
 

 

 

  

Abstract— In traffic and transport a significant portion of 

research and application is focused on single objective 

optimization, although there is rarely only one objective that is 

of interest. The externalities of traffic are of increasing 

importance for policy decisions related to the design of a road 

network. The optimization of externalities using dynamic traffic 

management measures is a multi objective network design 

problem. The presence of multiple conflicting objectives makes 

the optimization problem challenging to solve. Evolutionary 

multi objective algorithms has been proven successful in solving 

multi objective optimization problems. However, like all 

optimization methods, these are subject to the free lunch 

theorem. Therefore, we compare the NSGAII, SPEA2 and 

SPEA2+ algorithms in order to find a Pareto optimal solution 

set for this optimization problem. Because of CPU time 

limitation as a result of solving the lower level using a dynamic 

traffic assignment model, the performance by the algorithms is 

compared within a certain budget. The externalities optimized 

are noise, climate and accessibility. In a numerical experiment 

the SPEA2+ outperforms the SPEA2 on all used measures. 

Comparing NSGAII and SPEA2+, there is no clear evidence of 

one approach outperforming the other.  

I. INTRODUCTION 

significant portion of research and application of 

optimization in traffic and transportation considers a 

single objective (e.g. [1,2]), although most real-world 

problems involve more than one objective. Within the class 

of Network Design Problems (NDPs), which optimize by 

expanding or improving an existing network, this single 

objective is traditionally on improving accessibility. One 

specific example of an NDP is to optimize a network through 

the implementation of dynamic traffic management (DTM) 

measures that can influence the supply of infrastructure 

dynamically (e.g. traffic signals and rush hour lanes). 

However, due to the increasing attention for the externalities 

of traffic, it may no longer suffice to view a transport system 

as feasible or optimal when only accessibility is improved. 

Therefore, in this paper we focus not only on congestion, but 
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also on climate and noise. The presence of multiple 

conflicting objectives makes the optimization problem 

interesting to solve. Since no single solution can be termed 

as an optimum solution, the resulting multi-objective (MO) 

optimization problem resorts to a number of trade-off 

optimal solutions, known as Pareto optimal solutions.  

Mathematical modeling of such a highly complex socio-

technical system provides insight in the extent to which 

objectives are conflicting or not, which is very useful in the 

decision making process. The NDP is usually formulated as 

a bi-level problem in which the lower level describes the 

behavior of road users that optimize their own objectives 

(travel time and travel costs). The upper level consists of the 

objectives that have to be optimized for solving the NDP. 

Because of the non convexity of the problem [2,3]), often 

heuristics are used.  

In the bi-level optimization studies, the solution approach 

using evolutionary algorithms has been proven successful. 

Classical optimization methods like the weighted sum 

approach can at best find one Pareto optimal solution in one 

simulation run, while evolutionary algorithms can find 

multiple optimal solutions in one single search due to their 

population-based approach. More recently algorithms such 

as the MO simulated annealing method DBMO-SA can find 

multiple solutions in one single search as well, but because 

of the local search used within this approach, it does not 

incorporate diversity in the search [4,5]. Many evolutionary 

MO algorithms (EMOAs) have been proposed, however, 

SPEA2 proposed by Zitzler et al., the NSGA-II proposed by 

Deb et al. and SPEA2+ proposed by Kim et al. provide 

excellent results compared to other proposed algorithms 

[6,7,8]. However, like all optimization methods, an EMOA 

is subject to the no free lunch theorem. This theorem states 

that all optimization methods perform on average equally 

well across all classes of optimization problems. So if an 

algorithm A outperforms an algorithm B in one class of 

problems, B outperforms A in another [9,10]. Therefore, we 

are interested in the performance of these three algorithms in 

solving the MO NDP optimizing externalities of traffic using 

strategic DTM measures influencing the supply of 

infrastructure. In addition, solving the NDP using DTM 

measures and modeling the objectives in a realistic manner 

incorporating traffic dynamics [11] results in solving the 

lower level using a dynamic traffic assignment (DTA) 

model, which increases the needed CPU time. Although we 

are mainly interested in finding improvements and not 
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necessarily the exact Pareto optimal set, it does limit the 

budget of solutions that can be considered. Therefore, we are 

especially interested in the performance by the algorithms 

within a certain budget. 

