
A Component-Based Groupware Development Methodology

Clkver Ricardo Guareis de Farias, Luis Ferreira Pires, Marten van Sinderen
Centre for Telematics and Information Technology, University of Twente

P.O. Box 217,7500 AE, Enschede, The Netherlands
{ farias, pires, sinderen }@cs.utwente.nl

Abstract

Software development in general and groupware ap-
plications in particular can greatly benefit j?om the re-
usability and interoperability aspects associated with
software components. Component-based software devel-
opment enables the construction of software artefacts by
assembling prefabricated, configurable and independ-
ently evolving building blocks, called software compo-
nents. This paper presents a methodology fo r the devel-
opment of groupware applications using a set of com-
posable software components. This methodology consists
of splitting the software development process according
to four abstraction levels, viz., enterprise, system, com-
ponent and object, and three different views, viz., struc-
tural, behavioural and interactional. The use of different
abstraction levels and views allows a better control of
the development process. We illustrate this methodology
using a chat application as a case study.

1. Introduction

The development of Computer Supported Cooperative
Work (CSCW) systems is a difficult and challenging task
since it involves both social and technological issues. The
process of developing a groupware application can be
roughly split into three steps [5] , viz., the design of the
system functionality, the decomposition of the application
into objects, and the use of tools and deployment envi-
ronments for implementing and supporting these objects.

Implementation issues, such as the choice of objects to
implement an application, the decomposition of objects
into concurrent threads, the distribution of objects into
different address spaces and hosts, and the choice be-
tween centralised, replicated or hybrid architectures, has
long been identified as core issues that must be tackled
during the development process [4]. However, not
enough attention is given to reusability issues to a level

greater than the reuse of object class definitions in gen-
eral.

Reusability is a key issue in software engineering. Its
benefits include the reduction of costs and time-to-market
of software products. In the CSCW research reusability
issues are mainly addressed by cooperative toolkits.
These toolkits, such as GroupKit [20], Rendezvous [9]
and Prospero [6], aim at reducing the complexity of co-
operative systems development, by providing reuse of
solutions for common problems, mostly in terms of coop-
erative widgets and environment support.

Nevertheless, the reusability provided by the toolkits is
restricted by two factors, viz., the infrastructure provided
by the toolkit and the implementation language chosen.
Given a particular cooperative object, its reuse may be
restricted by the use of others objects or the toolkit sup-
port itself. Furthermore, the implementation language in
which this object has been implemented plays an impor-
tant role. For example, GroupKit is implemented in Tcl,
while Prospero is implemented in Common List Object
System (CLOS). If two cooperative objects are imple-
mented in different languages, their interoperation is
hard to achieve unless a middleware platform based on
international standards is used.

Component-based software development has emerged
to increase the reusability and interoperability of pieces
of software. Component-based development aims at con-
structing software artefacts by assembling prefabricated,
configurable and independently evolving building blocks,
the so-called components. Components are binary, self-
contained and reusable building blocks providing a
unique service that can be used either individually or in
composition with the service provided by other compo-
nents [22].

Traditional object-oriented software development aims
at providing reusability of object type definitions (object
classes) at design and implementation levels. In contrast,
component-based development aims at providing reus-
ability of components at deployment level. In this way,
components represent pieces of functionality that are

204 0-7695-0865-0100 $10.00 0 2000 IEEE

ready to be installed and executed in multiple environ-
ments.

Methodologies for groupware development are nor-
mally classified as pragmatic or theory/model based. In
pragmatic methodologies, the system is rapidly proto-
typed and iteratively improved by means of the experi-
ence gained while using it. In theory/model based meth-
odologies one first captures some knowledge of the appli-
cation domain, and based on this knowledge the system
is developed by focusing on the most relevant issues in
early design phases. Application domain knowledge also
helps structuring the system in a coherent way. Our re-
search aims at combining these two approaches in order
to profit from their individual benefits.

This paper presents a methodology for the develop-
ment of groupware applications that combines a model
into a pragmatic development process. Our approach
consists of combining a component-based development
process [8] based on the Unified Modelling Language
(UML) [2, 171 with a conceptual cooperative model [7] to
design and structure groupware applications in terms of a
set of composable components. UML is a process inde-
pendent modelling language with growing acceptance in
both academic and industrial settings. UML basically
consists of a collection of diagrams used to model a sys-
tem under different and often complementary perspec-
tives. To exemplify parts of our methodology we use a
simple chat application as a case study.

