
case rule M1 is more important. A mechanism is 
implemented that evaluates rules based on the definition 
of a state of mind. Each activated rule is given a 
reinforcement signal, that is determined by the state of 
mind. Because a mechanism is added that models delayed 
reinforcement, a part of the reinforcement signal is added 
to other rules that were active before as well. This way, 
every rule that is activated will receive a sum of several 
reinforcement signals. This sum is used to evaluate the 

corresponding rule. For this the term reward is used, and 
punishment in case of a negative reward. The evaluation 
mechanism needs a kind of forgetting mechanism. If the 
associations of certain life-rules become very strong, the 
system adapts only slowly to environmental changes. 

Several simulations have shown that an agent is able to 
learn to wander in the environment with reducing the 
number of collisions. Starting with a large number of 
collisions, after some time the agent was able to move 
without collisions. As explained before, life-rules are 
compact and can be transferred easily to other agents. For 
simulation purposes, the observer could have the 
possibility to transfer the best life-rules from one agent to 
another. Then new life-rules will affect the behaviour of 
the receiving agent; the agents can learn from each other. 
Although this mechanism is of course too simple, test 
with this feature showed some interesting results. 

3. Simulation results 
The simulation was programmed in Occam, a language 

that was developed, together with the Transputer, to 
describe parallel communicating processes. As natural 
systems are inherently parallel, this parallelism can easily 
be recognised in our model. In future more levels of 
intelligence will be added and run in parallel. The lowest 
reactive level generating reactive behaviours will then be 
able to run in parallel with a higher level that continuously 
reasons with the life-rules offered by the lower level. 
Occam offers a convenient way to translate the system’s 
structure directly to source code. 

The results of this simulation is very promising as the 
agent was able to move in a simple static world consisting 
of posts and walls. This almost without colliding, but 
problems arise when the world is made more complex. 
Then the agent can get stuck at various places. As the 
action selection mechanism is fixed, it is not able to adapt 
to these new situations. If the agent is able to sense a 
situation of “getting stuck” it will try anything until the 
problem is solved and then it can deal with these 
situations. Figure 2 shows a screen dump of the 
simulation. The straight lines form the objects of the 
world. The circle nearby the right wall signifies the agent, 
the line inside shows the orientation or front of the agent. 
The movements of the agent are marked with small dots. 
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Figure 2: Screen dump of the simulation. 

Figure 3 shows the mean positive reward for rules. It is 
obvious that some rules receive high rewards and others 
do not. The emptiness of states 9 to 16 was explained 
above. The other area in the set of possible rules (state 24 
to 31, with both COLLISION and WHISKERS true) 

received hardly any positive reward. These states are 
entered several times by the agent but resulted most of the 
time in high negative rewards. The lonely peak at state 28 
is explained below. 

'0 

Figure 3: Chart of mean reward for each rule showing positive rewards only. 
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Now a closer look is taken at some specific life-rules. 
Eventually, 13 life-rules (with high enough positive 
rewards) were built up automatically. They all had some 
significant meaning. One exceptional life-rule is 
illustrated below. Figure 3 shows a peculiar peak for 
state 28 (1 1100) - action LEFT (A3). The corresponding 
life-rule states the following: 

IF NOT OBJECT-LEFT AND NOT OBJECT-FRONT AND 
OBJECT-RIGHT AND COLLISION AND WHISKERS THEN 
TURN-LEFT 

Looking at the rule, it seems that the agent is in a 
situation where it collides on the right side with an 
object, hence three conditions are active 
(OBJECT-RIGHT, COLLISION, WHISKERS). The 
agent does not see any object in the front and left 
direction. If the agent turns left, it likely will find a free 
path and can continue moving forward. From this 
life-rule we can conclude that the agent learns how to 
deal with a situation where it collides on its right side. 

Let’s investigate another peak in Figure 3. In state 17 
(10001) action RIGHT (A4) gives the best result. The 
life-rule is: 
IF OBJECT-LEFT AND NOT OBJECT-FRONT AND NOT 
OBJECT-RIGHT AND NOT COLLISION AND WHISKERS 
THEN TURN-RIGHT 

Now the agent is near a wall (whiskers are active) 
that blocks the way in the left direction. The free path is 
found at the right side and hence the agent turns to right. 

. Conclusions 
A study of existing behaviour systems led to the 

conclusion that a good system must satisfy the following 
demands. First of all, the behaviour system may not 
contain any human world knowledge or symbols. The 
knowledge should be acquired exclusively by the system 
itself. 

