
Reducing Quantization Error and Contextual Bias Problems in Software
Development Processes by Applying Fuzzy Logic

Francesco Marcelloni Mehmet Aksit
Dipartimento di Ingegneria della Informazione Department of Computer Science

University of Pisa University of Twente
Via Diotisalvi, 2 -56156 Pisa, ITALY

france @ iet.unipi.it aksit@cs.utwente.nl
P.O. Box 217,7500 AE Enschede, The Netherlands

Abstract

Object-oriented methods define a considerable number
of rules, which are generally expressed using two-valued
logic. For example, an entity in a requirement
specification is either accepted or rejected as a class.
There are two major problems how rules are defined and
applied in current methods. Firstly, two-valued logic
cannot effectively express the approximate and inexact
nature of a typical software development process.
Secondly, the influence of contextual factors on rules is
generally not modeled explicitly. This paper terms these
problems as quantization error and contextual bias
problems, respectively. To reduce these problems, we
adopt fuzzy logic-based methodological rules. This

. approach is method independent and is useful for
evaluating and enhancing current methods. In addition,
the use of fizzy-logic increases the adaptability and
reusability of design models.

1. Introduction

During the last decade, a considerable number of
object-oriented methods [4] have been introduced.
Methods aim to create software artifacts by exploiting
object-oriented concepts1 through the application of a
large number of rules. For example, OMT [4] introduces
rules for identifying and discarding classes, associations,
part-of and inheritance relations, state-transition and data-
flow diagrams. Basically, these rules are based on two-
valued logic. For example, a candidate class is generally
identified by applying the rule: If an entity in a
requirement specification is relevant then select it as a
candidate class.

We consider two major problems, termed as
quantization error and contextual bias problems, in the
way how rules are defined and applied in current object-
oriented methods. Firstly, two-valued logic cannot really

express the approximate and inexact nature of a typical
software development process. For example, to identify a
class, a software engineer has to determine whether the
entity being considered is relevant or not for the
application domain. The software engineer can perceive
that the entity partially fulfills the relevance criterion and
may conclude that the entity is, for instance, substantially
relevant. However, two-valued logic-based
methodological rules force the software engineer to take
abrupt decisions, such as accepting or rejecting the entity
as a class. This results in loss of information because the
information about the partial relevance of the entity is not
modeled and therefore cannot be considered explicitly in
the subsequent phases of the development process.
Secondly, the validity of a rule may largely depend on
contextual factors such as the application domain, changes
in user’s interest and technological advances. Unless the
relevant contextual factors that influence a given rule are
defined explicitly, the applicability of that rule cannot be
determined and controlled effectively.

To reduce these problems, we adopt fuzzy logic-based
methodological rules. Fuzzy logic can express uncertainty
and imprecision. Further, fuzzy logic provides a sound
framework to define a language, to associate a meaning
with each expression of the language and to provide a
means to compute these expressions. A software engineer
can, therefore, describe hidher perception using hidher
natural language and this perception can be modeled and
maintained along all the development process. Hdshe can
identify, for instance, the relevance of an entity as weakly,
slightly, fairly, substantially or strongly relevant.
Capturing as much as possible the perception of the
software engineer reduces the loss of information and,
consequently, improves the quality of the software
development process. Also, the influence of contextual
factors on the validity of methodological rules can be
controlled by adapting the meaning associated with each
expression. The adaptation process may be defined by
means of heuristic rules based in their turn on fuzzy logic
as well. Finally, fuzzy logic allows managing a number-of
design alternatives and associating a measure with each
alternative. Measures prove to be particularly useful in
selecting the best alternative in a set of possible conflicting

1 m e tern concept refers to &e types of software &facts of object-
oriented development process. Typical examples of object-oriented
concepts are Class, Object, Association, h-t-of relation, ~erimce
relation, Attribute, Operation, State-transition diagram.

0-7803-521 I -4/99/$10.00 0 1999 IEEE 268

design alternatives.

2. The Quantization Error Problem

Assume that the following rule is used to identify
candidate classes:

IF AN ENTITY IN A REQUIREMENT SPECLFICATION IS RELEVANT AND
CAN EXIST AUTONOMOUSLY IN THE APPLICATION DOMAIN THEN
SELECT IT AS A CANDIDATE CLASS.

