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technique allows for accurate positioning (about 2 m) of 
the part to the receptor site (Figure 1f). Angluar accuracies 
of typically 0.5 have been reported [2,3]. Moreover, it 
was shown, that capillary forces can overcome initial posi-
tioning errors (Figure 1d) of up to 180μm  in the case of a 
part of 300300μm2 [4,5].  

As was discussed in an  earlier publication [6], the ability 
of a receptor site to pin/confine the droplet depends on 
three key factors: 

i. the chemical composition of the surface of the sub-
strate, and  

ii. its topography, which can be subdivided into two fac-
tors related to:  

a. roughness or texture, of the surface, and 
b. geometrical features, such as edges, that are 

able to stop the advancing of a liquid front. 
 

It was shown that, factor ii.b can be efficiently and ef-
fectively exploited when applying an Ultra Short Pulsed 
Laser (USPL) source [6]. That is, well-defined edges 
around the receptor site can be created by selectively re-
moving material from the perimeter of the receptor site, by 
laser ablation, see Figure 2. This approach is suitable for 
both hydrophobic and hydrophilic substrates and is there-
fore, more flexible than the alternative approaches i. and 
ii.a, listed above. 

 
 

 
Fig. 2  An receptor site can be created by removing material  
(by laser ablation) from the tracks of a laser path that follows  
the perimeter of the site. The sharper angle  of the edge of   
the resulting trench, the more it will impede the liquid front  

from crossing the edge. 
 
The edges of the tracks will provide a location for the pin-
ing of the liquid-solid-vapour interface of a droplet.  It has 
been shown [7,8] that the sharper the angle  [deg] of an 
edge the more it will impede the liquid front from crossing 
the modified perimeter, see Figure 2. The latter is described 
by Gibbs condition, 
 
 <<(180-α)                                                   (1) 
 
were Y [deg] is Young’s equilibrium contact angle, which 
a droplet adopts when in contact with a flat/smooth surface 
[9,10]. It follows from this inequality that a large local con-
tact angle  [deg] will be formed before a liquid front over-
flows an edge/obstacle with a small edge angle , see Fig-
ure 2. Sharp edges (with small values of ) can be accu-
rately machined by a proper selection of the laser pro-
cessing parameters.  

The feasibility and performance of fluidic self-alignment 
has been shown on  metallic substrate [6]. In this paper a 
polymer, popular in the field of electronics, is studied as 
the base material.  
 

2. Scope of this paper 
Section 3 discusses the material and experimental set-

up. Next, in section 4, the laser processing conditions are 
discussed to obtain sharp edged receptor sites. This section 
also presents the capability of those sites the pin a water 
droplet, as well as the self-alignment performance, as a 
function of the edge angle. Finally, conclusions are given in 
section 5. 

 
3. Material and experimental setup 

3.1 Material 
The substrate under consideration is polyimide (PI). This 
polymer is applied frequently in electronics applications, 
and is known for its electrical, thermal, chemical and me-
chanical properties. Its applications are found in a range of 
industries including consumer electronics, solar photovolta-
ic and wind energy, aerospace, automotive and industrial 
applications. The thickness of the PI foil applied was 25±2 
µm. To allow handling, the foil was fixed on a copper sheet 
of about 230 µm thickness. The substrate was cleaned ul-
trasonically in isopropanol prior to, as well as after, laser 
machining. 

The surface topography of the machined surfaces was 
analyzed by a Confocal Laser Scanning Microscope 
(CLSM), type VK-9700, of KEYENCE, Osaka, Japan. 

3.2 Laser setup 
An Yb:YAG laser source, type TRUMICRO 5050 of TRUMPF 
GMBH, Germany, with a central wavelength of 1030 nm 
(IR) was used for generation of the laser pulses. But for the 
experiments, a Third Harmonic Generation (THG) unit was 
applied to convert the central wavelength to 343nm (UV), 
as the absorption of laser energy of the substrate at this 
wavelength is higher than at IR. Moreover, the UV wave-
length, in contrast to the IR wavelength, allows for focus-
ing the laser beam into a smaller diameter, which, in turn, 
facilitates machining of smaller and more accurate features.  
The beam shows a nearly Gaussian power density profile 
(M2<1.3). The pulse duration was constant at 6.7ps for all 
experiments. The radiation was linearly polarized. 

Manipulation of the beam over the samples was ac-
complished by a two mirror Galvano-scanner system, type 
INTELLISCAN14 of SCANLAB GMBH, of Puchheim, Germa-
ny. A telecentric 100 mm f-lens, type RONAR of LINOS 

GMBH, of Göttingen, Germany, focused the beam. The 
substrate was irradiated at normal incidence at environmen-
tal conditions. 