II. NETWORK DESIGN PROBLEM 

The NDPs are typically grouped into discrete problems 

(DNDP), in which the decision variable is a discrete variable 

[2,11,12], continuous problems (CNDP), in which is 

assumed that the decision variable is a continuous variable 

[3,13,14,15,16], and mixed problems, which is a 

combination of both [17]. Based on demand, NDPs can be 

grouped into fixed demand [15], stochastic demand [18,19] 

and (stochastic) elastic demand [20]. Based on the way time 

is considered, NDPs can be classified into static, in which 

stationary travel demand and infrastructure supply is 

assumed (used in all but one above mentioned studies), or 

dynamic, which is rarely used [18,21]. Traditionally, the 

NDP is associated with the minimization of the total travel 

time using infrastructural investment decisions under a 

budget constraint. Most of the previous works consider fixed 

demand, and use a static user equilibrium to model the lower 

level. There are also other design variables of networks that 

can be considered as an NDP. Brands et al. [21] studied for 

example optimal tolling and Cantarella et al. [17] the optimal 

signal setting in combination with lane layout. 

In most cases, single objective network design problems 

are studied in which accessibility is optimized, where 

accessibility is expressed as the total travel time in the traffic 

network [1,2]. Different studies incorporated the investment 

costs within the objective function. Chiou, Meng et al. and 

Xu et al. [3,15,16] optimized total travel time in which the 

investment was translated in time using a conversion factor. 

Or in which travel time is translated into cost [12,22]. 

Occasionally other costs, like environmental costs (expressed 

in money), are added to the travel cost [17,23].  

There are only few papers that use multiple objective 

functions in the upper level. Chen et al. [19] use travel time 

and construction costs as two separate objective functions 

and used an evolutionary algorithm. Friesz et al. [14] focuses 

on minimizing the transport costs, construction costs, vehicle 

miles traveled and dwelling units taken for rights-of-way and 

used a weighted sum approach in combination with 

simulated annealing. Sharma et al. [24] used an evolutionary 

algorithm to minimize total travel time and the higher 

moment for total travel time i.e. variance. Most MO NDP 

studies consider the minimization of investment cost as 

second objective as reported in [24].  

In this research, instead of using static traffic models, 

focusing on a single objective, we propose an MO NDP in 

which the externalities of traffic are minimized using DTM 

measures and in which a DTA model is used to 

operationalize the lower level. This MO NDP is used to 

compare three EMOAs. 

III. OPTIMIZATION PROBLEM AND FRAMEWORK 

A. Optimization Problem 

The MO optimization problem is formulated as the 

following MO MPEC (mathematical problem with 

equilibrium constraints): 

1

2

( )

( )
min ,

( )

S F

I

z S

z S

z S

∈

 
 
 
 
  
 

⋮
s.t. ( ) ( )( )( )( ), ( ), ( ) , ( ) ,

DTA
q S v S k S G N A C S D∈ Γ  

in which S is a set of applications of strategic DTM 

measures to be selected from a set of feasible applications F, 

and ( ),iz S  1, , ,i I= …  is a different objective function of the 

link flows ( ),q S  the link speeds ( ),v S  and the link densities, 

( ),k S  expressed as ( )( ) ( ), ( ), ( ) .i iz S f q S v S k S=  These 

objectives in our case concern accessibility, climate, and 

noise, but could be extended with air quality and safety. 

Furthermore, the link flows, speeds, and densities are 

assumed to follow from solving a dynamic user equilibrium 

problem, indicated by ,
DTAΓ  for which the supply of 

infrastructure is given by G with nodes N and links A  (with 

corresponding characteristics C), and the travel demand D. 

The link characteristics without any DTM measures, which 

we denote by 
0 ,C  include the outflow capacity, the number 

of lanes, the free-flow speed, the speed at capacity, and the 

jam density, and are captured in a fundamental diagram. The 

DTA model Streamline [25], which is a multiclass model 

with physical queuing and spillback, is used to solve for this 

dynamic user equilibrium.  

