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Abstract— For the specification of phase-noise re-
quirements for the front-end of a HiperLAN/2 system
we investigated available literature on the subject.
Literature differed in several aspects. One aspect is
in the type of phase-noise used (Wiener phase-noise
or small-angle phase noise). A Wiener phase-noise
based analysis leads to contradictions with the type
of analysis normally used in the solid state oscillator
literature. However, a phase-noise spectrum with a
Wiener phase-noise shape can be used provided that
the small-angle approximation is satisfied.

An other aspect is whether a Fourier Series or DFT
based approach is used. The approaches use weighting
functions to relate phase-noise power spectral densities
to phase-noise power. The two types of analysis are
presented in a unified fashion that allows easy com-
parison of the weighting functions involved. It can be
shown that for practical purposes results are identical.

Finally phase-noise specifications for the Hiper-
LAN/2 case are presented.

Index Terms— Hiperlan/2, Phase-noise.

I. I NTRODUCTION

I N OUR Software Defined Radio(SDR) project
we aim at combining two different types of stan-

dards, Bluetooth and HiperLAN/2 on one common
platform. We focus on the radio front-end of a
receiver, so from antenna (RF signal) till and includ-
ing demodulator (raw bits). Our demonstrator under
construction consists of a flexible wide-band analog
front-end, a PCI-board with ADCs and Sample Rate
Conversion and a GPP software implementation (P4,
2.4GHz) of the demodulator. The system is described
in more detail in [1] and [2].

Two questions need to be answered: 1/. ‘What
are the phase-noise requirements for the analog
quadrature mixing system used?’ and 2/. ‘Is a symbol
synchronization system (e.g. based on the one de-
scribed in [3]) necessary given the burst-duration in

HiperLAN/2 and given the phase-noise requirements
under 1/.?’ In this paper we focus on the first
question.

To be able to specify the phase-noise requirements
for the analog quadrature mixing system we turned
to the available literature on phase-noise and OFDM.
The articles investigated differ in several aspects
(see section III). Most characteristically, some use
a Fourier-Series (FS) analysis approach and some
use a Discrete Fourier Transform (DFT) analysis.
Moreover, we would like to use the specification
parameter commonly used by analog synthesizer
designersL(fm0) (see section II) to relate to the
OFDM performance metrics.

In this paper we first describe phase-noise and
define the specification parameter used by analog
front-end designers (solid state oscillator literature).

In section IV both the DFT and FS analysis are
presented. Basically, weighting functions are defined
that need to be applied to the phase-noise spectrum in
order to asses its consequences for an OFDM system.

In section V we relate theL(fm0) parameter to
OFDM performance metrics for the HiperLAN/2
case. Finally, conclusions are drawn.

II. PHASE NOISE

An ideal harmonic oscillator provides a signal
x(t) = A cos(ω0t + ϕ0). On a spectrum analyzer
this produces a spectral line with powerPx = A2/2.
In reality however, one observes sidebands that may
be attributed both to amplitude and phase variations
in the oscillator. Due to the presence of limiting
mechanisms in the oscillator (or a limiter before the
spectrum analyzer) one generally assumes that the
amplitude variations can be neglected and that the
sidebands are entirely due to variations in phase.
These so-called phase-noise sidebands can be at-
tributed to noise in the oscillator circuit (device



noise, substrate noise, supply noise) and are mod-
elled by a signal

x(t) = A cos(ω0t + ϕ0 + ϕ(t)) (1)

with ϕ(t) a (zero-mean) stochastic process [4], [5].
While the (double sided) power spectral density

(PSD) of the phase-noiseSϕϕ(f) cannotbe directly
measured, the single sideband (SSB) PSDSx(f) of
the oscillator signalx(t) can be measured using a
spectrum analyzer.

Phase noise is characterized by a measurement on
x(t) in which the SSB phase-noise-to-carrier ratio
L(fm) at an offset frequencyfm from the carrier fre-
quencyf0 is determined. WithPSSB(f0 + fm; 1 Hz)
the SSB power in a band of 1 Hz width, we have

L(fm) ,
PSSB(f0 + fm; 1 Hz)

Px
u

Sx(f0 + fm)

A/2
.

(2)
which is measured in [dBc/Hz]. This refers to the
power in a 1 Hz band being measured relative to the
carrier power.