 
3.3 Set-up for liquid pinning & self-alignment tests 
A microassembly system was used to carry out liquid con-
finement (pinning) tests, as well as self-alignment tests [2]. 
The system includes a robotic microgripper, two micro-
scopes, three motorized stages and a droplet dispenser. The 
microgripper is custom built, driven by two piezoelectric 
benders. The motorized stages provide movement in x-,y- 
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and z-directions. The z-axis stage (type M-122.2DD of 
PHYSIK INSTRUMENTE, Karlsruhe, Germany) moves the 
microgripper vertically, while the x-axis stage (type M-
122.2DD of PHYSIK INSTRUMENTE) and y-axis stage (type 
M-404.8PD of PHYSIK INSTRUMENTE) move the test pat-
terns (leadframe) horizontally. The droplet dispenser (type 
PicPIP  of GESIM, Grosserkmannsdorf, Germany) is non-
contact type, actuated by a piezoelectric diaphragm. It can 
dispense droplets in a distance of a few millimeters with a 
resolution of tens of pico-liters depending on the control 
parameters. 

The self-alignment process was imaged from a top view 
microscope (type VZM1000i of EDMUND, Nether Popple-
ton, UK) and a side view microscope (type VZM1000i, 
EDMUND). A high-speed CMOS video camera (type IPX-
VGA210-G of IMPERX of Boca Raton, USA) was attached 
to the top microscope and a CCD video camera (type 
SCA1600-14GC of BASLER, Ahrensburg, Germany) has 
been attached to the side view microscope.  
 
4. Results and discussions 

Measurements, using the CLSM, showed that the sur-
face roughness of the PI, prior to laser machining, was 
Ra0.04m. It is known from earlier work [6] that, for 
successful fluidic self-alignment,  the trench depth shall be 
larger than this roughness. 

 
4.1 Ablation threshold 

The ablation threshold, or more specifically the fluence 
threshold, above which the substrate under laser radiation, 
will be ablated, was determined using a method usually 
referred to as the D2-method [11-13]. Besides the ablation 
threshold, this methods yields also the beam diameter. The 
latter was found to equal 15.6 µm. The ablation threshold 
was found to equal 0.06 J/cm2. 

 
4.2 Processing conditions for single laser tracks 

Next, laser machining conditions were experimentally 
determined to create trenches in the substrate. To ensure a 
uniform depth along the length of the trench, the pulse-to-
pulse overlap (OL) was chosen relatively high. To this end, 
as well as to ensure a relatively high machining rate,  the 
velocity of the focal spot relative to the substrate was set to 
v=400 mm/s. The pulse frequency was fixed at the maxi-
mum of the laser source at fp=400 kHz. Then, when defin-
ing the pulse-to-pulse overlap as  
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fd

v
OL  (2) 

 
where d [m] denotes the spot diameter. Then, with a beam 
diameter of 15.6µm, these parameters imply a OL of 94%. 
The pulse energy, as well as the number of overscans (or 
repetitions) N , were varied to study the effect of these pa-
rameters on the dimensions (width, depth and edge angle) 
of the trenches. The pulse energy was varied between 0.25 
and 1 µJ and the number of overscans was varied from N=1 
to 25. The  dimensions of the trenches were determined by 
CLSM, see Figure 3. As can be observed from Figure 3a 
and 3b, the trench width and depth increase more or less 

linear with the number of overscans and the pulse energy. 
The track width ranges from about 15 µm to 23 µm, 
whereas the track height varies from 1 µm to 20 µm. The 
latter is close to the thickness of the PI foil. Figure 3c 
shows that the edge angle  decreases with increasing 
number of overscans and increasing pulse energy. Careful 
analysis of the dependency of the edge angle on the number 
of overscans at a pulse energy of 1 µJ, shows a discontinu-
ous drop in edge angle from about =140º to 95º, when the 
number of overscans is increased from N=3 to 4. 
 

 
 

Fig. 3 Dimensions, obtained by CLSM, of single laser  
tracks (trenches) in PI as a function of number of  

overscans N and pulse energy. Beam velocity 400 mm/s,  
pulse frequency 400 kHz. Each data point is an  average  

of 4 measurements. 
 

To explain this result, cross sections of trenches, at a pulse 
energy of 1µJ as a function of number of overscans were 
derived from CLSM measurement, see Figure 4b. As can 
be observed from these cross sections, the edges are 
“smooth” for overscans up to N=3. That is, the sides of the 
trench show a gradual change from the unprocessed surface 
to the center of the trench. For N=4 and 5 the edges show a 
characteristic “dent” and “hump”. The humps show steep 
edge angles, as small as 92º, which provide a suitable geo-
metrical feature to stop the advancing of the liquid [8].  