The DTM measures defined in S are modeled as measures 

that influence the characteristics C of the links where the 

measures are implemented. This means for example that 

when a Variable Message Sign (VMS) is used to change the 

speed limit, the free speed and capacity of the links 

connected with this measure is changed. The characteristics 

C of links can therefore vary over time dependent of the 

settings of the DTM measures, S. The impact of a measure 

depends on the actual settings, e.g. the green time for a 

certain direction on a signalized intersection. Time and 

settings of the DTM measures are discretized, so the upper 

level then becomes a discrete optimization problem where 

for each time period a certain DTM measure with a certain 

setting is implemented or not. The set of feasible solutions, 

F, is assumed to be a discrete set of possible applications of 

strategic DTM measures. If we assume that there are B 

different DTM measures available in the network, the 

application of the DTM measures in time step t is defined by 

( )1( ) ( ),..., ( ) ,BS t s t s t=  where each ( ),bs t  1, , ,b B= …  can 

have bM  different settings, which we simply number from 1 

to .bM  The set of feasible solutions can therefore be written 

as { }| ( ) {1, , }, 1, , ,b bF S s t M t T= ∈ ∀ =… …  such that there 

are ( )
T

bb
M∏  possible solutions. The set of applications of 

the DTM measures for all time periods is defined by 

( )(1),..., ( )S S S T=  and forms a possible solution for the 

optimization problem. 
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B. Objective functions 

Based on an extensive literature review [11], for each 

objective an objective function   is defined, where the input 

stems from the DTA model. Accessibility is defined in terms 

of the total travel time in the network. Climate is defined as 

the total emission of CO2. The emissions are determined 

based on the ARTEMIS traffic situation based emission 

model [26], which means dependent on the level of service 

of the traffic flows. Finally, noise is calculated as the average 

weighted sound power level, in which the weights of noise 

emissions depend on the level of urbanization, and emissions 

are based on a load and speed dependent emission function 

of the Dutch RMV noise model [27]. 

IV. EVOLUTOINAIRY MULTI OBJECTIVE ALGORITHMS 

Evolutionary algorithms (EA) are inspired on the process 

of natural evolution, and are important tools for several real-

world applications. They use a set of solutions (population) 

to converge to the optimal design. Within their search they 

use some fitness function to determine the performance of 

the different solutions, which is used within a selection 

process of parents which have a higher chance of survival 

and reproduction. For reproduction, genetic operators like 

recombination and mutation are used. EA are robust 

optimization methods, which do not require gradients of the 

objective function, they can handle noisy objective functions, 

and they can avoid premature convergence to local minima. 

All three assessed algorithms contain elitism, which means 

preservation of good solutions, and use some kind of fitness 

sharing, which is a niching technique, to maintain population 

diversity. The preservation of good solutions in all 

approaches is guaranteed by the environmental selection 

step, which is a deterministic step in which an archive is 

maintained containing the best solutions. The number of 

solutions contained in the archive is constant over time, 

which means that if the number of non dominated solutions 

is smaller than the archive size, the archive is filled with the 

best dominated solutions and if the number of non dominated 

solutions is larger than the archive size the archive only 

contains the best non dominated solutions. In the latter case 

mainly the influence of fitness sharing is decisive for the 

solutions selected for the archive. 

A. NSGAII 

Deb et al. [6] developed an approach called non 

dominated sorting genetic algorithm II (NSGAII). Within the 

algorithm the fitness assignment is carried out in two steps. 

In the first step called non-dominance sorting, the solutions 

are ranked based on Pareto dominance. This is determined 

by setting the rank of non-dominated solutions as rank 1, 

extract these solutions from the total set, and select from the 

remaining solutions again those non dominated solutions and 

set those as rank 2, etc. The second step is sorting the 

solutions within a certain rank by using a crowded distance 

measure, which means sorting based on diversity in which 

solutions in a highly populated area will be assigned a lower 

fitness within its rank. The crowded distance is a measure 

that is determined by the distances between the neighbor 

solutions of the assessed solution in the objective space and 

the way fitness sharing is designed. The preservation of good 

solutions is done by the environmental selection step in 

which an archive is maintained containing the best solutions, 

based on their Pareto dominance, and if necessary their 

crowded distance sorting, considered so far. This archive 

contains the solutions used for the mating selection which is 

done using binary tournament selection with replacement.  

B. SPEA2 

Zitzler et al. [8] developed the approach called strength 

Pareto evolutionary algorithm 2 (SPEA2). Within the 

algorithm, the fitness assignment is carried out in three steps. 

First, the strength of each solution is determined, 

representing the number of solutions it dominates. Secondly, 

the raw fitness of each solution is determined by summation 

of the strengths of its dominators. Thirdly, determination of 

the fitness by incorporation of density information in the raw 

fitness value, which assigns a lower fitness to solutions in a 

highly populated area. The density of a solution is measured 

in the objective space as a decreasing function of the 

distance to the k-th nearest neighbor. This density 

information forms the way fitness sharing is designed. The 

preservation of good solutions is done by the environmental 

selection step, in which an archive is maintained containing 

the best solutions, based on their fitness, considered so far. 

