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ABSTRACT 
 
Volume loss is one of the most important risks when boring a tunnel. This is particularly true 
when a tunnel is being constructed in soft soils. The risk of excessive volume loss, if 
materialised can lead to large consequences such as damage in buildings on the surface. 
This paper describes the development and use of a Bayesian based risk model containing 
more than forty relevant risk factors associated with the occurrence of volume loss in soft 
soils in mechanized bored tunnels. The developed risk model takes into account additional 
factors other than those normally used in analytical methods to estimate volume loss. The 
considered risk factors involve issues related to the excavation process, design, monitoring, 
human factors as well as variables associated with ground conditions. By means of data 
elicited from tunnel experts and the analysis of the importance of the various factors using 
sensitivity analysis, the model is evaluated and its ability to provide information to derive 
specific risk measures is verified. 
 
 
1  INTRODUCTION 
 
The construction of bored tunnels in soft ground inevitably causes ground movements. In 
urban areas such movements may affect adjacent buildings. Assessment of the most 
important risk factors influencing ground movements is therefore an essential part of 
planning, design and construction of a tunnelling project in urban environment (Mair et al., 
1996). The problem of ground movement assessment has interested many researchers, 
among others, Peck (1969), Cording and Hansmire (1975), Attewell and Woodman (1982), 
O’Reilly and New (1982), Rankin (1988), Mair et al (1996), Macklin (1999). As a result they 
have provided semi-empirical approaches to calculate volume loss and ground movements. 
In the specific case of mechanized bored tunnelling, ground movements will depend mainly 
on ground conditions, tunnel geometry and depth, rate of tunnel advance, variability of 
internal support pressure and time taken to install support to the ground (Guglielmetti et al. 
2008). Nevertheless, other factors leading to unexpected excessive ground deformations 
might arise during construction stage as a consequence of uncertainties in the ground, 
extraordinary events and shortcomings in the boring operations and flaws in design. 
Identifying and modelling these risk factors is highly desirable in order to reduce the chance 
of occurrence of an excessive ground movement event. 

Identifying and modelling these additional risk factors is not straightforward. Available 
sources of information often lack details, for instance, about how risk factors could unfold 
over time, how they interact with each other and the conditions influencing the factors 
occurring. To partly overcome this situation, expert judgements could be used as alternative 
source of information as demonstrated by Bles et al. (2003) and Choi and Mahadevan 



(2008). Even when this approach is adopted, modelling of incomplete information and expert 
judgements together will still require special tools. It has been shown that Bayesian Belief 
Networks are a suitable tool for integrating and representing incomplete knowledge and 
modelling of high dimensional phenomena (Sigurdsson et al. 2001, Weber et al. 2010). 
Sousa (2010) was the first to demonstrate the application of Bayesian Networks for 
tunnelling. Based on information from a tunnelling project in Porto, the author developed a 
geologic prediction model. BBNs were also used by Špačkova and Straub (2011) to model 
the excavation performance of a road tunnel built using the New Austrian Tunnelling Method. 

This paper describes the development and use of a Bayesian based risk model 
containing more than forty relevant risk factors associated with the occurrence of volume loss 
in soft soils for mechanized bored tunnels. The developed risk model takes into account 
additional factors other than those normally used in analytical methods to estimate volume 
loss. The considered risk factors involve issues related to the excavation process, design, 
monitoring, human factors as well as variables associated with ground conditions. By means 
of data elicited from tunnel experts and through analysis of the importance of the various 
factors using sensitivity analysis, the model provides information to derive specific risk 
measures. 

The remainder of the paper is divided into four sections. Section 2 explains how the 
risk model was developed. Section 3 discusses the methods used to identify critical risk 
factors. The final two sections then respectively discuss results and draw conclusions based 
on this work. 

 
 

2 RISK MODEL DEVELOPMENT AND VALIDATION 
 
In this section the steps required to develop the risk model for volume loss in soft soils in 
mechanized bored tunnels is described briefly. In developing the risk model, the data 
acquired is structured using Bayesian networks as will be explained. This section also 
describes how the model was validated based on an iterative process involving discrepancy 
analysis, experts review and other evaluation methods. 