Similar dents and humps have been previously reported 
in nanosecond and picosecond UV-laser ablation of PI [14-
16]. These studies attribute the humps to a volume increase 
due to two mechanisms:  

i. amorphization (random coiling) of crystalline do-
mains and, 

ii. (thermal and non-thermal) fragmentation of polymer 
chains.  
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4.4 Liquid confinement measurements 
DI water was dispensed onto the receptor site, with in-

crements of tens of picoliters, until it overflowed the edges 
of the receptor site. Figure 7 shows a typical image of a 
droplet confined (pinned) on a receptor site, obtained by 
one of the microscopes as described in section 3.4. The 
maximum volume of the droplet which could be pinned to 
a receptor site, just before overflowing, was calculated 
from these images. That is, the volume can be calculated by 
using the known receptor area dimensions (200×200µm2) 
and assuming the shape of the droplet is a spherical cap. 
This is a valid assumption, as the dimensions of these drop-
lets are far smaller than the capillary length of water. Fig-
ure 8 shows the maximum volume of droplets which could 
be confined to receptor sites with varying edge angle. The 
graph shows that with reducing edge angle  (sharper edg-
es), the amount of liquid that can be constrained on a site 
increases. This is in accordance with Gibbs’ condition as 
discussed in section 1. 

 

 
Fig. 7 Side view of a droplet of DI water on a  

200×200µm2 receptor site. Besides the droplet,  
also its reflection can be observed. 

 

 
Fig. 8 Maximum volume of the droplet which could be con-

fined on a receptor site as a function the edge angle  of the site. 
 

4.5 Self-alignment tests 
Self-alignment tests, using the set-up described in section 
3.4, were performed on receptor sites each with different 
edge angles, as discussed in the previous subsection. And 
50 μm thick SU-8 chips of 200×200µm2 were used as test 
parts to be aligned. The polymer SU-8 is an epoxy-based 
photoresist, which was chosen here for its transparency to 

visual light. The latter allows access of the position accura-
cy of the SU-8 chip the receptor site after alignment. 
The experiment comprised of the following five steps: 

i. the chip is moved to a predefined releasing position 
near the receptor site, 

ii. a droplet of water is dispensed on the site (see Fig-
ure 9a), 

iii. the chip is released on it (see Figure 9b), 
iv. then the chip aligns itself (successfully or unsuc-

cessfully) to the site (see Figure 9c), 
v. after a few seconds, water vaporizes, leaving the 

chip on the receptor site (see Figure 9d). 
 

The performance self-alignment of the SU-8 chip was 
verified 11 times for each site. All sites showed a 100% 
success rate of self-alignment, except the sites with the 
largest edge angles of 156º and 139.4º, which showed a 
success rate of only 0% and 54.6% respectively. The failing 
of self-alignment on these sites was found to be due to the 
water overflowing the receptor site before or during self-
alignment. In the case of the site with edge angle of 156º, 
the droplets were found to overflow the edge during step 
(ii) of the experiment. This can be attributed to the fact 
that, the droplets are shot at the receptor site at an angle, 
which implies that its momentum might drive it off the site. 
In the case of site with an edge angles of 139.4º, the ad-
vancement of the droplet was successfully stopped by the 
edges of the receptor site in some of the experiments. It 
was found that the receptor sites, showing edges with 
humps showed a 100 % success rate. These edges were 
successful at stopping the advancement of the droplet on 
the site after dispensing. 

It was shown in section 4.4 that, the volume of liquid 
that can be confined on a receptor site is correlated to the 
edge angle of the site. However, these self-alignment ex-
periments do not show a clear relationship between the 
edge angle and the success rate of self-alignment.  For ex-
ample, the receptor site with an edge angle of  139.4º was 
able to confine a water droplet of 0.86 nL (see Figure 8), 
but during self-alignment experiments the same receptor 
site was not able to constrain even droplets as small as 0.30 
nL at all times, either when dispensed or when the chip was 
dropped onto the droplet. This shows that the dynamics of 
self-alignment procedure should be taken into account 
when determining whether or not a receptor site allows 
successful self-alignment. Nevertheless, there seems to be a 
minimum required edge angle for a successful self-
alignment.  

 The final positional and rotational errors of the chip 
were determined from the top view camera (Figure 9d). 
The positional misalignment was found to be 0.25±0.86 
µm, whereas the rotational misalignment was found to be 
0.35±1.22 º. It should be noted however that the resolution 
of the camera was too low to allow (more) accurate meas-
urements.  

 
5. Conclusions 

A ps laser, operating at 343nm wavelength, 400kHz, 
with a focus diameter of 15.6 µm was used to create recep-
tor sites of 200×200 µm2 in polyimide foil. Near the edges 
of the sites, “dents” and “humps” were found showing   
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