Within the SPEA2 approach, an archive truncation 

procedure is used if the size of the non dominated solutions 

exceeds the archive size. This procedure iteratively removes 

individuals from the non dominated solutions based on the 

distances between the solutions in the objective space, until 

the size of the non dominated solutions equals the archive 

size. The method used is different from the niching method 

used to determine the fitness value. In the truncation 

procedure, the solution that has the minimum distance to 

another solution is chosen for removal and if there are 

several solutions with minimum distance the tie is broken by 

considering the second smallest distances and so on. This 

archive contains solutions used for the mating selection 

which is done using binary tournament selection with 

replacement. 

C. SPEA2+ 

Kim et al. [7] adapted the SPEA2 approach, as they 

argued that the crossover mechanism within NSGAII and 

SPEAII had not yet explored and both lack maintaining 

diversity in the solution space, while fitness sharing is 

performed using information on the objective space. The 

SPEA2+ approach differs in three ways of the SPEA2 

approach. First, it uses neighborhood crossover, which 

crosses over solutions close to each other in the objective 

space. Secondly, within the mating selection, all solutions 

within the archive are selected as parents. Thirdly, 
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maintaining two archives in which in case of the truncation 

procedure in one archive truncation is done by using the 

distances within the objective space and in the other archive 

in the solution space.. 

D. Performance measures 

We first introduce some definitions. The set of solutions 

{ }* * *

1 ,.., ,nX S S=  which is the outcome of our MO MPEC 

problem, consists of all solutions for which the 

corresponding objectives cannot be improved for any 

objective without degradation of another and is known as the 

Pareto optimal set. However, if the size of this solution set is 

greater than the archive, i.e. if ,n N>  then we only find a 

subset of solutions that are non dominated within the 

assessed solutions. In this research, the exact Pareto optimal 

set is not known, hence we aim at finding such a subset. 

Mathematically, the concept of Pareto optimality is as 

follows. If we assume two solutions 
1 2, ,S S F∈  then 

1S  is 

said to weakly dominate 
2S  (also written as

1 2S S≻ ) if 

1 2( ) ( )i iz S z S≤  for all i.  

In order to compare the three algorithms, we used 

different complementary measures to evaluate the trade-off 

fronts, namely, the spacing metric, the coverage of two sets 

(C-metric) and the size of the space coverage (S-metric) 

[5,8,28,29]. Let us introduce 
1 2( , ,..., )NX S S S X′ ′ ′ ′= ⊂   be a 

set of solutions to explain these measures. The spacing 

metric determines how well the solutions are distributed in 

the objective space, function ( )SMO X ′ , and solution space, 

function ( )SMS X ′ .  

( ) ( )
2

1

1 1
,

N

n

n

SMO X d d
Nd =

′ = −∑  with 
1

1
.

N

n

n

d d
N =

= ∑   

nd  is the Euclidean distance between each solution and its 

nearest solution. In function ( )SMO X ′  this distance is 

measured in the objective space, while in function 

( )SMS X ′  in the solution space. The smaller the value of 

( )SMO X ′ , the better the distribution of the solutions in X ′ . 

The C-metric, function ( , )CTS X X′ ′′ , is used to determine 

whether the Pareto optimal set found by a certain approach is 

dominated by a Pareto optimal set found by another 

approach. The function  determines the coverage of two sets 

of the ordered pair ( , ),X X′ ′′  which means the level in which 

the solutions X ′  weakly dominates .X ′′  

{ }; :
( , )

S X S X S S
CTS X X

X

′′ ′′ ′ ′ ′ ′′∈ ∃ ∈
′ ′′ =

′′

≻
 

The value ( , ) 1CTS X X′ ′′ =  means that all solutions in X ′′  

are covered by the solutions in .X ′  The opposite, 

( , ) 0CTS X X′ ′′ =  represents the situation where none of the 

solutions in X ′′  are covered. The S-metric, function 

( )SSC X ′  determines if the solutions of one approach covers 

a larger space in the objective space. It calculates the 

(hyper)volume enclosed by the union of the polytopes 

formed by the intersection of the following hyperplanes 

arising out of every single solution along with the axis in the 

objective space. For the minimization problem, the origin 

and therefore the axis are moved to a point representing the 

upper bound of each objective, defined by 

( )max max

1 2( ), ( )i jw z S z S . Because the true maximum values of 

the objective functions are not known, we choose a 

conservative point, based on the evaluated solutions. In the 

two-dimensional case, each polytope represents a rectangle 

defined by this point ( )max max

1 2( ), ( )i jw z S z S  and 

( )1 2( ), ( ) .i iz S z S  The hypervolumes are calculated based on 

the Hypervolume by slicing objectives (HSO) algorithm 

introduced by While [30]. The larger the value of ( )SSC X ′ , 

the better the space coverage. All these metrics mainly 

examine the performance in two aspects, i.e. the spread 

across the Pareto optimal front and the ability to attain the 

global tradeoffs. 