The specification (2) above enables measurement
of L(fm) over a range of offset frequenciesfm,
resulting in a so-called spectral mask. This spectral
mask has a characteristic shape, with close to the car-
rier a region with af−3 slope (-30 dB/decade), then a
largef−2 region (-20 dB/decade) and finally a white-
noise floor region [4], [5]. For unambiguous speci-
fication of phase-noise the complete spectral mask
has to be prescribed. In the analog design-world
however, often only asingle numberL(fm)|fm=fm0

is specified (for a particular offset frequencyfm0),
assuming af−2 sideband slope [4, p.68]. Below,
we will relate this number to performance metrics
used to asses the consequences of phase noise in a
HiperLAN/2 based OFDM system.

Remains the issue of relating the SSB PSDSx(f)
observed by the spectrum analyzer (orL(fm) using
some phase-noise measurement equipment) to the
(double sided) phase-noise PSDSϕϕ(f). For this,
one evokes “FM-theory” and the “small-angle ap-
proximation (SMAP)” to relate these PSDs to one
another (e.g. [4], [5], [6]).

A. Small-Angle Phase Noise

The analysis of phase noise in solid state oscillator
literature (e.g. [5], [4]) is based on the so-called
small-angle approximation. In general, the complex
envelope of the bandpass signal in (1) is given by
x̃(t) = A ej ϕ(t). In the small-angle approximation
this complex envelope is assumed to be equal to
x̃(t) = A (1 + j ϕ(t)). Moreover, the phase-noise

process is assumed to be stationary. The autocorre-
lation function of the complex envelope is then given
by

Rx̃x̃(τ) , E[x̃(t+τ)x̃∗(t)] = A2 (1+Rϕϕ(τ)). (3)

Fourier transformation of this autocorrelation func-
tion givesSx̃x̃(f) = A2δ(f) + A2Sϕϕ(f). Applying
the standard relations for bandpass signals (e.g. see
[7]) we find for the SSB PSD

Sx(f) =
A2

2
δ(f − f0) +

A2

2
Sϕϕ(f − f0). (4)

The signal powerPx is

Px =

∫ ∞

0
Sx(f) df =

A2

2
+

A2

2

∫ ∞

0
Sϕϕ(f − f0) df =

u
A2

2
+

A2

2

∫ ∞

−∞

Sϕϕ(fm) dfm ,
A2

2
+

A2

2
σ2

ϕ

(5)

in which we substitutedfm = f − f0 and assumed
that some “phase noise bandwidth” is far smaller
than the carrier frequency. Moreover we defined the
total phase noise powerσ2

ϕ. As can be seen, indeed,
for Px u

A2

2 to hold, the total phase-noise power
should be less than, say0.1 rad2. Finally, the SSB
phase-noise-to-carrier ratioL(fm) can be derived by
substituting (4) into (2) as

L(fm) =
Sx(f0 + fm)

Px
u

A2/2 Sϕϕ(fm)

A2/2
=

= Sϕϕ(fm) = Sϕ(fm)/2.

(6)

Observe thatL(fm) can be measured whileSϕϕ(fm)
is a construct from “FM theory” and SMAP.

B. Wiener Phase Noise

In [8] the effects of so-calledWiener phase noise
on an OFDM system are addressed. The Wiener
phase-noise model is used to relate the line width
of lasersto the white noise process that causes this
width [9]. As such, it has nothing to do with solid-
state oscillators.

The SSB PSD of the bandpass signal is given by

Sx(f) =
2/σ2

w

1 +
(

f−f0

fn

)2 (7)

in which σ2
w is the variance of the white noise in the

Wiener process [10, pp. 321,344]). One recognizes
the magnitude-response of a (first order) Butterworth
type of filter with cutoff frequencyfn. As we may
assume thatf0 � fn it can be shown that the signal
powerPx = 1/2, as is to be expected. The so-called



“laser line-width” is defined asBϕ , 2 fn; we will
call Bϕ the phase-noise bandwidth. So for the jitter
variance we haveσ2

∆ϕ(τ) = 2π Bϕ |τ | = 4π fn |τ |,
which is the starting assumption in [8].

It can be shown that onecannot simply use the
Wiener phase-noise case in the “FM-theory”/SMAP
approach that is found in the solid-state oscillator
literature. What one can do however is use the
Wiener phase-noiseshape as a phase-noise PSD.
This results in1

Sϕϕ,a(fm) =
σ2

ϕ,a

π fn

1

1 +
(

fm

fn

)2 (8)

as an approximate phase-noise mask and one can
make sure thatσ2

ϕ,a ≤ 0.1 rad2.