 
2.1 Information gathering 
 
This step is intended to obtain information on the: 

• relevant risk factors associated with volume loss risks,  
• relationships among the risk factors,   
• the chance of risk factors occurring. 
The relevant risk factors are assumed to be those identified as such by experts and are 

defined in terms of deviations from project requirements (assumptions, expectations, 
specifications, tolerances, and thresholds) that could lead to the occurrence of volume loss.  

Information on the chance of the relevant risk factors naturally depends on the 
particular setting of each project. However, for test purposes, experts were asked to give 
their best estimation of the likelihood of the risk factors occurring based on the standard 
construction practice.  

The step of information gathering started off by a literature study, including risk 
databases, failure case reports, and specialised treatises on tunnel works that provided, as 
an output, an inventory of risks factors associated with volume loss. 

The experts consulted were then presented with the inventory of potential risk factors 
as derived from the literature study and were asked to add possible additional factors to this 
list. The experts also suggested plausible relationships and provided the probabilistic 
information regarding the chance of occurrence of the risk factors and the conditional 
probabilities measuring the relationships amongst the factors.   



This study used the procedures described mainly by Goossens et al. (2008) and 
Hallowell and Gambatese (2010) to gathering data from experts. To ensure the reliability of 
this data, these procedures employed encompass a number of steps including the 
identification and selection of experts, pilot elicitation sessions, discrepancy and sensitivity 
analysis of data gathered, feedback to experts.   

Thirty-one experts involved in ongoing or past underground construction projects, such 
as bored tunnels and deep shaft excavations, in the Netherlands participated in this 
investigation. All participants are from the Netherlands or Germany. The experts all had a 
minimum of ten years of tunnelling experience. They are all working, or had worked, for 
organizations such as research institutes, governmental agencies, or engineering companies 
providing tunnel design services and/or construction and/or supervision of tunnel works. 
 
2.2 Knowledge representation using Bayesian Belief Networks 
 
The Bayesian Belief Networks, BBN, approach is essentially a framework for modelling the 
relationships between a set of variables, and for capturing the uncertainty in the 
dependencies between these variables using conditional probabilities (van der Gaag, 1996). 
The probability of a value of a factor occurring in the BBN is determined by the occurrence of 
change in other interrelated factors (Onisko et al. 2001). The inference mechanism used in a 
BBN is the Bayes theorem which makes it possible to compute the probability of an effect on 
any variable in the model from the probability of a given cause. With two directly related 
variables, the probabilities can be computed as follows (Vick, 2002): 
 
 

P[effect]= [P[effect/cause].P[cause]]/ P[cause/effect]         (1) 
 
 

where: 
P[cause] = probability that the cause occurs, 
P[effect] = probability that the effect occurs,  
P[effect/cause] = conditional probability of the effect, given the cause, 
P[cause/effect] = conditional probability of the cause, given the effect. 
 
The posterior probability of the cause from the effect can similarly be derived as:  

 
 

P[cause/effect] = [P[effect/cause].P[cause]]/P[effect]      (2) 
 
 

In the context of risks, BBNs can be used to construct risk models composed of 
scenarios based on a set of known possible risk factors associated with the risks being 
analysed. These possible scenarios must be structured as a set of mutually exclusive and 
collectively exhaustive elements to which a probability distribution can be attributed. The 
probabilities of the risk factors are usually encoded based on expert judgement.  

In a BBN, the interrelationships between variables are expressed graphically in the 
form of diagrams. Variables are represented by nodes. Diagram nodes that have 
interdependencies are connected by arcs, whereas independent nodes are not connected. 
The direction attached to an arc reflects the direction of causal influence, which might be 
indicated by an expert, or is scientifically proven. Figure 1 shows a BBN model produced in 
this research to represent interactions between the risk factors identified leading to the event 
“excessive volume loss” for bored tunnels in soft soils. Information on conditional 
probabilities attached to the causal influences of the risk factors is not indicated on the 
diagram but is stored in the model and is accessible to the user. 