V. CASE STUDY: NUMERICAL EXPERIMENT 

A. Case 

For providing a clear demonstration, a simple transport 

network is hypothesized, consisting of a single origin-

destination relation with three alternative routes. One route 

runs straight through a city with urban roads (speed limit of 

50 km/h); the second route is via a ring road using a rural 

road (speed limit of 80 km/h); the third route is an outer ring 

road via a highway (speed limit of 120 km/h). A three-hour 

morning peak was simulated between 6am and 9am. The 

travel demand varies with time over the simulation period 

(maximum of 6,300 pcu/h in the morning peak) consists of 

passenger cars and trucks (10% of total demand). 

 

Within the network, there are three measures available, 

namely two traffic lights and a VMS used to change speed 

limits. The first traffic light is split into two measures while 

the two signaled directions are independent. These measures 

can be used to optimize the different objectives (possible 

settings listed in Table 1). In total six time intervals for the 

DTM measures are distinguished, equally divided into 30 

minute slices, which means { }1,...,6 .t ∈   

Although the network is small, it incorporates important 

elements like urban and non-urban routes when using DTM 

measures to optimize the externalities. Moreover, these 

objectives were modeled in a realistic manner incorporating 

traffic dynamics. In addition, these possible settings in this 

case study already results in  214.05 10×  possible solutions. 

Because the evaluation of one solution means solving the 

City

21
Traffic lightTraffic lightVMS

Lane drop

 
Fig. 1.  Representation of network 

978-1-4244-9573-3/11/$26.00 ©2011 IEEE 278



 

 

 

lower level DTA problem, which requires approximately one 

minute of CPU time, it would take  157.7 10×  years in order 

to assess all possible solutions. 

B. Parameter settings 

In order to restrict computation time, we limit the budget 

of solutions that can be considered. In the comparison of the 

approaches, the total number of solutions evaluated after the 

initialization is a fixed number of 5,000 solutions. The 

algorithms are not fully converged as they can improve the 

S-metric on average with 1%. For all three algorithms we 

used the same genetic operators, namely uniform crossover 

with a recombination rate 
recρ of 1 for recombination and 

mutation in which the mutation rate 
mutρ  decreases with 95% 

within the first 10 generations. Only small mutations occur, 

as we assume that mutation results in shifting the DTM 

application one up or down, i.e., if ( )bs t is selected for 

mutation, its value after mutation becomes either ( ) 1bs t −  or 

( ) 1.bs t +  For all approaches we varied the population size 

pN , 50 or 100 solutions, and the initial mutation probability 

.init

mutρ , 0.2 or 0.05, which means in total 12 different 

approaches. Because genetic algorithms are stochastic in 

nature, all approaches were carried out 5 times. On a single 

fast computer, all these computations would take 

approximately 8 months, hence we distributed the 

computations over multiple computers.  

C. Results 

Figure 2 shows the solution set obtained by SPEA2+ for one 

single run, the other approaches show similar results. 

 

The results show that the objectives congestion and 

climate in this case are strongly aligned, while there is one 

single optimal solution (in the different approaches not 

necessarily the same solution) which minimizes both 

objectives. However, both objectives are opposed to the 

objective noise. This can be explained as follows. 

Optimizing congestion aims at avoiding congestion using full 

capacity of the available routes, which is also good for 

minimizing CO2 emissions. Optimizing noise aims at 

lowering the driving speeds as much as possible and also 

avoiding traffic using the urban routes. 

Table 2 shows the average results of the spacing metric 

and S-metric. The SPEA2 and SPEA2+ approaches perform 

better than the NSGAII approaches concerning the spacing 

metric in the solution space as well as in the objective space. 

The S-metric shows that on average the NSGAII and 

SPEA2+ approach perform slightly better than the SPEA2 

approach. Concerning the population size, the spacing in the 

objective space show better results when the population size 

is 50 compared to 100 solutions and slightly worse 

concerning the S-metric. This can be explained because the 

population size is smaller, the number of generations is 

higher and the impact of fitness sharing in the algorithms is 

larger. However, a smaller population size will automatically 

result in a smaller S-metric when the solutions of both 

approaches are part of the same efficient frontier. The results 

concerning the spacing metric are relatively insensitive to the 

mutation rate. The S-metric shows a slightly better result 

with a mutation rate of 0.2.  

