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Abstract

This paper presents an asymptotically stabilizing dis-
continuous feedback controller for a class of nonholonomic
systems. The controller consists of two parts: the first part
yields an invariant manifold on which all trajectories of the
closed-loop system tend to the origin, and the latter part
renders the invariant manifold attractive, while avoiding a
discontinuity surface. The controller yields exponential sta-
bility so that the convergence can be chosen arbitrarily fast.

1. Introduction

In the past few years, there has been considerable at-
tention paid to the problem of stabilizing nonholonomic sys-
tems. It is well-known that nonholonomic systems consti-
tute a remarkable class of controllable nonlinear systems
which fail Brockett’s necessary condition for the existence
of asymptotically stabilizing time-invariant continuous state
feedback. As a consequence, research on feedback stabi-
lization of nonholonomic systems has been directed toward
the design of time-varying smooth feedback control laws [4],
time-varying nonsmooth feedback control laws {3], and time-
invariant discontinuous feedback control laws [1],[5].

This paper uses the invariant manifold technique to de-
rive asymptotically stabilizing discontinuous feedback con-
trollers for a class of nonholonomic systems. This technique
was successfully employed by Tsiotras et al [5] for the asymp-
totic stabilization of a symmetric spacecraft.

2. Feedback Stabilization: Kinematics
This section considers the stabilization problem for the

class of nonholonomic systems in third-order power form
given by

T = v, &2 = vz, &3 = Zavy , (1)

where z = (z1,22,23) € X denotes the state and v =
(vi,v2) € V denotes the input, X and V are open sub-
sets of R® and R?, respectively, both containing the origin.
Note that any three-dimensional nonholonomic kinematic
system with nonholonomy degree two can be (locally) con-
verted to the form (1) via a coordinate change followed by a
feedback transformation. Examples of such systems arise in
the kinematic control formulation of a number of nonholo-
nomic systems including the knife edge, a hopping robot,
a synchro-drive mobile robot, a rigid spacecraft with two
torque actuators, and a free-floating three-link system (see
e.g. [1],[3]).

Consider the problem of constructing a time-invariant
state feedback control law v = v(z) which asymptotically
stabilizes the system (1) to the origin. Clearly, the control
law v = (—kyz1, ~ki22) where k; is a positive constant,
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renders the origin of the (z1,z2) subsystem globally expo-
nentially stable. Note that, with this control law, the closed-
loop vector field is given by

f=—k|x15%—k11'za;;—klxlx2% . (2)

Let s denote a smooth function s : X — R, with
nonzero gradient on X. The set S = {2 € X | s(z) = 0}
is said to be an invariant manifold of the system defined by
the vector field f if Lys(z) = 0, = € X. Here Lyss denotes
the Lie derivative of the scalar function (surface coordinate
function) s with respect to vector field f.

Consider the surface coordinate function
s{z) = 2120 — 223, (3)

which defines an invariant manifold for the system defined
by the vector field (2). The time derivative of s along tra-
jectories of (2) can be computed to be $(z) = z1v2 — 221y
and as expected the above control law maintains s = 0 and,
once on S, the trajectories remain there. Moreover, since the
(1, x2) subsystem has the property that (z;(t), z2(t)) — 0
as t = oo, for any trajectory on S, z3(t) — 0 as t — oo,
and hence (z,(t),z2(t),z3(t)) = 0 as ¢t = oo. Note also
that S is independent of the control gain k;. Subsequent
development utilizes this manifold for the construction of a
stabilizing feedback control law. In order to render S an at-
tractive manifold, the feedback control law must be modified
to guarantee that the reaching condition s$ < 0 is satisfied.

Restricting consideration to z? + 3 # 0, we can pro-
pose the following control law

2 _ zaF(s) -1 z1F(s
v= ( k12, Prres kizs + ;m% ) , 4)

where s — F(s) is scalar function satisfying sF(s) < 0,
and hence guaranteeing that the reaching condition ss < 0
is satisfied. Choosing F(s) = —kas, where k; is a positive
constant, yields the closed-loop system

& = =k + ﬁ ) (5)

Ta = —k2y - —/—— , (6)
24

§ = —kgS 3 (7)

where the surface coordinate function s is as given above.
Note that the change of variables from (x;,z2,23) to
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(21,2, 8) is a diffeomorphism.
The following result characterizes the properties of the
closed-loop system (5)-(7).