Each variable in the model is regarded as an event or a condition representing a fault 
event, state of failure, or an unfavourable condition. Fault events or states of failure 
associated with a variable can be events in which a risk factor exceeds a predefined 
threshold. Accordingly, most of the variables have two possible states: ‘absent’ or ‘present’. 
A variable is regarded as having the status ‘absent’ when it is not active under the particular 
conditions being analysed. Although variables can have more than two possible states, few 
variables in the model required to be expressed in such a way. The ’present’ status was 
further discretized into five chance categories. In line with this, experts were asked to provide 
estimates of chance regarding the occurrence of risk factors in terms of qualitative 
probabilities using a scale of five categories. 

For this research, both the Netica (Norsys Corporation, Canada) and the Genie 
(Decisions Systems Laboratory, University of Pittsburgh) software packages were used to 
construct the networks and to perform the analyses. The model developed was compiled in 
both software packages in order to verify the correctness of the computations when 
propagating the data incorporated into the model. 
 
2.3 Risk model validation 
 
Models can be validated by testing how they behave when analysing well-known scenarios 
(Langseth and Portinale, 2007). This option is challenging in this study because information 
on well-known scenarios is not available. The use of information from historical data is 
constrained by the fact the only partial information is available, making validation unreliable 
and impracticable. Therefore, to verify the model’s reliability, different evaluations have been 
employed as explained below. 

To eliminate errors and inaccuracies in data, and to ensure that the probability 
statements reliably represent expert knowledge, a discrepancy analysis was conducted. 
Discrepancy analysis aims to identify those pieces of data where the experts’ assessments 
differ the most. These data should be reviewed to see if there are avoidable causes of the 
discrepancy (Cooke and Goossens, 2000) or for the purpose of adopting values based on 
established confidence bands (Ayyub, 2001). In our case, discrepancy analysis provided 
information on which pieces of information were suitable for incorporation into the model, 
which needed to be revisited by its provider, and which had to be rejected or retained for 
further analysis to assess the effect of discrepant information in the model.  

In addition, model’s structure was reviewed by various experts during the elicitation 
sessions. By considering the diagrams depicting the risk being studied, each expert 
consulted had the opportunity to review the relationships amongst the variables in the model 
and provide estimates of the strength of the influence of these relationships. This can be 
seen as an internal validation of the model. Few divergences arose among the experts on 
the existence of some relationships and their impact was investigated. It was verified that the 
impact of these divergences on model performance was of little significance. 

After this validation process, any remaining inaccuracies were investigated by 
computing entropy and mutual information measures. This analysis is described in more 
detail in Woodberry et al. (2004). 
 
 
3 MOST RELEVANT FACTORS IDENTIFICATION  
 
The model development process has been described in the previous section. Capturing and 
representing risk-related information in the model required a careful process of data 
collection and refinement that provided as output a model. The model is intended to provide 
information that supports risk management decisions; more specifically, supportive 
information to derive appropriate risk mediation measures. Appropriate measures are those 
that successfully either avoid or mitigate a risk, or respond satisfactorily to the materialised 



risks given constrained resources. In principle, and as part of a cause-reduction approach to 
risk management, these measures should act upon those dominant risk factors that most 
influence the occurrence of a given risk. This section provides a brief description of the 
approach adopted in this study to analyse the model in order to identify these relevant risk 
factors. 

Borgonovo (2006) distinguished three families of importance measures that allow 
relevant variables to be identified. The first is based on the correlation between input 
variables and the output. The variable with the highest correlation is ranked as the most 
influential component and so on. The second categorization of importance measures is 
based on the contribution to output variance of their probability distributions. The 
underpinning idea is to compute the change in the output variance obtained by eliminating 
the uncertainties in a variable under study. The variable that produces most change in the 
output variance is regarded as the most important. The third importance measure involves 
moment-independent sensitivity indicators. The idea of using this measure is to assess the 
change in uncertainty in the entire distribution of the output Y when the uncertainties 
attached to an input variable Xi are reduced. The variable that produces most change in the 
output distribution is acknowledged as the most critical (Borgonovo, 2006). The method 
adopted in this study relies on both correlation and uncertainty measures.  