Here, an entity in a requirement specification and a
candidate class are the two object-oriented artifacts to be
reasoned. Relevant and Autonomously are the input values
for the first and second conditions, respectively. If the
antecedent of the rule is true, then the result of this rule is
the classification of an entity in a requirement
specification as a candidate class. For illustration
purposes, we will refer to similar rules, which are
commonly adopted by object-oriented methods.

After identifying candidate classes, redundant classes
can be eliminated for instance by using the rule Redundant
Class Elimination:

IF TWO CANDIDATE CLASSES EXPRESS THE SAME INFORMATION
THEN DISCARD THE LEAST DESCRIPTIVE ONE.

In general, application of a rule quantizes a set of
object-oriented artifacts into two subsets: accepted or
rejected. Once an artifact has been classified, for instance
into the rejected set of a rule, it is not considered anymore
by the rules that apply to the accepted set of that rule. For
example, after applying the rule Candidate Class
Identification, if an entity in a requirement specification is
not selected as a candidate class, then this entity will not
be considered by the rule Redundant Class Elimination. If
all the rules, which are applicable to an entity in a
requirement specification, reject that entity, then the entity
is practically discarded. Classifying not correctly artifacts,
especially in the first phases of the development process,
may irremediably deteriorate the quality of whole
development process. The quantization process carried by
the methodological rules is therefore crucial to the quality
of the final product. We believe that the quantization
process as defined by current methods is problematic and
generates a high quantization error. To make the concept
of quantization error clear we can refer to the area of
digital signal processing. Here, quantization process
consists of assigning the amplitudes of a sampled analog
signal to a prescribed number of discrete quantization
levels. This results in a loss of information because the
quantized signal is an approximation of the analog signal.
Quantization error is defined as the difference between an
analog and the corresponding quantized signal sample.
Less the number of quantization levels, higher the
quantization error.

In two-valued logic based software development
methods, high quantization errors arise from the fact that

269

rules adopt only two quantization levels. For example, the
rule Candidate Class Zdent@cution requires from the
software engineer to decide whether an entity in a
requirement specification is relevant or not. The software
engineer may, however, perceive that an entity partially
fulfils the relevance criterion, and may conclude that the
entity is substantially relevant. Here, the quantization error
is the difference between the perception of the software
engineer and the "quantization levels" imposed by the
two-valued logic-based methodological rules. A
formulation of the quantization error in the case of two-
valued logic-based rules has been presented in [11.

One of the dramatic effects of the quantization error on
the development process is early elimination of the
artifacts. Each decision taken by a rule is based on the
available information up to that phase. For the early
phases, there may not be sufficient amount of information
available to take abrupt decisions like discarding an entity.
Such an abrupt decision must be taken only if there is a
sufficient evidence that the entity is indeed irrelevant. In
most object-oriented methods, however, each
identification process is followed by an elimination
process. For example, the OMT method [4] proposes a
process that includes class identification and elimination,
association identification and elimination, and so on. Now,
assume that a software engineer discards an entity because
it is considered non-relevant. The discarded entity,
however, could have been included as a candidate class, if
the software engineer had gathered more information
about its structure and operations. During the later phases
this would be practically impossible because the discarded
entity could not be considered further. Early elimination of
artifacts in current methods is practically inevitable.

If, at the end of the development process, the software
engineer realizes that the resulting object model is not
satisfactory, there are two possible options: improving the
model by applying subsequent rules and/or by iterating the
process. The application of subsequent rules may not
adequately improve the model because of the loss of
information due to quantization errors. The iteration of the
process still suffers from the quantization error problem.
Moreover, managing an iteration remains as a difficult
task.

3. The Contextual Bias Problem

Contextual factors may influence validity of the result
of a methodological rule in two ways. Firstly, the input of
a rule can be largely context dependent. In the rule
Redundant Class Elimination, for instance, the elimination
of a class is based on the perception of the software
engineer whether he or she finds a candidate class more
descriptive than an equivalent class.

Secondly, validity of a rule may depend on contextual
factors such as application domain, changes in user's
interest and technological advances. Let us consider the

following rule Inheritance Modification extracted by [3].