C. Single-number phase-noise specification

Using (8) a single numberL(fm0) can be used
for phase-noise specification. In the region for which
fm >> fn we have that

Sϕϕ,a(fm) '
σ2

ϕ,a

π

fn

f2
m

, L̂(fm) (9)

Specifying the phase-noise at an offset frequency of
1 MHz from the carrier withL̂(1 MHz) , LdB,1 we
have

σ2
ϕ,a . fn = 10LdB,1/10+10log(π)+12 (10)

One observes the ambiguity in the single-number
specification here: for a chosen and fixed phase-
noise variance, multiple cutoff-frequencies satisfy
the specification; for a chosen and fixed cutoff-
frequency multiple phase-noise variances do.

III. PHASE-NOISE IN OFDM LITERATURE

There exists an extensive amount of literature
regarding phase-noise and OFDM. In our work we
used [8], [11], [12], [13] and [14], so we are by
no means comprehensive let alone complete. In the
studies often both results of analysis and simulations
are presented. Here, we are interested in the results
of the analysis.

In all papers, the effects of phase-noise on the re-
ception of asingleOFDM symbol are addressed. The
reported results differ in type of phase-noise consid-
ered (e.g. Wiener phase-noise; Small-angle phase-
noise), in type of OFDM system models used (DFT-
based analysis; FS-based analysis), in type of chan-
nel models used (small phase-noise; with or without

1The subscript “,a” refers to the analog domain (continuous-
time), in section IV-B, it is contrasted to a subscript “,d” referring
to the digital domain (discrete-time).

phase-offset), in type of phase-noise specification-
parameter used (e.g. one-sided spectral “line width”
(so fn); phase-noise bandwidth (soBϕ); complete
two-sided analog phase-noise PSD (so, the spectral
mask)) and in type of the used performance metrics
(SNR Degradation w.r.t. the no phase-noise situation
(DSNR); phase-noise power in relation to received
carrier-symbol power (SNRICI ) and Symbol Error
Rate (SER)).

Garcia [12] relates the SNR Degradation w.r.t.
the no phase-noise situation to the symbol-energy
to noise-density ratioEs/N0:

DSNR = 10 10 log(1 + σ2
ϕ,a

Es

N0
) in [dB]. (11)

The formula holds when the small-angle approxima-
tion holds. Stott [13] uses the total ICI phase-noise
power in relation to received carrier-symbol power
SNRICI that can be defined as

SNRICI = 10 10 log(
1

σ2
ϕΣ,r

) in [dB] (12)

in which σ2
ϕΣ,r is the total ICI power for the rth

carrier symbol, see (19).
In table I an overview is presented.

Author PN Type OFDM PN spec. Perf.
Model param. Metric

Pollet Wiener FS fn DSNR

[8]
Garcia Small DFT Bϕ DSNR

[11], [12] angle
Stott Small FS Sϕϕ,a(f) SNRICI

[13] angle
El-Tannay Small DFT Sϕϕ,a(f) SER
[14] angle

TABLE I

L ITERATURE ON PHASE-NOISE (PN) IN OFDM.

Stott [13] and El-Tannay [14] use a weighting-
function based approach that enable to establish the
phase-noise power in relation to received carrier-
symbol power. El-Tannay proceeds from there to
arrive at the SER. Their approaches differ in OFDM
model used, their weighting functions also. In sec-
tion IV a (brief) derivation is presented that starts
with ideas from Pollet [8] and allows the weighting
functions to be derived and presented in a unified
way thus allowing easy comparison.

IV. PHASE NOISE ANALYSIS

A. Fourier Series Analysis

Consider the transmission of a single OFDM
symbol of which the useful part starts att = 0.



Neglecting the cyclic prefix of the OFDM symbol,
the complex envelope of the transmitted signal is

s̃(t) =

{

∑N−1
k=0 Ck . e 2π

Tu
kt if 0 ≤ t ≤ Tu,

0 elsewhere
(13)

in which Tu is the useful-part duration,Ck ∈ C the
complex symbol for the k-th subcarrier and N the
number of sub-carriers. The r-th received complex
symbolBr is given by

Br =
1

Tu

∫ Tu

t=0
r̃(t) . e−  2π

Tu
rt dt, (14)

in which r̃(t) is the received complex envelope.
For a flat channel without noise, the relation

between transmitted an received complex envelope
is given by

r̃(t) = s̃(t) . e−  ϕ(t) = s̃(t) . (1 −  ϕ(t)) (15)

in which s̃(t) is the transmitted complex envelope
andϕ(t) represents the (possibly large) phase offset
and the (small angle) phase-noise of both transmitter
and receiver. The phase offset is corrected by the re-
ceiver so the small-angle phase-noise approximation
results in the final step above (ϕ(0) = 0).