The information used to rank risk factors for the input-output correlation approach is 
computed using the Bayesian theorem explained above, which is powered and automated by 
Bayesian Networks. The necessary data was directly elicited from experts.  

In using the uncertainty measures the analysis needs to be based on a sensitivity 
analysis. Saltelli (2002) defines sensitivity analysis as the determination of how uncertainty in 
the output of a model can be apportioned to different sources of uncertainty in the model’s 
inputs.  

In the standard approaches to sensitivity analysis, one variable is removed from the 
original set of input variables and the sensitivity value related to the remaining input variables 
then calculated and compared with those of other subsets of input variables (Deng et al. 
2010). In our study, Borgonovo's measure is used as a sensitivity indicator. This is an 
alternative approach that examines the global response of a model’s output by looking at the 
whole output distribution changes while assessing the influence of uncertainty. The details of 
the computation of this measures are available from Borgonovo (2006).   

 
 

4  RESULTS  
 
In Figure 1, the components of the developed risk model for excessive volume loss are 
displayed (variable states are not shown for reasons of clarity). About forty risk factors were 
identified as relevant to the occurrence of excessive volume loss leading to ground 
movement in soft soils for bored tunnels.  

In order to verify the ability of the model and the analysis approach to support 
decisions, experimental data was used. This experimental data consist of information of the 
chance of occurrence of the risk factors. To obtain that information, the experts consulted 
were explicitly asked to give their judgements on the chances of the risk factors based on the 
real situation found in practice and not on ideal situations. For the case of the variables 
related to ground conditions, which  depend entirely on the particular setting of each project; 
they were modelled using uniform distributions. Once information on the chance of risk 
factors is incorporated into the model, the importance measures can be computed for each 
factor in relation to other as shown in Table 1.  

Table 1 summarises the results obtained from the computation of input-output 
correlation and Borgonovo’s (δl) importance measures for risk factors directly related to 
‘excessive volume loss’ event. An additional measure (likelihood measure) is also reported 
and indirectly accounts for the unconditional probability of occurrence of each risk factor. The  



numbers without parenthesis in Table 1 reflect the results of the computation of each 
importance measure for each risk factor (sensitivity indicators).  The larger the sensitivity 
indicator, the more important a variable is. The numbers in all parentheses indicate the 
relative importance of the risk factors based on the estimated values of the sensitivity 
indicators. This provides an indication about how resources can be apportioned to control the 
occurrence of excessive volume loss event.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Excessive volume loss risk model for bored tunnels in soft soils 
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The results presented in Table 1 depend on the experimental data employed, and 

therefore the ranking order could change with different conditions and specific project 
information used as input to the model. For instance, the sensitivity analysis output would 
change with different ground conditions or different combinations of construction procedures.  

As expected, each importance measure provides different ranks, this is because each 
importance measure relies on different criteria associated with the decision-makers 
preferences. Providing information on the most relevant factors according to different criteria 
is intentional in order to allow decision-makers to use this information according to their own 
preferences and the particularities of the specific problem at hand. 

 
Table 1 Ranking of risk factors according to likelihood, Correlation and Borgonovo’s 
measures for the target risk factor ‘volume loss’ event. 

