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Abstract 

In this paper, we present a method to estimate simultaneously states 
and parameters of a discrete-time hyperbolic system with noisy bound- 
ary conditions. This method is based on the maximization of a like- 
lihood function. Although this technique is described here for linear 
systems, possible extensions to non-linear systems are also briefly dis- 
cussed. 

1 Introduction 
The original idea of using the ML method for estimating the state of 
a lumped dynamical system goes back to the sixties (Cox [l], Detch- 
mendy and Sridhar [2] and Mortensen [3]). It has been shown in [l] 
that the recursive version of state estimation for linear systems is pre- 
cisely the Kalman Filter which verifies the important result that the 
mean and the mode coincide for Gaussian distributions. But the re- 
striction to linear systems is a severe one. For example, if the unknown 
parameters are included in the augmented state space the resulting es- 
timation problem already becomes non-linear. In [3] approximate ML 
equations are given for non-linear, continuous-time systems which, in 
general, will differ from the extended Kalman Filter. Any error anal- 
ysis of such approximations, both for the ML estimation and for the 
extended Kalman Filter, is not available yet. A more direct method 
of ML estimation' of states and parameters has been suggested by 
Bar-Shalom (41. The numerical scheme suggested there is, however, 
not very realistic for fast implementation in systems with reasonable 
large dimension of the state vector whereas the situation becomes even 
more involved if the system is non-linear. For systems without state 
noise, Chavent [5] in a seminal contribution proposed a fast method 
for calculating the gradient of the least-squares error (the same as the 
likelihood function in this situation) with respect to the unknown pa- 
rameters. Here, we extend the method of Chavent to the more general 
case of incomplete state estimation. 

The maximization of the likelihood function leads to a two-point 
boundary value problem of considerable complexity. If we restrict to 
discrete-time problems, the large dimension of the state vector and 
the direct solution of the two-point boundary value problem may lead 
to a huge computational load. We therefore propose in this paper an 
alternative Computational method which is much faster and makes use 
of specific features of the hyperbolic system. 

2 The mathematical model 
Although the proposed method i s  quite general, the particular hyper- 
bolic system we are interested in, concerns the linear shallow water 
equations governing the flow in a two-dimensional basin : 

fi +. g!% - fv  + -U x - ~VZCOS(4) = 0 
at ax D D  

x av + g% + f u  -+ -U - W s i n ( 4 )  = 0 
at  a y  D D  

where t stands for time, (x,y) for the spatial coordinates, and 

[(x, y , t )  = water height above some reference level 
D(x, y) = water depth below this reference level 

u(z, y, t )  = velocity in the x-direction 
v ( z ,  y, t )  = velocity in the y-direction 

g = acceleration due to  gravity 
f = Coriolis constant 

X(x, y) = bottom friction parameter 
7 = wind stress parameter 
V = wind velocity 
4 = wind direction 

Since these equations have a hyperbolic character, the equilibrium 
solution [(x,y,O) = u(x,y,O) = v(x,y,O) = 0 can always be chosen 
as the initial condition, because the solution is, after some time, com- 
pletely determined by the boundary conditions (and the meteorological 
input). 

The eqs. (1)-(3) can be used to  model the water height and water 
velocity in the North Sea in the region between the English and the 
Dutch coasts [6, 71. The purpose is now to estimate the bottom fric- 
tion - and the wind stress parameters and to use these estimates to 
predict the water heights in the coastal areas. As an example of a two- 
dimensional model, we may reasonably consider a rectangular basin 
with three boundaries assumed fixed (expressed by setting the veloc- 
ity component perpendicular to  the boundary equal to zero), while it 
is impossible to specify precisely the boundary condition on the fourth 
boundary (y = 0 and 0 5 x 5 xmaz), which is connected to the open 
sea. One possibility is to  use, see [8], 

v(z,O,t) = i ( x , t )  t B(x , t )  (4) 

where 8 (x,t) is an approximation of the true boundary condition (cal- 
culated on the basis of atmospheric equations) and B(x,t) is the un- 
known part of the boundary condition. The following noisy model has 
been used in [6] to  specify this unknown part : 

B ( z , t )  = (1 - P,)Vl(t) t PzVdt), 0 I Pz I 1 (5) 
dV,( t )  = -aV,dt t qdW;(t), i = 1,2,  a 5 1 (6) 

with V, (t), i = 1,2  representing two stochastic processes indicating 
boundary conditions at the edges (y = 0 and z = 0 or x = xmoz) 
and Wi(t) ,  i = 1 , 2  are independent Brownian motion processes. Us- 
ing an appropriate discretization scheme [7] the dynamical system is 
converted into a discrete-time form, where the state 

evolves in time according to : 

Because it  is more convenient in the sequel to deal with only one system 
equation, we introduce the augmented state 
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and the white noise processes 

which satisfy equation (9) : 

3 The estimation procedure 

We want to estimate the states and the parameters, based on the 
measurements {zk, k = Nl, ..., N z } ,  where zk is related to  Xk by 

- Zk = HXk +Ek (12) 

assuming that {gk} is a Gaussian white noise sequence. The basic 
idea of simultaneous ML estimation of the state and the parameters is 
the minimization, with respect to X,7 and X k ,  k = NO, ...., N2, of the 
negative of the log-likelihood function : 