IN THE CLASS HIERARCHY. IF THE NUMBER OF IMMEDIATE
SUBCLASSES SUBORDINATED TO A CLASS IS LARGER THAN 5. THEN
THE INHERITANCE HIERARCHY IS COMPLEX.

If this rule concludes that the inheritance hierarchy is
complex, then the hierarchy may be modified. The success
of this rule heavily depends on the type of application. For
example, in graphics applications, it appears natural that
many classes inherit directly from class Point. This is
because class Point represents a very basic abstraction in a
graphic processing system. Using metrics based rules may
not eliminate the effects of context either. As some authors
indicate [2], metrics must be associated with some
interpretation to determine the threshold of a design rule.
But this interpretation must be given in a context. Only
when the variables, which can influence the measure, are
fixed, the interpretation of the metrics becomes univocal.
Otherwise, the result is either an improper interpretation or
a large amount of possible interpretations. We term the
effects of context to the development process as the
contextual bias problem.

To reduce the quantization error and contextual bias
problems in methodological rules, a new expressive form
rather than two-valued logic has to be investigated. Such a
form has to be able to capture as much as possible the
software engineer's perception so as to increase the
number of quantization levels. To this aim, two
requirements are strongly demanded: i) similarity to the
natural language typically used by the software engineer
and ii) capability to reason on the linguistic expressions to
deduce conclusions and conduct the development process.
Further, the new expressive form has to model the
influence of contextual factors. Fuzzy logic looks to be the
ideal solution.

As L. Zadeh claims in [6], one of the main contribution
of fuzzy logic is computing with words. Fuzzy logic
provides a sound framework to define a language, to
associate a meaning with each expression of the language
and to compute these expressions. Basic in fuzzy logic is
the concept of linguistic variable: A linguistic variable is a
variable whose values, called linguistic values, have the
form of phrases or sentences in a natural language [SI.
Each linguistic value is associated with a fuzzy set that
represents its meaning. Relations between linguistic
variables are defined by means of fuzzy rules which are
typically expressed as: IF X Is A THEN Y Is B, where X
and Y are linguistic variables and A and B are linguistic
values. Given a fact and a rule, one of the most known
fuzzy inference tools, the generalized modus ponens,
allows deducing a fuzzy conclusion. If a crisp value is
required, the corresponding fuzzy set is defuuified by
using a defuzzification operation [5] .

4.1. Reducing the quantization error

Denote each object language concept as [C, (PI, DI),
(P2, 02). ...,(P ,,, On)] where C is the concept name, Pi is a
property of C and Di is the definition domain of P,. An
example of a concept is [Entity, (Relevance, (True, False}),
(Autonomy, (True, False})]. Here, True and False are the
only two values that Relevance and Autonomy can assume
in current methodological rules. A software artifact is an
instantiation of its concept and can be expressed as [C, id,
(PI: VI), (P2: V2). ...,(P ,,: V,,)], where C is the concept of the
artifact, id is the unique identifier of the artifact, and Vi is a
value defined in domain Di of property Pi. Artifacts can be
also named. In the following example, Name is the name
of the artifact:
Namet [Entity, id, (Relevance: True), (Autonomy: True)]

From our experience, two values are not enough to
codify the software engineer's perception about properties
of an artifact. Therefore, we considered each property as a
linguistic variable and investigated which values and
meanings can be significant to a software engineer. For
instance, we verified that the property Relevance of the
artifact Entity can be expressed as weakly, slightly, fairly,
substantially and strongly relevant and the property
Autonomy as dependently, partially autonomy and fully
autonomy. The meaning of the linguistic values of
Relevance and Autonomy are shown in Figures 1 and 2.
Here, the X and Y axes indicate the universe of discourse
and the membership values, respectively. The universes
are supposed to vary from 0 to 1. In these figures, each
linguistic value is shown as a different line type.
Consequently, the concept Entity can be expressed as:
[Enthy, (Relevance, Weakly, Slightly, Fairly,
Substmtially, Strongly]), (Autonomy, {Dependently,
Partially Dependently, Fully Autonomously])]

Fitting the software engineer's perception increases the
number of quantization levels and therefore decreases the
quantization error [l]. Methodological rules are also
expressed using fuzzy logic. Consider, for example, the
modified rule Candidate Class Identification:

IF AN ENTITY IN A REQUIREMENT SPECIFICATION IS RELEVANCE
RELEVANT AM) CAN EXIST AUTONOMY VALUE

AUTONOMOUS IN THE APPLICATION DOMAIN, THEN
SELECT IT AS A RELEVANCE VALUE RELEVANT CANDIDATE CLASS.