This paper is further structured as follows: section 2
provides an overview of our component-based groupware
development methodology; sections 3 to 5 detail our pro-
cess; section 6 illustrates the development of a chat ap-
plication as a case study; section 7 discusses some related
software development processes and some drawbacks of
using UML, finally, section 8 presents some conclusions
and outlines some future work.

2. Methodology overview

Our methodology identifies four abstraction levels for
the development of a groupware application, viz., enter-
prise, system, component and object.

The enterprise (or business) level aims at capturing
the vocabulary and other domain information of the sys-
tem being developed. This level has similar goals as the
enterprise viewpoint of the RM-ODP [l l] and provides
the most abstract description of the system being pro-
duced.

The system level aims at identifymg the boundary of
the system being developed. This level aims at obtaining
a clear separation between the system and its environ-
ment by capturing and defining the system requirements.

The component level aims at representing the system
in terms of a set of composable software components and
interfaces.

The object level aims at representing a component in
terms of a set of related objects. This level corresponds to
traditional object-oriented software development.

Figure 1 depicts the layering structure our methodol-
ogy-

Enterprise
Level

System
Level

Component
Level

Object Level

main Knowledge -

Instantiation
/

/ Environment 7

Figure 1. Abstraction levels of the methodology.
The four abstraction levels are related to each other in

different ways. For example, the system level corresponds
to one possible instantiation of the domain concepts pres-
ent at the enterprise level. Different systems can be gen-
erated based on the same set of concepts. The component
level corresponds to a refinement of the system level, in
which the system is refined into a set of software compo-
nents. The object level corresponds to a refinement of the
component level, in which each component can also be
refined into a set of objects.

We can also abstract from a set of objects to form a
component and abstract from a set of components to form
the system. However, it is not always possible to abstract
from the system to obtain the complete description of the
enterprise level because the concepts present at the sys-
tem level may correspond only to a subset of the enter-
prise concepts.

Besides structuring into abstraction levels, we also
consider different views at each one of these levels. Each
view offers a different perspective of the system being
developed. These perspectives are interrelated so that the

205

information contained in one view can partially overlap
the information contained in the others.

We identify three basic views, viz., structural, behav-
ioural and interactional. The structural view provides
information about the structure of active or conceptual
entities. The behavioural view provides information
about the behaviour of each active entity in isolation,
while the interactional view provides information about
the behaviour of the different active entities as they inter-
act with each other. Both the behavioural and the inter-
actional views can be seen as dual views on the same
aspect, viz., behaviour.

Figure 2 illustrates how the different views spans
across the abstraction levels. Because the enterprise level
is primarily a conceptual level, there is no clear division
between the views, which is reflected by considering a
unique representation among the different views at this
level.

Figure 2. Views versus abstraction levels.

3. Enterprise level

The enterprise level captures the vocabulary and other
domain knowledge information of the system being de-
veloped. The information is used both to communicate
with the users of the system and to serve as the basis for
delimiting the system with respect to its environment.

An interesting characteristic of the enterprise level is
its relative independence from the target application. In
other words, because the information present at this level
is mainly domain specific, it is common to several appli-
cations in this domain. For example, suppose we are de-
veloping a shared whiteboard. Once we have identified
the concepts that are likely to be found in most shared
whiteboards, we can create different systems based on
these concepts, each one possibly considering a instan-
tiation of different subsets of these concepts.

The concepts that should be captured at this level are
the same as the concepts present in a conceptual coop-
erative model [7]. This cooperative model is based on
four key concepts, viz., activity, actor, information and
service, and on a set of relationships between them.
Figure 3 represents the conceptual cooperative model in a

UML class diagram. A class diagram describes the types
of objects and the different kinds of static relationships
that connect them, while an object diagram describes an
instance of a class diagram.

{= = aggregates.
act, Activity is-related-to ad, Acflnty
* (J act Activity I act 3 act, A

, I:=,
Information

Figure 3. Cooperative model.
An activity represents a cooperative procedure; it can

be decomposed into sub-activities and actions. The dif-
ferences between a subactivity and an action are twofold:
a sub-activity can be further decomposed while an action
is atomic; and a sub-activity is considered long-lived,
while an action abstracts from duration by only consid-
ering the moment when the action is completed.

