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Abstract  
This paper presents an asymptotically stabilizing dis- 

continuous feedback controller for a class of nonholonoinic 
systems. The controller consists of two parts: the first part 
yields an invariant manifold on which all trajectories of the 
closed-loop system tend to the origin, and the latter part 
renders the invariant manifold attractive, while avoiding a 
discontinuity surface. The controller yields exponential sta- 
bility so that the convergence can be chosen arbitrarily fast. 

1. Introduction 
In the past few years, there has been considerable at- 

tention paid to the problem of stabilizing nonholonomic sys- 
tems. It is well-known that nonholonomic systems consti- 
tute a remarkable class of controllable nonlinear systems 
which fail Brockett’s necessary condition for the existence 
of asymptotically stabilizing time-invariant continuous state 
feedback. As a consequence, research on feedback stabi- 
lization of nonholonomic systems has been directed toward 
the design of time-varying smooth feedback control laws [4], 
time-varying nonsmooth feedback control laws [3], and time- 
invariant discontinuous feedback control laws [ 1],[5]. 

This paper uses the invariant manifold technique to de- 
rive asymptotically stabilizing discontinuous feedback con- 
trollers for a class of nonholonomic systems. This technique 
was successfully employed by Tsiotras et a1 [5] for the asymp- 
totic stabilization of a symmetric spacecraft. 

2. Feedback Stabilization: Kinematics 
This section considers tlie stabilization problem for the 

class of nonholonomic systems in third-order power form 
given by 

x1 = W l  , 1 2  = vz , 2 3  = x2v1 , 
where z = ( x ~ , x ? , x ~ )  E X denotes the state and v = 
( v l ,  v2)  E V denotes the input, X and V are open sub- 
sets of R3 and R?, respectively, both containing tlie origin. 
Note that any three-dimensional nonholonomic kinematic 
system with nonholonomy degree two can be (locally) con- 
verted to the form (1) via a coordinate change followed by a 
feedback transformation. Examples of such systems arise in 
the kinematic control formulation of a number of nonholo- 
nomic systems including the knife edge, a hopping robot, 
a synchro-drive mobile robot, a rigid spacecraft with two 
torque actuators, and a free-floating three-link system (see 

Consider the problem of constructing a time-invariant 
state feedback control law v = v(x) wliicli asymptotically 
stabilizes the system (1) to the origin. Clearly, the control 
law v = ( - k 1 x 1 , - k l x z )  where kl is a positive constant, 

(1) 

e.g. [11,[31). 

renders the origin of tlie ( ~ 1 ~ x 2 )  subsystem globally expo- 
iieiitially stable. Note that, with this control law, the closed- 
loop vector field is given by 

Let s denote a smooth function s : X --t R, with 
nonzero gradient on X. The set S = { x  E X I s ( x )  = 0 )  
is said to be an invariant manifold of the system defined by 
the vector field f if L f s ( x )  = 0, x E X. Here L j s  denotes 
the Lie derivative of the scalar function (surface coordinate 
function) s with respect to vector field f .  

Consider the surface coordinate function 

S ( X )  = X1X? - 2x3 , (3) 

which defines an invariant manifold for the system defined 
by tlie vector field (2). The time derivative of s along tra- 
jectories of (2) can be computed to be i ( z )  = x l v ~  - x2v1 

and as expected the above control law maintains B E 0 and, 
once on S, tlie trajectories remain there. Moreover, since the 
( x l ,  x ? )  subsystem has the property that ( X I  (t), x ? ( t ) )  --t 0 
as  t + m, for any trajectory on S, x g ( t )  -+ 0 as t -+ 03, 

and hence ( x I ( t ) , z z ( t ) , z 3 ( t ) )  --t 0 as t --t W. Note also 
that S is independent of the control gain k1. Subsequent 
development utilizes this manifold for the construction of a 
stabilizing feedback control law. In order to render S an at- 
tractive manifold, the feedback control law must be modified 
to guarantee that the reaching condition s i  < 0 is satisfied. 

Restricting consideration to x ;  + x:  # 0 ,  we can pro- 
pose tlie following control law 

(4) 

where s H F ( s )  is scalar function satisfying s F ( s )  < 0, 
and hence guaranteeing that the reaching condition s i  < 0 
is satisfied. Choosing F ( s )  = -kzs ,  where kz is a positive 
constant, yields tlie closed-loop system 

( 5 )  

i = , (7) 

where the surface coordinate function s is as given above. 
Note that the change of variables from ( X I ,  ~ 2 ~ x 3 )  to 
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(11, z2 s) is a diffeomorphism. 
The following result characterizes the properties of the 

closed-loop system (5)-(7). 

Theorem 1: Consider the closed-loop sys tem (5)-(7) with 
li? > 2kl > 0 and let ( z : , i i , s o )  denote a n  initial condition 
with (z:)* + (z:)’ # 0. T h e n  the following hold. 

(i) The trajectory (11 ( t ) ,  z z ( t ) ,  s ( t ) )  is bounded f o r  all 
t 1 0 and converges exponentially t o  zero with a decay rate 
of at least kl. 