Target risk: Excessive volume loss       

  Criteria/measure 

Likelihood Correlation l 

Directly related risk factors       

Disturbance of sensitivity ground caused by stress changes   0.600  (4) 1.000  (1) 0.140  (2) 

Incomplete or retarded filling of the tail gap 1.000  (1) 1.000  (1) 0.048  (8) 

Excessive variation of internal support pressure 0.667  (3) 0.800  (2) 0.083  (6) 

Excessive deformations in the shield tail 0.010  (5) 0.720  (3) 0.167  (1) 

Large variation of strength and/or stiffness in the ground 0.600  (4) 0.650  (4) 0.100  (4) 

Faulty reaction to a retarded of incomplete filling 1.000  (1) 0.600  (5) 0.089  (5) 

Insufficient soil cover depth 0.600  (4) 0.600  (5) 0.072  (7) 
Excessive ground shear caused by roughness of the cutting 
wheel 0.010  (5) 0.580  (6) 0.007  (9) 

Inadequate nominal stiffness of the grout 0.010  (5) 0.500  (7) 0.002  (10) 

Excessive tapering of the shield 0.286  (8) 0.300  (8) 0.107  (3) 

Unplanned stoppages of TBM 0.990  (2) 0.300  (8) 0.010  (11) 

  
From Table 1, it is particularly important to notice that some issues having a low 

likelihood measure (column 2) might result as being very important according to the 
correlation (column 3) and uncertainty (column 4) measures. For instance, the result on the 
low probability risk factor ‘Excessive deformations in the shield tail’ whose likelihood indicator 
is 0.010 shows that this risk factor is relatively quite important in terms of the degree of 
influence (indicator = 0.720) and uncertainty contribution on the model’s output (indicator = 
0.167). For the case of the very likely risk factor ‘Unplanned stoppages of TBM’, it resulted to 
be of relative little influence in terms of correlation (indicator = 0.300) and uncertainty  
(indicator = 0.010) on the occurrence of an excessive volume loss event. These facts 
indicate that using merely a single measure to decide on the allocation of resources to 
control the risk under consideration likely misinform decision making. A more comprehensive 
approach might be to use the measures all together. To illustrate this, in Table 1, risk factors 
were ordered according the correlation measure and then Borgonovo’s measure are used to 
order issues having the same position according to the correlation criteria. This approach 
was useful for example in establishing the undetermined position of the risk factor 
‘Incomplete or retarded filling of the tail gap’ that ranked at equal position with the factor 
‘Disturbance of sensitivity ground caused by stress changes‘ according to the correlation 
criteria. A similar evaluation can be made combining the correlation and likelihood measures. 

This analysis was repeated for every variable in the model which delivered information 
on the most relevant factors, thereby the ability of the model to provide information to support 
risk management decisions was verified. The information provided by the model can also be 
combined with other criteria, such as the cost of the risk measures or the controllability of risk 
factors enabling better informed decision making. 



It is also verifiable that the above analysis can be conducted for any variable or sets 
of variables in the model in order to identify relevant risk factors using project specific 
information and on a case-by-case basis. This includes the analysis of different risk factors 
particular to a project in conjunction with those in the model. 

 
 

5 DISCUSSION 
 
This paper has reported on a model representing the risks factors associated with excessive 
volume loss event in soft soils in bored tunnels. After an intensive and careful elicitation 
process with experts, the model containing an exhaustive collection of risk factors, their 
interactions, and the associated probabilistic information was obtained. The information 
delivered by the model extends the knowledge normally provided by the standard 
approaches used to characterise construction risks in terms of the following aspects: 

• the relevant risk factors associated with volume loss event,  
• the chance of relevant risk factors occurring, 
• the plausible relationships among risk factors,  
• the strength of the relationships in terms of conditional probabilities. 
This study further advance risk assessment of tunnel works by addressing the following 

complex issues related to: 
• the acquisition of information on uncertain risk factors that could lead to undesirable 

failures with large consequences: the approach was designed to capture low probability risk 
factors viewed also as relevant by experts;  

• capturing and modelling interactions among risks factors to provide a more optimal 
determination of risk mitigation actions by understanding whether risk is apportioned by 
individual factors or by the joint action of a set of them: verified correlations among risk 
factors directly related to a variable were modelled; 

• the need to make more rational and informed risk management decisions: the 
developed model renders information relying on sensitivity analysis to identify critical factors 
allowing decision-maker to use, afterwards, her/his preferences to make choices; 

• the need for interpretable and useful uncertainty-based risk models: the model’s 
output consists of rankings of relevant factors providing clear-cut information to derive a 
portfolio of risk remediation measures. 