Activities that belong to the same aggregation level
can be related to each other. Activities belong to the same
aggregation level if these activities are top-level activi-
ties, i.e., they are not part of other activities, or these ac-
tivities are part of the same activity. Examples of rela-
tionship between activities include the disabling of an
activity by another and the sequential or the synchronised
execution of two activities.

An actor represents an entity responsible for per-
forming an activity. An actor can be either a human be-
ing or an autonomous agent, and is either individual or
collective. A role is used to describe the responsibility
taken by an actor in an association, while coordination
rules, such as policies and floor control mechanisms,
regulate the relationship between different actors per-
forming the same activity.

Actors must communicate with each other to properly
perform an activity. Communication occurs through a
communication channel shared by the actors of an activ-
ity. The communication channel may represent an
audio/video channel, an electronic mail tool or even live
communication, in case the actors are all located in the
same room.

Information represents any kind of electronic data ei-
ther consumed or produced by the activity, such as mes-
sages, documents or database records. Frequently, the
same information is shared by multiple activities. Si-

206

multaneous access to a piece of shared information is
handled by two alternative mechanisms: locking of in-
formation or concurrency control to monitor the access to
the information. A service represents any kind of com-
puterised or non-computerised service that supports the
execution of an activity.

Different techniques can be used to capture the infor-
mation present at the enterprise level, such as a glossary
of terms [141 and object diagrams.

The use of a glossary aims at maintaining a standard
documentation of the terms encountered in the domain of
the system. The use of such kind of documentation is
common in software engineering and often appears with
different names, such as data or model dictionaries.

An entry in the glossary should contain the name of
the term, its type, such as actor, activity, service, etc., and
some brief description.

In order to precisely describe some of the activities,
preconditions and postconditions should be used when-
ever possible. A precondition is a constraint that must be
true before the execution of the activity, while a postcon-
dition is a constraint that must be true after the comple-
tion of the activity. To formally describe preconditions
and postconditions we suggest the use of the Object Con-
straint Language (OCL) [17, 231. OCL is an expression
language defined as part of UML to describe constraints
on object-oriented models.

UML object diagrams can used to represent possible
instantiations of the concepts identified in the glossary of
terms and their relationships. Often there is no direct
mapping between the identified concepts and their possi-
ble implementations.

4. System level

The system level defines the boundary between the
system and its environment by capturing the system re-
quirements. External services that support the system are
identified at this level as well. At the system level the
differences between the three views become apparent so
that at this level these views get a more prominent role in
the development process.

The structural view of a cooperative application at the
system level is captured mainly through UML use case
and package diagrams. Use case diagrams aim at cap-
turing the system requirements, while package diagrams
aim at capturing the static relationship between the sys-
tem and external support services or systems.

The static relationship between an external service
that support the activities and the system itself may be
represented by the presence of an actor indicating an ex-
ternal entity associated with a use case in a use case dia-
gram. Alternatively, we can use a package diagram to

represent dependencies between these external services
and the system itself.

Although a use case diagram is useful to identify the
possible use cases of the system being developed, this
type of diagram usually says little about the order in
which the use cases should be executed.

One possible solution to explicitly represent the exe-
cution order of use cases it the adoption of constraints
{precedes] or dependencies <<precedes>> between use
cases. This solution can be suitable for simple use case
diagrams. Nevertheless, for complex use case diagrams
the adoption of this solution can be cumbersome because
it burdens the understanding of the diagram. In this way,
we suggest the use of (non-standard) use case sequence
and collaboration diagrams [101 to capture the behav-
ioural view of an application at the system level. Stan-
dard sequence and collaboration diagrams represent se-
quences of messages exchanged between a set of objects.
Use case sequence and collaboration diagrams are not
explicitly present in the UML notation guide, but they are
allowed according to the UML metamodel [17].

According to UML, use cases are not allowed to
communicate with each other. Further, they are always
initiated by a signal from its associated actor. This makes
it impossible to model situations in which a use case is
initiated during the execution of another use case.

To overcome these restrictions we use invoke mes-
sages that represent the invocation of use case construc-
tors. These constructors map to the signals from the ac-
tors to the use cases, either directly or indirectly. Invoke
messages are the only messages that can be exchanged
between use cases.