The average results of the C-metrics (shown in Table 3) 

indicates that there are no approaches which completely 

cover the results of another approach, hence we cannot 

indicate a single best approach. It also shows that the 

SPEA2+ approach shows on average a larger coverage of 

other approaches. The approaches with population size of 50 

are in general more covered (on average 0.26 vs. 0.07) and 

the results concerning mutation rates are similar. 

TABLE I 

OVERVIEW MODELING DTM MEASURES 

 ( )bs t  Characteristic ( )( )bC s t  

Traffic 

light 1 

{ }1( ) 1,...,11s t ∈  
Outflow capacity ( )1( ) {500,600,...,1400,1500}C s t ∈

 

 { }2 ( ) 1,...,11s t ∈
 

Outflow capacity ( )2 ( ) {500,600,...,1400,1500}C s t ∈

 

Traffic 

light 2 

{ }3 ( ) 1,...,11s t ∈  
Outflow capacity ( )3 ( ) {500,600,...,1400,1500}C s t ∈

 

VMS { }4 ( ) 1,...,3s t ∈  Free-flow speed, 

Capacity increase 
( )4

80 100 120
( ) { , , }

0.05 0.025 0
C s t
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a) Noise vs Climate  b) Climate vs congestion  c) Noise vs Congestion 

Fig. 2.  Pareto optimal solutions 

  

TABLE 2 

OVERVIEW RESULTS SPACING METRIC AND S-METRIC 

 pN  init

mutρ  ( )SMS X ′  ( )SMO X ′  ( )SSC X ′  

NSGAII 100 0.20 0.32 0.72 2.03E+11 

 100 0.05 0.35 0.79 2.03E+11 

 50 0.20 0.43 0.68 2.01E+11 

 50 0.05 0.43 0.77 2.04E+11 

 Average 0.38 0.74 2.03E+11 

SPEA2 100 0.20 0.28 0.37 2.02E+11 

 100 0.05 0.24 0.40 1.98E+11 

 50 0.20 0.31 0.24 2.02E+11 

 50 0.05 0.31 0.24 2.01E+11 

 Average 0.29 0.31 2.00E+11 

SPEA2+ 100 0.20 0.21 0.39 2.06E+11 

 100 0.05 0.20 0.27 2.03E+11 

 50 0.20 0.26 0.20 2.01E+11 

 50 0.05 0.24 0.23 2.01E+11 

 Average 0.22 0.27 2.02E+11 

 

TABLE 3 

OVERVIEW RESULTS C-METRIC 

( , )CTS X X′ ′′  

 NSGAII SPEA2 SPEA2+ 

NSGAII  0.12 0.09 

SPEA2 0.20  0.11 

SPEA2+ 0.23 0.18  
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VI. DISCUSSION, CONCLUSION AND FURTHER RESEARCH 

The results of the numerical experiment indicate that the 

SPEA2 and mainly the SPEA2+ approach is able to obtain a 

more diverse solution set in the objective space as well as in 

the solution space than the NSGAII approach. However, the 

NSGAII approach is able to obtain a slightly larger space 

coverage. The SPEA2+ approach is also able to cover more 

of the sets attained by the NSGAII and SPEA2 approach. On 

average, the SPEA2+ outperforms the SPEA2 in this 

optimization problem on all used measures. Comparing 

NSGAII and SPEA2+, there is no clear evidence of one 

approach outperforming the other. However, since the ability 

to attain the global tradeoffs by both approaches is similar 

and SPEA2+ does show more diverse solutions, the SPEA2+ 

approach is recommended. The size of the population 

influences the performance on the measures. A larger 

population results on average in a larger space coverage, 

while a smaller population size results in higher performance 

on spacing. Most performance measures are relatively 

insensitive for the mutation rate, only the space coverage 

show slightly better results for the mutation rate of 0.2 versus 

0.05. 

Since we compared the algorithms using only one single 

numerical experiment and since objective functions may 

behave differently in other cases,  research should be done 

on other networks to be able to draw more general 

conclusions. While we used a DTA model to solve the lower 

level, the needed CPU time is large. Possible interesting 

directions lowering the needed CPU time are incorporation 

of local function approximation, utilizing parallel computing 

methods for which EMOAs are suitable and marginal 

computing. 
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