Following [8] and using the small-angle approxi-
mation (like in [13]) it can be shown that

B̂r = Cr −  Cr . ϕ0 − 
N−1
∑

k=0, k 6=r

Ck . ϕr−k(16)

ϕ0 =
1

Tu

∫ Tu

t=0
ϕ(t) dt (17)

ϕl =
1

Tu

∫ Tu

t=0
ϕ(t) . e−  2π

Tu
lt dt (18)

In (16) we recognize the wanted r-th carrier symbol
Cr; an error component that is equal for all symbols
Cr, the so-calledCommon Phase Error(CPE) com-
ponent and an error component that shows the inter-
ference of other carrier symbols (k = 0, . . . , N −
1, k 6= 0) into the wanted carrier symbolCr, the so-
called Inter-Carrier Interference(ICI) component.

Due to the presence of pilot tones in the system,
the Common Phase Error can be estimated and
(partly) corrected [11], [12], [14]. The ICI compo-
nent of the error has a (Gaussian) noise character and
can be tackled in case an equalizer is used. In this
paper we deem the ICI component the most harmful.

A power-based analysis [13] of the error compo-
nents relates the power of the received (zero mean)
complex symbolσ2

b = E[|B̂r|
2] to the power of the

transmitted (zero mean) complex symbolE[|Cr|
2]

and the error power. We assume thatall carriers

are identically loaded2. Moreover we assume that
they are loaded with identically distributed zero-
mean symbols, so∀ k E[|Ck|

2] = σ2
c . The carriers

are assumed to be loaded with interleaved data, so
E[CmC∗

k ] = σ2
c δmk (Kronecker delta). The last

assumption is that the phase noise and the carrier
symbols are statistically independent,E[ϕlCm] = 0.
Using (16) we find:

E[|B̂r|
2] = E[|Cr|

2] . E[|Î0|
2]+

+

N−1
∑

k=0, k 6=r

E[|Ck|
2] . E[|Îr−k|

2] =

= σ2
c + σ2

c . σ2
ϕ0

+ σ2
c .

N−1
∑

k=0, k 6=r

σ2
ϕr−k

, σ2
c + σ2

c . σ2
ϕ0

+ σ2
c . σ2

ϕΣ,r

(19)

in which σ2
c is the (transmitted) carrier symbol

power,σ2
ϕ0

is the Common Phase Error (CPE) power,
σ2

ϕl
the variance of (filtered) modulated phase noise

and σ2
ϕΣ,r the total Inter-Carrier Interference (ICI)

power for the rth carrier symbol.
The variance of the phase noiseσ2

ϕ0
at the end

of the useful periodTu can be found observing that
ϕ0 results from subsequent filtering and sampling
(at time instantt = Tu) of ϕ(t). The used filter,
a so-called boxcar filter, has an impulse response
h(t) = 1/Tu (u(t) − u(t − Tu)) (with u(t) the unit
step function). It follows that:

(17) ⇒ σ2
ϕ0

=

∫ ∞

−∞

sinc2(f. Tu) . Sϕϕ, a(f) df (20)

In which Sϕϕ, a(f) is the power spectral density
(PSD) of the (continuous-time phase-noise). For the
filtered modulated phase-noise we find

(18) ⇒

σ2
ϕl

=

∫ ∞

−∞

sinc2(f. Tu) . Sϕϕ, a(f + l . fu) df =

=

∫ ∞

−∞

sinc2(f. Tu − l) . Sϕϕ, a(f) df, fu = 1/Tu.

(21)

By substituting (21) into the summation factor of the

2In HiperLAN/2 this is not the case: apart from data carrier-
symbols there are pilot carrier-symbols and zero carrier-symbols
inserted.



third term of (19) we find:

σ2
ϕΣ,r =

N−1
∑

k=0, k 6=r

σ2
ϕr−k

=

=
N−1
∑

k=0, k 6=r

∫ ∞

−∞

sinc2(f. Tu − (r − k)) . Sϕϕ, a(f) df =

,

∫ ∞

−∞

W
(r)
ICI, a(f) . Sϕϕ, a(f) df in which

W
(r)
ICI, a(f) =

N−1
∑

k=0, k 6=r

sinc2(f. Tu − (r − k))