The work however requires further evaluation and this would be an appropriate subject 
for additional research. Future studies are required to determine whether there is a need for 
improvements and refinements concerning the applicability of the approach and the use of 
knowledge rendered by the model in real projects. This is challenging given the need to 
provide information on construction risks that are both project- and context-dependent. 

Although the developed tunnelling risk model provides relevant information on 
interactions amongst causes involving various factors, the model is inherently 
incomprehensive because it is unlikely that it encompasses the complete range of possible 
risk factors. This might be due to the experts’ combined experiences not being sufficiently 
inclusive, leading to a limited understanding of the risk, or to undetected flaws in the 
elicitation procedure. However, as new information becomes available from documented 
project experiences or from further research, it will be possible to update the model to reflect 
this new information.  

The knowledge provided by the model in its application for bored tunnels as described 
in this paper is limited to soil conditions similar to Dutch ground conditions and construction 
practices. Dutch ground conditions are characterised by saturated, low-stiffness sandy soils 
with medium-fine sized particles and a high groundwater table. The developed risk model 
also focuses on tunnels boring using closed shields (such as slurry and earth pressure 
balance shields) and supported by concrete linings. 
 



 
6 CONCLUSIONS 
 
This paper has reported on a model representing the risks factors associated with excessive 
volume loss event in soft soils in bored tunnels. After an intensive and careful elicitation 
process with experts, the model, containing an exhaustive collection of risk factors, their 
interactions, and the associated probabilistic information, was developed. Further, the ability 
of the model to provide information to support risk management decisions was verified.  

This paper reported on a novel way to represent and analyse risks in tunnel projects. 
The model shows how tunnel risks can be modelled by Bayesian Networks and used to 
provide more reliable information to aid decision-making. It is concluded that, despite the 
complex and uncertain nature of tunnelling risks, the developed model can produce useful 
results which could guide the allocation of resources to specific risk remedial measures on a 
cost-efficient basis.  
 
 
AKNOWLEDGMENTS 
 
This research has been supported by DELTARES, a Dutch research institute, whose 
financial support is gratefully acknowledged. The authors would further like to thank the 
experts who agreed to be involved in this research, without whose insights and support the 
work could not have been achieved. 
 
 
REFERENCES 
 
Attewell, PB, Woodman, JP. 1982. Predicting the dynamics of ground settlement and its 

derivatives caused by tunneling in soil. Ground Engineering. Vol. 15. Num. 8, pp. 13-
22. 

Ayyub, BM. 2001. Elicitation of Expert Opinions for Uncertainty and Risks, 1st Edition, CRC 
Press LLC, Boca Raton, p. 302. 

Bles, T, Al-Jibouri, S, van de Adel, J, 2003. A risk model for pile foundations. Proceedings of 
the 20th International Symposium on Automation and Robotics in Construction. pp. 
421-426. 

Borgonovo, E. 2006. Measuring Uncertainty Importance: Investigation and Comparison of 
Alternative Approaches. Risk Analysis. Vol. 26, Num. 5, pp. 1349-1361. 

Choi, H-H, Mahadevan, S, 2008. Construction Project Risk Assessment Using Existing 
Database and Project-Specific Information. Journal of Construction Engineering and 
Management. Vol. 134, Num. 11, pp. 894-903. 

Cooke, RM, Goossens, LHJ. 2000. Procedures Guide for Structural Expert Judgement in 
Accident Consequence Modelling. Radiat Prot Dosimetry. Vol. 90, Num. 3. pp. 303-
309. 

Cording, EJ, Hansmire, WH. 1975. Displacements Around Soft Ground Tunnels. 
Proceedings of 5th Pan American Conference of Soils Mechanics and Foundation 
Engineering. pp. 571-633. 