(ii) T h e  control history v ( t )  = ( v l ( t ) ,  v2( t ) )  is bounded 
f o r  all t 2 0 and converges exponentially to  zero with a decay 
rate of at least lc1. 

The above result demonstrates that for initial condi- 
tions satisfying ( ~ 7 ) ~  + (zi)’ # 0, the feedback control law 
(4) is well-defined for all t >_ 0. Moreover, it drives the 
system (1) to the origin, while avoiding the manifold 

N = {z E x I z: + x; = 0 ,  I l I Z  - 2x3 # 0 )  . 
Clearly, one can use a finite time feedback control law to 
move the system away from N .  For example, 

‘U = ( -1z1 - cl”sign(x1 - E) 
where cy E [0,1) and E # 0 are constants, can be used to 
move the system away from N in finite time [2]. 

-1xZ - el”sign(z2 - €1 ) , 

3. Feedback Stabilization: Dynamic  Extension 
In this Section, the stabilization problem for the dy- 

namic extension of the system (1) is considered. Dynamic 
extension results in a nonholonomic system with drift, which 
significantly complicates the control law design. 

Adding an integrator to each input channel of the sgs- 
ten1 (1) yields the dynamic extension given by 

il = U 1  , i g  = U2 , i s  = x2u1 , ( 8 )  

w1 = 111 , V? = 112 , (9) 

where U = (u1, U?) E U C R’ is considered as the coutrol 
input. 

Introduce the variables 

Si = Z l Z 2  - 2323 , S2 = (zy + z;)/2 . (10) 

The first and second time derivatives of sI(z) and s?( .T)  

along the trajectories of the system (8)-(9) a e  given by 

B1 = Z l V 2  - Z 2 V l  , SI = 5 1 u 2  - Z2U1 , (11) 
? ?  

Bz = Z I V ~  + ~ 2 0 2  , 12 = Z I U I  +Z?UZ + v i  + ‘U; . (12) 

Let A I ,  A?, A3 ,  and A, denote positive scalars and consider 
tlie following second order linear dynamics for S I  and s?: 

S 1  + ( A 1  + A 2 ) i l  + X I X 2 S I  = 0 1 

S? + (A, + A 4 ) i Z  + X3XSS? = 0 . 

(13) 

(14) 

Assume that s2 # 0. Then, using (11)-(12) in (13)-(14) and 
solving the resulting equations for u1, U? yield the feedback 
control law 

U = (;[z2(aiosi + a i i i i )  - z i ( v i  + ~ + u ? o s ?  + u ? i i ? ) ] ,  
? ?  

1 
s2 

---[~i(~ic~i + ~ i i i i )  + ZZ(V: + ‘U: + ~ 2 0 ~ 2  + a z ~ i z ) ]  ,(Is) 

wherealo = XrX2, ull = X1+X2, a20 = X3X4, uzl = X3+h4. 
The following result can be stated. 

T h e o r e m  2: Consider the system (8)-(9) wzth the feedback 
control law (15). Let A1 > A2 > 2x3 > 2x4 > 0 and let 
(i:, zi,s?, ’U:, ‘U:) denote a n  initial conditzon with ( x : ) ~  + 
(xi)’ # 0, 

(a} The  trajectory ( Z I ( ~ ) , Z ~ ( ~ ) , S I ( ~ ) ~  ‘ u I ( ~ ) ,  vz( t ) )  i s  
bounded f o r  all t 2 0 and converges exponentially to  zero 
with a decay rate of at least X4.  

(ii) The control history u ( t )  = (u1 ( t ) ,  112 ( t ) )  is bounded 
f o r  all t 2 0 and Converges exponentially to zero with a decay 
rate of at least X4. 

The above result demonstrates that for initial condi- 
tions satisfying (x;)’ + (z:)* # 0, = vi = 0, the feedback 
control law (15) is well-defined for all t 2 0. Moreover, it 
drives the system (8)-(9) to the origin, while avoiding the 
manifold 

= ‘U: = 0. T h e n  the following hold. 

9 7  N ’ = { ( I , ’ U ) € X X V ~ ~ ~ + ~ = O ,  2 1 5 2 - 2 2 3 # 0 )  

Clearly, one can use a finite time feedback control law to 
transfer the system to a state statisfying the conditions of 
Tlieoreln 2. For example, 

U ]  = -1z1 - €llo’szg”(zl - € 1 )  - Ivllb’szgn(vl) , 

uz = -122 - ~ ? l ~ * s z g n ( z 2  - E ? )  - Iv?lb2szgn(v?) 

where b, E ( O , l ) ,  U, > b , / ( 2 - b , )  and E ,  # 0, 2 = 1,2 
are constants, can be used to tiansfer the system to a state 
statisfying the conditions of Theoiem 2 in finite time [2]. 

4. Conclusions 
Discontinuous static feedback control laws have been 

derived for the stabilization of the third-order power form 
nonholonomic kinematic systems and their dynamic exten- 
sion. Future research includes extension of the results ob- 
tained in this paper to higher-order power form nonholo- 
nomic kinematic systeiiis and their dynamic extensions. 
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