(22)

The equation above shows that the ICI power is
determined by a weighting functionW (r)

ICI, a(f) of
the phase-noise PSD. Also the CPE power in (20)
can be re-formulated in this way:

σ2
ϕ0

=

∫ ∞

−∞

sinc2(f. Tu) . Sϕϕ, a(f) df =

,

∫ ∞

−∞

WCPE, a(f) . Sϕϕ, a(f) df

(23)

So, using these two weighting functions, the phase-
noise PSD can be related to the CPE and ICI
error components. The difficulty is thatW (r)

ICI, a(f)
depends on the actual carrier r we are considering,
see (22). It would come in handy to have only two
weighting functions, one for the CPE component of
the error and one (in stead of the N/2 different ones)
for the ICI component. This can be done straightfor-
wardly by observingσ2

ϕ0
+ σ2

ϕΣ,r ≤ σ2
ϕ,a. Then, one

can define a weighting functionWICI, a(f) that is
independent of the carrier number r as

WICI, a(f) , 1 − WCPE, a(f) (24)

and use it to assess the phase-noise spectrum in an
approximate fashion.

B. Discrete Fourier Transform Analysis

As OFDM systems operate on discrete signals,
the Fourier series analysis above is less according
the nature of the case than the Discrete Fourier
Transform (DFT) analysis presented in this section
(see also [14]).

In the digital case the complex envelope of the
transmitted signal and the received symbol for the
r-th carrierB̃r are given by (compare with (13) and

(15))3:

s̃[ i ] =
N−1
∑

k=0

Ck . e 2π

N
ki , B̃r =

1

N

N−1
∑

i=0

r̃[ i ] . e−  2π

N
ri

(25)
The channel is given by the discrete-time version of
(15). Now, an approach can be followed that basi-
cally leads to an expression similar to (19). However,
the expressions for the Common Phase Error (CPE)
power σ2

ϕ̃0
and total Inter-Carrier Interference (ICI)

power for the rth carrier symbolσ2
ϕ̃Σ,r differ from

the ones in the Fourier Series case.
The variance of the phase-noiseσ2

ϕ̃0
is:

ϕ̃0 =
1

N

N−1
∑

i=0

ϕ[ i ] ⇒

σ2
ϕ̃0

=
1

2π

∫ π

−π
Sϕ̃0ϕ̃0,d(e

 Ω) dΩ

(26)

with Sϕ̃0ϕ̃0,d(e
 Ω) the PSD of a boxcar-filtered

discrete-time phase-noise signal andΩ the angular
frequency for discrete-time signals. The relation be-
tween the discrete-time phase-noise PSDSϕϕ,d(e

 Ω)
and the boxcar-filtered version is given by:

Sϕ̃0ϕ̃0,d(e
 Ω) = Sϕϕ,d(e

 Ω) . |H(e Ω)| 2

in which |H(e Ω)| 2 =
1

N2

sin2(Ω N
2 )

sin2(Ω
2 )

(27)

and N the number of samples in the useful part of
the OFDM symbol (N = Tu/T ).

We may assume that the phase-noise bandwidth
Bϕ = 2∗fn is smaller than the inter-carrier distance
∆f = fs/N . Therefore it will befar smaller than
the sample frequency and we may assume that the
phase noise is bandlimited for our purposes. In case
the phase-noise is strictly bandlimited (Sϕϕ,a =
0 for | f | = fs/2), the relation between continuous-
time and discrete-time PSD simplifies to:

Sϕϕ,d(e
 2πf T ) =

1

T
Sϕϕ,a(f) (28)

and thus, restating (26) using (28):

σ2
ϕ̃0

=

∫ fs/2

−fs/2

sinc2(f. Tu)

sinc2(f. T )
. Sϕϕ, a(f) df (29)

This equation may be directly compared to (20).
For determination of the ICI-induced variance, we
aim at expressions equivalent to (21) and (22). The
analysis is not shown here, but the important ob-
servation is that, contrary to the Fourier series case,

3The ∼ is used to denote the symbol values and phase-noise
metrics that result from the discrete-time character of the signal
involved.



the weighting functions for all carriers are equal to
one-another and are thus independent of the carrier-
number:

∀ r : W
(r)
ICI, d(e

 Ω) = WICI, d(e
 Ω) = 1−|H(e Ω)| 2

(30)
This weighting function is directly comparable to the
ICI weighting function resulting from the Fourier-
series analysis (22) and the approximate result in
(24).