Here, an entity and a candidate class are the concepts to
be reasoned, Relevance and Autonomy are the properties,
and relevance value and autonomv value indicate the
domains of these properties. The rule Candidate Class
Zdenttscation can be represented in the following way:
P t [Entity, id1, (Relevance: VI E (Weakly, Slightly,
Fairly, Substantially, Strongly}), (Autonomy: V2 E
{Dependently, Partially Dependently, Fully Autonomously})]

P t [CandidateClass, id2, (Relevance: V3 E (Weakly,
Slightly, Fairly, Substantially, Strongly))]

*

270

Here, P and symbol * indicate a generic artifact name
and the fuzzy implication operator, respectively. Each
combination of relevance and autonomy values of an
entity has to be mapped into one of the five candidate class
relevance values. The resulting 15 sub-rules are shown in
Table 1. Each element of the table, shown in italics,
represents the output value of a sub-rule, which is the
relevance value of the candidate class being considered.
For example, if the relevance and autonomy values are
respectively Strongly and Fully Autonomously, then the
candidate class relevance value is Strongly. We selected
these output values based on our intuition and knowledge
on object-oriented methods.

I I

P t Entity, U Relevance:

Table 1. Sub-rules of the rule Candidate Class
/den fification.

Membership Value

4

0 0.25 0.5 0.75 1

Figure 1. Linguistic variable Relevance.

Mctnbership lhhre
4 Partially Fully DepenF1y Dependently Autonomously

Figure 2. Linguistic variable Autonomy.

If fuzzy logic-based methodological rules are applied,
none of the concepts are theoretically eliminated: artifacts
can be accepted with different acceptance levels. The
fuzzy-logic based method can be considered as a learning
process; a new aspect of the problem being considered is
learned after the application of each rule. Obviously, a
new aspect can modify the previously gathered property
values. The fuzzy-logic theory provides techniques to
reason and compose the results of the rules. Clearly,
software development through learning creates a very
adaptable and reusable design models.

Further, fuzzy logic allows managing a number of
design alternatives and associating a measure with each
alternative. Consider, for instance, that during an object-
oriented development process, the software engineer
judges an entity as a substantial candidate class and a
slight attribute. The concepts of class and attribute are
considered as conflicting in object-oriented paradigm.
During the whole development process these conflicting
alternatives can be maintained, so reducing the loss of
information and increasing the quality of the development
process. When the final product has to be delivered,
conflicts have to be solved. The meanings univocally
associated with the linguistic expressions provide a valid
support to conflict resolution. Each meaning can be
considered as a measure of each alternative. Conflict
resolution can be therefore reduced to select the
alternatives with the maximum defuzzified value.

4.2. Reducing the Contextual Bias Problem

Contextual factors can affect inputs of the rules and
compromise the validity of the rules themselves. In our
fuzzy-logic based approach, the first effect is reduced by
increasing the number of quantization levels. Consider the
rule Candidate Class Identijkation. Selection of an entity
as a candidate class is based on the software engineer’s
perception of relevance. This perception can be different
from software engineer to software engineer. In two-
valued logic based methods, a little difference in
perception can cause contradictory results. For example,
assume that the same entity in a requirement specification
is considered differently by two software engineers, one as
slightly and the other as substantially relevant. In case of a
two level quantization process, it is likely that the first
software engineer would reject and the second one would
accept the entity as a candidate class. By increasing the
number of quantization levels, the difference between the
input values caused by contextual factors is not amplified.