The interactional view of an application at the system
level explicitly captures the possible interactions between
the system and its environment, either actors or support
systems and services, by using (non-standard) package
sequence and collaboration diagrams [lo]. These dia-
grams are also not explicitly present in the UML notation
guide, but similarly to use case sequence and collabora-
tion diagrams package sequence and collaboration dia-
grams are also allowed according to the UML meta-
model.

5. System internal structure

This section presents the inner levels of our develop-
ment process, i.e., the component and object levels.

5.1. Component level

The component level represents the system being de-
veloped in terms of a set of composable components and

207

their interfaces. A component provides access to its
services via one or more interfaces. These services usu-
ally can be customised by adjusting some properties of
the component.

When building a cooperative system from components
in principle we do not need to know how these compo-
nents are internally represented as objects. Actually, a
component does not have to be necessarily implemented
using an object-oriented technology, although this tech-
nology is generally recognised as the most convenient
way to implement a component.

Components can be off-the-shelf, adapted from similar
components and constructed from scratch. So far, most of
the effort spent on building component-based applica-
tions concentrates on building new components. Never-
theless, the more mature and widespread this technology
becomes the more likely it is that this effort will move
towards adapting similar components and reusing exist-
ing ones.

Components can be developed at different levels or
with different granularities, such as small, medium and
large. The composition of components to form a larger
component or application presents many problems, such
as how to cope with incompatible interfaces and how to
provide a unified interface for a composed component.
Much research has been done on how to compose soft-
ware in general and components in particular [l, 151.
Because component composition is a research topic in its
own, we exempt ourselves from discussing it further.

The structural view of a cooperative application at the
component level can be represented using package dia-
grams. The use of package diagrams aims at capturing
the static relationship and dependencies between the in-
ternal components of the system and between these com-
ponents and external systems. A deployment diagram can
also be used to capture the physical distribution of the
components in processing nodes.

A component can be graphically represented using
either a package with a <<component>> stereotype or the
UML component notation. However, UML uses a broader
definition for a component encompassing software mod-
ules, such as executables, libraries, tables, files and
documents. Thus, this notation should used with caution.
Since we have a specific connotation to the term compo-
nent we suggest the use of a more specific notation.

The structural view also comprises the representation
of the interfaces of the components. A component inter-
face is a collection of operations that specify the service
provided by the component. This interface can be repre-
sented as an interface class to show its operations; an
interface class is an object class without attributes and
exhibiting the <<interface>> stereotype.

The behavioural view of an application at the compo-
nent level can be represented using activity diagrams for
each component, while the interactional view of an ap-
plication at the component level is captured mainly
through package sequence and collaboration diagrams.
The use of package diagrams aims at capturing the possi-
ble interactions between the internal components of the
system and between these components and external sys-
tems.

5.2. Object level

The object level corresponds to the internal structure
of the components. A component is structured using a set
of related objects, which are implemented in a program-
ming language.

The structural view of an application at the object
level can be represented using use case, class and object
diagrams. The behavioural view can be represented using
statechart and activity diagrams, while the interactional
view can be represented using sequence and collaboration
diagrams.

The development process of a component at the object
level corresponds to traditional object-oriented software
development processes and therefore it does not require
further discussion.

6. Casestudy

This session presents a case study where the develop-
ment of a chat application using our methodology is il-
lustrated.

6.1. Problem definition

The chat application used as a case study allows a
group of participants engaged in a common chat session
to exchange messages asynchronously amidst the session.

Before starting using the chat capabilities of the appli-
cation the participant must first establish a connection
either registering (first time users) or simply connecting
(registered users) to the system.

After establishing a connection the participant may
create a chat session or join an existing one. Just after the
participant has joined the session she is notified about the
number of messages that were exchanged in that session.
The participant may choose to retrieve a number of mes-
sages equal to or less than the total number of messages
exchanged within the session.

After joining a session the participant may invite new
participants. If the invited participant is currently con-
nected to the system she is immediately notified about the

208

invitation; otherwise the participant will be notified the
next time she connects to the system. In this way, a par-
ticipant may receive an invitation request at any time.
The participant has to accept the invitation in order to
join the session.

During the session the participant may exchange mes-
sages until he or she leaves the session. Changes in the
session, such as the exchange of a message, the joining or
leaving of participants into/out of the session or the addi-
tion of new participants to the session are reported to all
participants currently engaged in that session.