Deng, X, Zeng, X, Vroman, P, Koehl, L. 2010. Selection of relevant variables for industrial 
process modeling by combining experimental data sensitivity and human knowledge. 
Engineering Applications of Artificial Intelligence. Vol. 23, Num. 8, pp. 1368-1379. 

Goossens, LHJ, Cooke, RM, Hale, AR, Rodic-Wiersma, Lj. 2008. Fifteen years of expert 
judgement at TUDelft. Safety Science. Vol. 46, Num. 2, pp. 234-244. 

Guglielmetti, V, Grasso, P,  Mahtab A,  Xu S. 2008. Mechanized tunnelling in urban areas—
design methodology and construction control, 1st Edition, Taylor and Francis, Leiden, 
p.507. 



Hallowell, MR, Gambatese, JA. 2010. Qualitative Research: Application of the Delphi Method 
to CEM Research. J Constr Eng Manage. Vol.136, Num. 1, pp. 99-107. 

Langseth, H, Portinale, L. 2007. Bayesian networks in reliability. Reliability Engineering and 
System Safety. Vol. 92, Num. 1, pp. 92-108. 

Macklin, SR. (1999) The prediction of volume loss due to tunnelling in overconsolidated clay 
based on heading geometry and stability number. Ground Engineering. Vol. 32, Num. 
4, pp. 30-33.  

Mair, RJ, Taylor, RN, Burland, JB. 1996. Predictions of ground movements and assessment 
of risk of building damage due to bored tunnelling. Geotechnical Aspects of 
Underground Construction in Soft Ground, pp. 713-718, Balkema, Rotterdam. 

Onisko, A, Druzdzel, MJ, Wasyluk H. 2001. Learning Bayesian Network Parameters from 
Small DataSets: Application of Noisy-OR Gates. International Journal of Approximate 
Reasoning. Vol. 27, Num. 2, pp. 165-182. 

O’Reilly, MP, New, BM. 1982. Settlements above tunnels in the United Kingdom – their 
magnitude and prediction. Proceedings of Tunnelling ’82. pp. 173-181. 

Peck, RB. 1969. Deep excavations and tunnelling in soft ground. Proceedings of 7th 
International  Conference of Soils Mechanics and Foundation Engineering. pp. 225-
290. 

Rankin, WJ. 1988. Ground movements resulting from urban tunnelling: prediction and 
effects. Engineering Geology of Underground Movement. pp. 79-92. 

Saltelli A. 2002. Sensitivity analysis for importance assessment. Risk Analysis. Vol. 22. Num. 
3, pp. 579–590. 

Sigurdsson, JH, Walls, LA, Quigley, JL. 2001. Bayesian belief nets for managing expert 
judgement and modelling reliability. Quality and Reliability Engineering International. 
Vol. 17, pp. 181–190. 

Sousa, RL. 2010. Risk analysis of tunneling projects, Dissertation Thesis, Massachusetts 
Institute of Technology, Cambridge, p.589. 

Špačkova, O, Straub, D. 2011. Probabilistic risk assessment of excavation performance in 
tunnel projects using Bayesian networks: a case study. Proceedings of the 
International Syposium on Geotechnical Safety and Risk 2011. pp. 651-660. 

Van der Gaag, LC. 1996. Bayesian belief networks: Odds and ends. The Computer Journal. 
Vol.39, Num. 2, pp. 97–113. 

Vick, S. 2002. Degrees of Belief - Subjective Probability and Engineering Judgment, ASCE 
Press, Reston, p. 455. 

Weber, P, Medina-Oliva, G, Simon, C, Iung, B. 2010. Overview on Bayesian networks 
applications for dependability, risk analysis and maintenance áreas. Engineering 
Applications of Artificial Intelligence. doi:10.1016/j.engappai.2010.06.002 

Woodberry, O, Nicholson, AN, Korb, KB, Pollino, C. 2005. Parameterising Bayesian 
Networks. Proceedings of 17th Australian Joint Conference on Artificial Intelligence. pp 
711-745. 

 
 
 
 