C. Overview of DFT and FS analysis

An overview of the derived phase-noise vari-
ances and weighting functions is given in table II
and table III. The relation between the phase-noise
variances and the power of the received complex
symbol E[|B̂r|

2] is given in (19). Evaluation of

Phase-noise Variances
CPE (23) σ2

ϕ0
=

∫ ∞

−∞
WCPE, a(f) . Sϕϕ, a(f) df

ICI, Exact (22) σ2
ϕΣ,r =

∫ ∞

−∞
W

(r)
ICI, a(f) . Sϕϕ, a(f) df

=
∑N−1

k=0, k 6=r sinc2(f. Tu − (r − k))

ICI, Appr. (24) σ2
ϕΣ

=
∫ ∞

−∞
WICI, a(f) . Sϕϕ, a(f) df

Weighting Function
CPE (23) WCPE, a(f) = sinc2(f. Tu)

ICI, Exact (22) W
(r)
ICI, a(f) =

=
∑N−1

k=0, k 6=r sinc2(f. Tu − (r − k))

ICI, Appr. (24) WICI, a(f) = 1 − WCPE, a(f)

TABLE II

PHASE-NOISE METRICS FOROFDM SYSTEMS

(FOURIER-SERIESANALYSIS).

Phase-noise Variances

CPE (29) σ2
ϕ̃0

=
∫ fs/2

−fs/2
WCPE, d(f) . Sϕϕ, a(f) df

ICI, Exact σ2
ϕ̃Σ

=
∫ fs/2

−fs/2
WICI, d(f) . Sϕϕ, a(f) df

Weighting Function

CPE (29) WCPE, d(f) = sinc2(f. Tu)

sinc2(f. T )

ICI, Exact WICI, d(f) = 1 − WCPE, d(f)

TABLE III

PHASE-NOISE METRICS FOROFDM SYSTEMS(DFT

ANALYSIS).

these functions show that, for all practical purposes
(for which fn << ∆f ) the results are identical.
A difficulty is in the numerical computation of the
highly oscillatory functions, so this may be a reason
for further approximation. Moreover, as the exact
results are known, the merits of further simplification
can be assessed.

V. THE HIPERLAN/2 CASE

For our HiperLAN/2 system we assume that the
Common Phase Error can be sufficiently corrected
and that the main performance degrading phase-noise
contribution is in the added noise due to the ICI. As
the performance metric we therefore use the total
ICI phase-noise power in relation to received carrier-
symbol powerSNRICI from (12), however with
the total ICI powerσ2

ϕ̃Σ
that resulted from the DFT

analysis (see table III). In figure 1 the results are
presented for different values of the total phase-noise
power.
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Fig. 1. Phase-noise degradation due to ICI as a function of the
SSB phase-noise to carrier ratioLdB,1 (10) for a HiperLAN/2
system (N = 64 carriers).

As can be seen, for an ICI SNR requirement of,
say, 25 dB, an SSB phase-noise to carrier ratioLdB,1

in the order of -95dBc/Hz is necessary.
One can either resort to anLdB,1 (from (10)) for

which the total phase noise power is small (e.g.
σ2

ϕ,a = 0.005) with a large cutoff frequency, or
one can use a larger total phase noise power (e.g.
σ2

ϕ,a = 0.01) with smaller cutoff frequency. What is
“cheaper” from a oscillator design perspective is an
issue for further study.

VI. CONCLUSION

In this paper we surveyed literature on the effects
of phase-noise in OFDM.

Wiener-phase noise and small-angle phase-noise
descriptions were used. In order to be in-line with the
solid-state oscillator literature on can use the Wiener
phase-noiseshapebut not Wiener phase-noise itself.

The two types of analysis used, an FS-based
analysis and a DFT-based analysis lead to identical
results in case the cutoff frequencyfn is far smaller
than the inter-carrier distance∆f . As this is the
interesting area, one may conclude that results of
both analysis are identical. However, while in the



FS analysis the (exact) weighting function for the
ICI depends on the carrier number, this is not the
case in the DFT analysis.

The presented phase-noise requirements for the
HiperLAN/2 case lead, under the assumption of good
CPE correction, to an SSB phase-noise to carrier
ratio LdB,1 in the order of -95dBc/Hz for an ICI
SNR of approximately 25dB.

It was observed that different{σ2
ϕ,a, fn} combina-

tions are possible for a particular ICI SNR. What is
most convenient for analog designers is an issue for
further study.
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