Message Enterprise

6.2. Enterprise level modelling

Infor-
mation

Textual information that is exchanged
among the participants of a chat session.

The enterprise level modelling of the chat application
starts with the identification of the main cooperative con-
cepts and their description in the glossary.

Figure 4 shows some entries of the chat application
glossary of terms. The entries for an actor, two activities
and information are depicted. For simplification purposes
we consider neither different kinds of actors nor floor
control policies. The entry for the activity Join has a pre-
condition described informally. This precondition con-
strains this activity to only those participants that are
registered to the session they want to join.

Name I Level I Type I Description
I I I Person who creates chat sessions. ioins and

leaves these sessions, invites new
participants and exchanges messages

the fist time they establish a connection to

which this participant joins a session in
order to collaborate.
PE: The participant has to be registered to

Figure 4. Glossary of terms.
The glossary should be maintained and updated as the

development of the system continues. Consequently, the
abstraction level at which the term was defined should be
mentioned as well in the glossary since this term may be
assigned different types as the development of the appli-
cation evolves.

6.3. System level modelling

The system level modelling started with the capture of
the structural view of the chat application. To capture
this view a direct mapping was performed from the en-
terprise concepts of actor and activities to the use case
diagram concepts of actor and use case, respectively.
Each activity can be mapped to a separate use case or two

or more related activities can be combined in a same use
case.

Figure 5 presents a simplified version of the chat ap-
plication use case diagram. In this diagram several ac-
tivities identified at the enterprise level were combined in
a same use case at this stage of design. For example, the
activities Register and Connect were mapped to the use
case Access Chat System; the activities Send Message
and Receive Message were mapped to the use case Ex-
change Message; the activities Invite Participant and
Answer Invitation were mapped to the use case Manage
Invitation, and so on.

P

Manage Control Participant
lnwtation Presence

Figure 5. Use case diagram at the system level.
Each use case was described informally using text. For

each use case we provided the following information:
name, associated actors, purpose, overview, preconditions
and postconditions (optional), associated use cases and
typical courses of events (actor actions + system re-
sponses). This description scheme is based on the ap-
proach proposed in 1141.

To capture the behavioural aspects (behavioural + in-
teractional views) we provided some usage scenarios.
Each scenario describes different situations in which the
application is used and usually involves the execution of
several use cases. The complexity of a scenario can vary,
but we suggest a mix of simple scenarios with more com-
plex ones. The provision of usage scenarios is an activity
performed together with the application users.

In this case study, the behavioural view was captured
using a use case sequence diagram for each scenario pro-
vided. This diagram captured the order in which the use
cases can be executed. For example, the use case Join
Chat Session can be executed only after the use case Ac-
cess Chat System, while the use case Exchange Message

209

can be executed only after the use case Join Chat Session,
and so on.

The interactional view was captured in two steps. Ini-
tially, for each use case we captured the interactions be-
tween the system and its environment using separate
package sequence diagrams. Later, we captured the inter-
actions present in each usage scenario.

Figure 6 depicts a package sequence diagram of the
chat application. This diagram captures the interactions
present in a simple scenario involving one participant.
According to this scenario the participant establishes a
connection registering herself, creates a chat session and
then disconnects from the application.

\

return status-of-operation
<

disconnect()
\ .

x
P1 : ParticiDant

Chat
Application

6.4. Component level modelling

The first step to model an application at the compo-
nent level is to identify the components and their static
relationships (structural view).

In our methodology, we prescribe that one should try
to assign the use cases identified at the system level to
components, such that these components correctly sup-
port the use cases. However, there is no rule of thumb on
how to assign use cases to components. A good practice
is to keep similar functionalities in a same component
and distinct functionalities in separate components. Al-
though similarity and distinction are subjective terms,
sometimes it suffices to rely on the individual judgement
and experience of the application designer. In case a use
case is likely to be supported by two or more components,
it is possible that this use case is too complex and that it
should be refined in multiple simpler use cases. In this
case we can either return to the system level to carry out
the necessary changes or create a new use case diagram
in another abstraction level.

For the chat application we modelled the component
level in two distinct phases. In the first phase we consid-
ered the chat application as a composition of two major

components, a client component and a server component.
This distribution reflects our option for a centralised ar-
chitecture for this particular case study.