Secondly, the system must use some kind of dynamic 
data structure where behavioural code as well as 
knowledge and information can be stored. This requires 
some kind of “general purpose memory”. Moreover, if 
the agent wants to minimise on storing data but not on 
information, it must be able to generalise over data and 
be able to store generalised data. Classifier systems seem 
to give a f is t  solution to this problem by using “don’t 
care” symbols. 

A f i s t  solution to translate “learning from 
experience” into behaviour can be obtained by learning 
what effect actions have on certain situations in the 
environment. By learning the effect of actions, called 
associations, it is possible to perform the proper action 
in each situation. The information learned can be stored 

as condition action-pairs. All reinforcement learning 
systems, including classifier systems, are based on a 
kind of condition-action pair. However, these systems 
don’t go a step further when learning these pairs. As 
proven by the results of a simulation, such rules contain 
learned information and hence knowledge. 

In this paper, a system of several layers of 
intelligence is proposed. The lowest level consists of a 
rule-based reactive system. A functional model is given 
that consists of three blocks: the perceptual condition 
filter (PCF), the action selection mechanism (ASM) and 
the action-to-actuator converter (AAC). 

The perceptual condition filter offers a set of high 
functional perceptual conditions to the action selection 
mechanism. These condition data are filtered from the 
raw sensor data. The action-to-actuator converter offers 
a set of actions to the action selection mechanism and 
the selected actions are translated into the proper 
actuator commands. The action selection mechanism is 
thus offered a set of conditions and actions. All 
important learning and reasoning mechanisms are 
combined in this block and belong to the ASM. The 
PCF and the AAC are functional blocks where the 
designer can influence the possib es of the resulting 
agent. The ASM comprises a kind of universal self- 
learning mechanism that is useful for a wide range of 
applications. 

The proposed rule-based reactive level learns 
associations based on a so-called state of mind. The state 
of mind should resemble natural feelings of creatures 
like “happiness”, “loneliness”, “sadness”, etc. Based on 
this state of mind a reinforcement signal is created that 
results in a reward for chosen actions. 

The condition action pairs that emerge from the 
learning mechanism are called “life-rules” and contain 
some learned knowledge. These rules can be used by a 
higher level of intelligence, on top 
to provide the source for reasoni 
rules. These rules may be exchanged with fellow agents 
on demand. 

5. Future work 
ADAM is in statu nascendi. ADAM will have a 

layered brain, as mentioned before. The lowest level of 
the brain is discussed in this paper. Some of the systems 
of the higher levels are tested, while on some other 
systems research is still going on. In short these systems 
will be described. 

5.1 Space system 
When an agent has a lot of sensors, the agent receives 

an enormous amount of data. Because the surrounding 
world has a certain structure, the received data must 
express these structures. Structures can be recognised as 
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redundancy in the data. Constraints describe these 
redundancy. So constraints express knowledge about the 
world. A program is developed that can determine in an 
efficient way different kinds of regularities in the 
surrounding, like e.g. IF (raven) THEN (black). 

An other program is designed that looks at the 
incoming data for tuples that are not consistent with the 
set of possible functionalities. After all, it is possible that 
some day a non-black raven is found. 

5.2 Time system 
Time can be introduced if it is possible to recognise 

sequences of events. It was important for ancient men to 
see that every night is followed by a day, and that a 
summer is followed by autumn, winter and spring 
respectively. Transformations become evident by the 
passing of time in a search for the grand law of 
constancy. In order to introduce time as a factor in the 
system of an agent, the incoming data tuples are 
provided with a time stamp. This makes it possible for 
the system to detect possible dynamic constraints. These 
constraints describe the regularities in the sequences of 
incoming data tuples. 

5.3 Reasoning system 
Our goal is an autonomous system that is able to 

learn and can make deductions and inductions. So one of 
the layers is a reasoning system, When we restrict 
ourselves to functional dependencies, it is not diffficult 
to write a program that is able to make deductions. 

For reasoning under uncertainty a number of rules 
have been developed. And, of course, it is possible to 
use all kinds of rules that are found in literature. An easy 
way is to use a time window, and count the number of 
tuples in two projections. 

5.4 Communication system 
An important feature is the possibility to learn from 

one another. It is easy to transfer data, but it is not so 
easy to extract the right information out of the data. In 
communication we meet the symbol grounding problem 
[lo]. We hypothesise that the world has a number of 
characteristics for two beings. So the constraints or rules 
of these two beings must show comparable pattems. 
Based on these pattems it is possible to make a 
translation from one data space to another. 
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