The effect of contextual factors on the validity of a rule
can be reduced by modeling the influence of the context
explicitly. The validity of a rule is determined by the
validity of its conditions. For instance, let us consider the
rule Inheritance Modijkation as defined in section 3. The
condition of this rule may not be valid for certain kinds of
applications. Our solution to this problem is to adapt the

27 1

meaning of linguistic values based on the contextual
factors. Consider the fuzzy logic rule Znheritance
Modification:

P1 c [Class, idl, (ImmediateSubclasses: VI E {Low,

PZ t [inheritance, id2, (Complexity: V2 E {Low, Medium,
Medium, High))]

Hig WI
The validity of this rule depends on the meanings

associated with linguistic values Low, Medium and High.
Different contexts may associate different meanings with a
linguistic value. For instance, in case of a graphics
application, the membership functions associated with the
linguistic values should be adapted so that higher values of
number of immediate subclasses could be acceptable.

A membership function can be adapted by translating,
compressing and dilating. Translation operation is used to
shift the membership function along the Y axis. Figure 3
shows a linear dilation function with factor 2. The
compression or dilation function has to be related to the
contextual factors. In general, it is difficult to formalize
this relation by analytical functions and therefore heuristic
rules have to be adopted. Since rules defining the effect of
contextual factors are typically expressed in terms of
linguistic expressions, fuzzy logic seems to be appropriate
for implementing these rules. For instance, let us consider
to use a linear dilation to adapt the meaning of linguistic
values Low, Medium and High for property Number of
Immediate Subclasses. The relation between the type of
application and the degree of dilation may be expressed by
the following contextual rule.

P1 t [GraphicProcessingApplication, id 1, (Certainfy:
V1 E {Doubtfully, Apptvximately, Certain})] =s

P2 t [Dilation. id2, (Degree: V2 E (Low, Medium, High})]

Depending on the type of application, the contextual
rules determine a value for linguistic variable Dilation. By
defuzzifying this value, the dilation factor can be obtained.

5. Conclusions

This paper identifies the concept of quantization error
and contextual bias problems that one may experience
during software development process. To minimize these
problems, fuzzy logic-based methodological rules have
been proposed. It has been shown that fuzzy logic can
capture the software engineer's perception more
appropriately than two-valued logic thanks to its ability to
compute with real-word linguistic expressions. This allows
reducing quantization error and is useful in adapting
design rules with respect to changing contexts. In addition,
the application of fuzzy-logic based reasoning opens new
perspectives to software development, such as
accumulative software life-cycle and integrated design
documentation. Indeed, a fuzzy logic based method
implements an accumulative learning process; after each

process, a new aspect of the software being developed can
be learned. This naturally results in a very adaptable and
reusable design model. Further, each concept in the fuzzy
logic based method has a set of property-value pairs,
which can be modified through the application of new
rules implemented as fuzzy logic operations. These
operations can be stored as a history information. Fuzzy
logic-based object models, therefore, naturally document
the complete software development history. More
importantly, this way of documenting design information
is fully integrated with the object model, since the
concepts that constitute the object model are created
through the application of these rules. A small fuzzy-logic
based method has been implemented using our
experimental CASE environment and tested on an
example problem.

,Mcrr~be,aA,p V d W . Membershp \'due

Figure 3. Adapting to context through dilation.

References

M. Aksit and F. Marcelloni. Reducing Quantization
Error and Contextual Bias Problems in Object-
Oriented Methods by Applying Fuzzy Logic
Techniques, University of Twente, Report, 1997.

V.C. Basili and H.D. Rombach. The TAME Project:
Towards Improvements-Oriented Software
Environments. ZEEE Transactions on Sofiware
Engineering, Vol. 14, No. 6, pp. 758-772, June 1988.

S . R. Chidamber and C. F. Kemerer. A Metrics Suite
for Object-Oriented Design. IEEE Transactions on
Software Engineering, Vol. 20, No. 6, pp. 476-492,
June 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 199 1.

L.A. Zadeh. Outline of a New Approach to the
Analysis of Complex Systems and Decision
Processes. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-3, No. 1, pp. 28-44, January,
1973.

L.A. Zadeh. Fuzzy Logic = Computing with Words.
IEEE Transactions on Fuuy Systems, Vol. 4, No. 2,
pp. 103-1 11, May, 1996.

272