The assignment of use case to these components was
straightforward at this stage. Basically the left-hand side
of the use cases presented in Figure 5 were assigned to
the client, while the right-hand side of those use cases
were assigned to the server. Additionally, an extra use
case was created to control the participant access at the
server side; client and server actors were added as well.
Subsequently, modifications were made in the textual
description of the use cases to cope with the changes.

We then modelled the behaviour of these components,
particularly the interactional view, using package se-
quence diagrams. For each use case and for each scenario
defined previously we created a package sequence dia-
gram to capture the interactions between the environment
and the client component and between the client compo-
nent and the server component.

In the second phase we refined the client and server
components into a composition of smaller components.
The structural view at this phase was captured using
package diagrams.

The assignment of use cases to components at this
phase was also straightforward. At the client component
side the assignment proceeded as follows: the use case
Access Chat System was assigned to the component Con-
nection Management Client; the use cases related to a
chat session (Create Chat Session, Join Chat Session,
etc.) were assigned to the component Session Manage-
ment Client; the use case Exchange Message was as-
signed to the component Message Exchange; and, fi-
nally, the use case Manage Invitation was assigned to the
component Invitation Management Client.

At the server component side the assignment pro-
ceeded as follows: the use cases Control Participant Ac-
cess and Validate Access were assigned to the component
Connection Management Server; the use case Manage
Pending Invitations was assigned to the component In-
vitation Management Server; the use case Store Chat
Contents was assigned to the component Control Chat
Contents; the use cases Control Participant Presence and
Control Chat Sessions were assigned to the component
Session Management Server.

Figure 7 depicts the package diagram for the server
components. Normally different alternative sets of com-
ponents may all correctly support the same application,
i.e., the different sets of components produce all equiva-
lent results.

210

cation for the same scenario as the one depicted in Figure
6 (system level).

6.5. Other considerations

<<component>>
Evem Noillcanon Chat Sewer

y??' <<component>>

Management
Server

Figure 7. Package diagram for the server component.
The component Chat Server Facade was introduced to

serve as a facade between the server components (except
the component Connection Management Server) and the
client components. The facade component provides a
simple and unified interface for the functionality pro-
vided by a number of (smaller) components. A similar
solution was adopted at the client side of the application.

In order to minimise the dependencies between the
components both at the client side and at the server side
we introduced an Event Notification component. This
component is compliant with the CORBA Event Service
specification [16]. It was used to decouple as much as
possible one component from another, contributing for
the individual reuse of the identified components.

The behavioural view modelling of the components
was carried out using activity diagrams, while the inter-
actional view modelling was carried out using package
sequence diagram. At this stage we only modelled the
interactions present at the usage scenarios previously
defined.

Figure 8 illustrates a package sequence diagram for
the components of the chat application. This diagram
shows the interactions at the server side of the chat appli-

The design of the components at the object level
obeyed an approach similar to traditional software devel-
opment processes.

We make no assumptions regarding the component
model that will be used to implement the components.
One can use CORBA, DCOM or any Java component
model. For this particular application, the components
were implemented using Java IDL [21].

Java IDL is a simple Object Request Broker (ORB)
provided with the Java Platform. It can be used to define,
implement, and access CORBA objects from the Java
programming language. The Java IDL ORB supports
only transient CORBA objects. This ORB also provides a
transient name server, which is compliant with the
CORBA Naming Service specification [161.

Because Java IDL does not provide an event notifica-
tion service, we had to implement the component Event
Notification ourselves. However, being based on a stan-
dard service this component can be reused in other appli-
cations. Similarly, the components that make use of the
services provided by this component can be reused in
other platforms without changes.

7. Discussion

This section compares our methodology with similar
approaches based on UML. This session also indicates
some drawbacks of the use of UML.

7.1. Related work

The Unified Process 1121 is a software development

Figure 8. Package sequence diagram at component level.

211

process based on UML. Actually, the Unified process is
not really a development process but more like a process
framework, since it describes best practices in software
development but still has to be specialised to be suitable
for different projects. The Unified Process identifies two
dimensions: time (cycles, phases and iterations) and
workflows. Each workflow captures a set of activities and
artefacts; models are the most important kind of artefacts.
Possible models include domain, use case, analysis, de-
sign, process, deployment, implementation and test. The
Unified Process also defines some views, such as use
case, design, process, deployment and implementation.