N2 

JO(A97,xJ  = c II ak - HXk 11;-1 + 
k=N1 

Nz E 11 Xk+' - F(&7)Xk -bk+' I ~ G Q G T ) - I  (13) 
k=No 

where the time-indices satisfy NO 5 N1 5 Nz,  denotes the state 
trajectory xk, No 5 k 5 N z }  and R and Q are the covariances of 
the observation and state noises respectively. For a certain positive 
matrix M ,  the square of the weighted norm 11 z llh stands for < 
z, M z  >, with < ., , > denoting the inner-product in the appropriate 
Euclidean space. For given X and 7, let xk*(A,7) = {x';*(A,y);k = 
NO, .., N z }  be the trajectory that minimizes Jo(A, 7; d with respect 
to the state. Then the global minimum of Jo(.) can be found by 
minimizing Jo(X,y,f(A,r)) with respect to (A,7) E P ,  the set of the 
admissible parameters. 
The minimization problem may be reconverted into a discrete-time 
optimal control problem to determine x*(A,y) as follows : 

Nz N2 

min II Zk - H X k  11i-i + II Ggk II&QGT)-I (14) 
k=N1 k=No 

subject to the dynamical constraint 

The discrete-time version of Pontryagin's minimum principle gives us 
the following set of necessary conditions to determine x*(A, 7) : 

Here, {p} are the adjoint variables. The next step is to minimize Jo(.) 
with respect to A and 7 under the constraint that x = {xk, NO 5 k 5 
N2} satisfies the equations (16)-( 19). We use the method of Lagrange 
multipliers to solve this problem. Thus we convert the constrained 
optimization problem to the following unconstrained one: 

min Jl(A,y,xJ with respect to A and 7 with 

JdA,7,xJ= Jo(A,r,d+ 
N2 

k=No 
( ~ ~ + l ) ~ [ X ~ + l -  F(A,7)Xk - bk+' - )GQGTQ~'+'] 
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In this equation {gk,  k = NO t 1, ..., Na t I} and {gk, E = NI, ..., Nz} 
are the Lagrange multipliers. This is a purely deterministic parame- 
ter estimation problem and one can use a gradient algorithm to ob- 
tain the minimum of J1(.) .  In order to  determine V J 1  the method of 
Chavent can be used [5, 91. The advantages of this method are that 
the exact gradient is determined, whereas the computational load is 
independent of the number of parameters that have to be estimated, 
To illustrate the idea, we consider only X to  be unknown, and further- 
more assume that X is constant. To consider the incremental change 
AA and A J 1 , A x k , A $ ,  we linearize (20) and rearrange the terms to  
get : 

Now, this equation must hold for all infinitesimal changes AA, AJ1 and 
Axk, Agk+l for k = NO, ..., Nz.  This leads to the equations satisfied 
by the Lagrange multipliers yk+l and gk for k = NO, ..., Nz, and a 
simple expression for the partial derivative of 51 with respect to A. 
The solution of the equations is 

- uk = 0 and gk = for all k (22) 

while the component of the gradient is given by 

(23) 

Obviously, the expression for % is analogous. The set of equations 
(16)-(19), combined with the boundary conditions gNo t. 0 and ,@+l, 

determines the ML estimates of the states Xk, k = No, ..., Nl. These 
are the smoothed estimates, based on the entire set of available data 
{ak,k = N I ,  .., N z } .  

4 Results and Discussion 
In the last section we derived the result that the gradient of some error 
functional JI with respect to the unknown parameters immediately 
follows from the solution of the two-point-boundary-valueproblem, 
that determines the smoothed states of a system. So, the major issue 
to  be dealt with now is how we can efficiently calculate the solution of 
eqs. (16)-(19). We will distinguish three cases : 

0 If the numerical and physical damping are absent in eq. ( l l ) ,  
implying that A = 0 and a = 0, this equation can be integrated 
backward in time once an initial condition h2 is established. 
This can be done by processing the data{Zk, k = NI, ..., Nz } by 
a Kalman Filter, because at the final time the smoothed state 
equals the filtered state. NOW with both initial conditions given 
at the time with index Nz,  the solution of the eqs. (16)-(19) can 
be determined. The restrictions that are imposed here c m  be 
met in situations where the bottom friction effect is neglected 



and, for example, the wind stress must be estimated. 

However, in most cases of parameter estimation problems the 
backward integration is excluded because of the numerical prob- 
lems. But if we take a closer look at eq. (16) it is clear that 
the adjoint variables kk only directly influence the components 
V t  and V )  of xk. This means that the problem of determining 
the smoothed states is essentially a problem of determining the 
smoothed estimates of V t  and V) for k = No, ..., Nz,  which, 
again, can be done by the Kalman Filter for linear systems. 
Therefore, we need the augment the state to 

and process all the data sequentially by the Kalman Filter in 
order to determine the smoothed boundary. The smoothed states 
then follow from eq. (7) with yk representing the smoothed 
boundary. This idea is being further developed at present. I t  
exploits the hyperbolic nature of the problem in an essential 
way. 

a If one has to  deal with non-linear systems, the approach men- 
tioned in the second item may also be applicable when the data 
assimilation is based on an approximated linear system. The le- 
gitimacy of this approximation depends on the influence of the 
non-linearity in the dynamics and the availability of data that 
are registered in the neigborhood of the particular boundary. 

To illustrate the concepts mentioned here, we will show some repre- 
sentative numerical examples at the conference. 
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