Theorem 1: Consider the closed-loop system (5)-(7) with
ks > 2ki > 0 and let (22,23, 5°) denote an initial condition
with (€3)% + (23)% # 0. Then the following hold.

(i) The trajectory (z1(t), z2(t), s(t)) is bounded for all
t > 0 and converges exponentially to zero with a decay rate
of at least ky.

(i3) The control history v(t) = (v1(t), v2(t)) is bounded
for allt > 0 and converges ezponentially to zero with a decay
rate of at least ky.

The above result demonstrates that for initial condi-
tions satisfying (z9)? + (23)® # 0, the feedback control law
(4) is well-defined for all ¢ > 0. Moreover, it drives the
system (1) to the origin, while avoiding the manifold

N:{xGX|m§+x§=0,1132—213;&0}.

Clearly, one can use a finite time feedback control law to

move the system away from N. For example,
v= ( —|2; — €|*sign(z; —€) —|x2 — €|*sign(z2~¢€) ),

where a € [0,1) and € # 0 are constants, can be used to
move the system away from N in finite time [2].

3. Feedback Stabilization: Dynamic Extension
In this Section, the stabilization problem for the dy-

namic extension of the system (1) is considered. Dynamic
extension results in a nonholonomic system with drift, which
significantly complicates the control law design.

Adding an integrator to each input channel of the sys-
tem (1) yields the dynamic extension given by

iy = vy, & = v2, E3 = 2201, (8)
Uy = U, U2 = Uz, (9)

where u = (u1,u2) € U C R? is considered as the control
input.

Introduce the variables
$1 =32 — 223 , 82 = (23 +13)/2. (10)

The first and second time derivatives of s;{z) and s2(z)
along the trajectories of the system (8)-(9) are given by

$1 = 21V2 — T201 , 81 = T1U2 — TaU; , (11)
. . 2 2
S = x1U1 +T2v2 , S2 = 21u; + 22us + U] U5 . (12)

Let XA;, A2, A3, and Ay denote positive scalars and consider
the following second order linear dynamics for s; and so:

814+ (M +A2)81 + A1Aes1 =0, (13)
gg + (/\3 + /\4)§2 + )\3/\432 =0. (14)
Assume that s; 3 0. Then, using (11)-(12) in {13)-(14) and
solving the resulting equations for u;, u» yield the feedback

control law

1 R 2 2 R
u = (s—[rz(awsl +ans$y) — xl(”; -+ U; + az082 + aar$2)),
2

1 . .
~s—[11(01081 +ans) + xa (v} + vs + agosz + az152)] ,(15)
2

where ajo = M A2, @11 = Mi+Xa, 620 = Ashg, an = Az+Aa.

The following result can be stated.

Theorem 2: Consider the system (8)-(9) with the feedback
control law (15). Let Ay > A2 > 23 > 2Ay > 0 and let
(23,23, 53,07, v3) denote an initial condition with (z1)* +
(23)? #£ 0, v? = v2 = 0. Then the following hold.

(i} The trajectory (x1(t),z2(t),s1(t),va(t),v2(t)) is
bounded for all t > 0 and converges ezponentially to zero
with a decay rate of at least \y.

(i) The control history u(t) = (u1(t), u2(t)) s bounded
for allt > 0 and converges exponentially to zero with a decay
rate of at least A4.

The above result demonstrates that for initial condi-
tions satisfying (23)? + (23)® # 0, v{ = o} = 0, the feedback
control law (15) is well-defined for all ¢ > 0. Moreover, it
drives the system (8)-(9) to the origin, while avoiding the
manifold

N ={(z,v) e X xV]al+25=0, z120 — 223 # 0} .

Clearly, one can use a finite time feedback control law to
transfer the system to a state statisfying the conditions of
Theorem 2. For example,

up = —|z1 — & sign(z) — &1) — v sign(v1) |
us = —jz2 ~ e2|*?sign(z2 — €2) — ]vglbzsign(vg) R

where b; € (0,1), ¢; > b;/(2—b;) and e; # 0, ¢t = 1,2
are constants, can be used to transfer the system to a state
statisfying the conditions of Theorem 2 in finite time [2].

4. Conclusions
Discontinuous static feedback control laws have been
derived for the stabilization of the third-order power form
nonholonomic kinematic systems and their dynamic exten-
sion. Future research includes extension of the results ob-
tained in this paper to higher-order power form nonholo-
nomic kinematic systems and their dynamic extensions.
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