A pattern of four deliverables is used to describe soft-
ware products in [IO]. According to this pattern a soft-
ware artefact can be described at several levels of ab-
straction and from different views. The pattern defines
four main levels of abstraction, viz., system, architec-
tural, class and procedural. Other levels, such as domain,
document and testing, are also possible but less frequent.
The defined views are use case, logical, component and
deployment. At each level and at each view a software
artefact can be described using static relationships, dy-
namic interactions, responsibilities and state machines.

The Catalysis approach [3] is yet another development
process based on UML. Similarly to the Unified Process,
the Catalysis approach is much like a process template,
which can be tailored accordingly to the situation. Ca-
talysis is based on three modelling concepts (type, col-
laboration and refinement) and frameworks. A type
specifies the external behaviour of an object; a collabora-
tion specifies the behaviour of a group of objects, while a
refinement relates different levels of behaviour descrip-
tion. Frameworks describe recurring patterns of these
three concepts. Catalysis also splits the development pro-
cess in three levels: the domain/business, the component
or system specification and the component implementa-
tion. The component specification describes the exter-
nally visible behaviour, while the component implemen-
tation describes the internal structure and behaviour.

Our development process is not so generic and com-
plete as Unified Process and Catalysis: however, the
relative simplicity of our methodology may constitute its
major benefit. The processes presented here structure, in
a more or less extent, the development process of a soft-
ware system in different levels and according to different
views. Still, we do believe that the levels and views
adopted in our process are the most reasonable and
pragmatic choices for a component-based groupware de-
velopment process. Our development process considers
the use of components explicitly, while both the Unified
Process and the pattern deliverable process use a broader
definition of a component.

7.2. Drawbacks of UML

UML is suitable to model most of the development
process of a software component, but one can still iden-
tify some drawbacks. First and foremost, UML does not
support the explicit specification of quality of service
(QoS) requirements. To describe simple and isolated re-
quirements, we can attach some constraints or textual
descriptions to use cases or interfaces, but if QoS re-
quirements are pervasive throughout the whole system
these ad hoc constraints and descriptions are not enough.
Recognising the importance of QoS specification, OMG
launched a request for proposals for a UML profile that
defines standard paradigms of use for modelling QoS and
other aspects of real-time systems [181.

The specification of complex behaviours using state-
chart and activity diagrams can also be problematic.
These types of diagram provide roughly three kinds of
constructs to describe the relationship between states or
activities: enabling, interleaving (parallelism) and syn-
chronisation. Guards can also be used in combination
with the enabling construct, allowing one to represent a
kind of deterministic choice. However, non-deterministic
choices and disabling cannot be directly represented us-
ing UML models. The extension of statechart and activity
diagrams with these two concepts could facilitate behav-
ioural specification.

Most of UML commercially available supporting
tools, such as Rational Rose, Together J and Select Soft-
ware, do not support use case and package sequence and
collaboration diagrams because these diagrams are not
described in the UML notation guide, although they are
allowed by the UML metamodel. This shortcoming ex-
poses the limitations of UML for supporting component-
based software development. However, a major change in
UML is expected to occur in 2001 with the release of the
UML 2.0 specification [13]. This release aims at,
amongst others, providing better support to component-
based development, including COMA, Enterprise Java
Beans and DCOM.

8. Conclusion

This paper presented a component-based methodology
for the development of groupware applications. Accord-
ing to this process, the development of an application is
organised using four different abstraction levels. At each
level different views are used to capture structural, be-
havioural and interactional aspects of the application
under development. We illustrated this methodology us-
ing a chat application as a case study.

212

The three different views presented in this paper seem
to be the most relevant ones for application design. Still
we could have introduced other views, such as a test
view. In this case, at each abstraction level the test view
would capture the information required to test the system
as a whole, and components and objects individually.

Unlike most software development processes, which
normally prescribe the development of a set of objects
followed by their grouping into components, our method-
ology aims at identifymg a set of components, possibly
reusing existing ones, and refining them into objects af-
terwards.

UML is suitable to model most of the development
process of a software component, but UML still does not
support the explicit specification of QoS. Besides, the
support for component modelling should be improved.

The proposed development process is general enough
to be applied in several different areas rather than
groupware. However, our research is focused on the de-
velopment of several groupware applications, such as a
voting application and a multimedia conferencing tool.

We will also investigate the use of other techniques to
be applied in combination with UML. In particular, we
are interested in the use of the architecture modelling
language proposed in [191.

Acknowledgements

This work has been carried out in the scope of the
AMIDST project (http://amidst.ctit.utwente.nl). ClCver
Ricardo Guareis de Farias is supported by CNPq (Brazil).

References

1.

2.

3.

4.

5.

Bergmans, L.: Constructing reusable components with
multiple concerns. International Symposium on Software
Architectures and Component Technology (SACT). En-
schede, The Netherlands. To be published in M. Aksit
(ed.), Kluwer, 2000.

Booch, G., Rumbaugh, J. and Jacobson, I.: The Unified
Modelling Language user guide. Addison Wesley, USA,
1998.

D'Souza, D. F. and Wills, A. C.: Objects, Components and
Frameworks with UML: the Catalysis Approach. Addison
Wesley, USA, 1999.

Dewan, P.: A technical overview of CSCW. Tutorial pre-
sented at the European Conference on Computer Sup-
ported Cooperative Work (ECSCW 99), Copenhagen
(Denmark), 1999.

Dewan, P.: Architectures for Collaborative Applications. In
Beaudouin-Fafon, M. (Editor), Computer Supported Co-
operative Work (Trends in Software, 7), John Wiley &
Sons, USA, pp. 169-193, 1999.

6. Dourish, P.: Using Metalevel Techniques in a Flexible
Toolkit for CSCW Applications. ACM Transacrions on
Computer-Human Interaction, 5(2), pp. 109-155, 1998.

7. Guareis de Farias, C. R., Ferreira Pires, L., and van
Sinderen, M.: A conceptual model for the development of
CSCW systems. Fifth International Conference on the De-
sign of Cooperative Systems (COOP 2000), Sophia An-
tipolis, pp. 189-204, 2000.

8. Guareis de Farias, C. R., van Sinderen, M., and Ferreira
Pires, L.: A systematic approach for component-based
software development. In Proceedings of the Seventh
European Concurrent Engineering Conference (ECEC

9. Hill, R.D., Brinck, T., Rohall, S.L., Patterson J.F. and Wil-
ner, W.: The rendezvous architecture and language for
constructing multiuser applications. ACM Transactions on
Computer-Human Interaction, 1(2), pp. 81-125, 1994.

10. Hruby, P.: Structuring Design Deliverables with UML. In
Proceedings of UML'98 International Workshop, pp. 25 1-
260, 1998.

11. ISO/IEC: Open Distributed Processing - Reference Model:
Part 3: Architecture, International Standard, 1995.

12. Jacobson, I., Booch, G. and Rumbaugh, J. The unifed soft-
ware development process. Addison Wesley, USA, 1999.

13. Kobryn, C.: UML 2001: a standardization odyssey. Com-
munications of the ACM, 42(lo), 29-37, 1999.

14. Larman, C.: Applying Uml and Patterns: An Introduction to
Object-Oriented Analysis and Design. Prentice Hall, USA,
1997.

15. Lewandowski, S. M.: Frameworks for component-based
clientherver computing. ACM Computing Surveys, 30(1),

16. Object Management Group: Corba Services: Common Ob-
ject Seivices Specification, 1998.

17. Object Management Group: Unified Modeling Language
1.3 specification, 1999. Available at http://www.omg.org.

18. Object Management Group: UML profile for modeling
quality of service and fault tolerance characteristics and
mechanisms. Draft RFC, version 2, 1999.

19. Quartel, D. Action relations: basic design concepts for
behaviour- modelling and refinement. PhD thesis, Univer-
sity of Twente, Enschede, the Netherlands, 1998.

20. Roseman, M. and Greenberg, S . : Building real time group-
ware with GroupKit, A groupware toolkit. ACM Transac-
tions on Computer Human Interaction, 3(1), pp. 66-106,
1996.

21. Sun Microsystems. Java ZDL. Available at
http://java.sun.com/products/jdl1.2/docs/guide/idl/index.
html

22. Szyperski, C.: Component software: beyond object-oriented
programming, Addison-Wesley, USA, 1998.

23.Warmer, J. and Kleppe, A.: The object constraint lan-
guage: precise modeling with UML. Addison-Wesley,
USA. 1999.

2000), pp. 127-131,2OOO.

pp. 3-27, 1998.

213

http://amidst.ctit.utwente.nl
http://www.omg.org
http://java.sun.com/products/jdl1.2/docs/guide/idl/index

