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Abstract 

We define the optimization of infrastructure planning in a multimodal network context as a 

multi-objective network design problem, rather than evaluating a pre-defined set of network 

scenarios. This provides insight into the extent to which facilitating better transfers between 

modes can contribute to various aspects of sustainability, namely accessibility, operation 

subsidies, use of urban space and climate impact. For a real life case study the Pareto set is 

estimated by a genetic algorithm, showing that minimizing the use of urban space clearly 

competes with minimizing operations subsidies. Furthermore, travel time and climate impact 

are rather in line with each other. Finally it is shown that the Pareto set is strongly influenced 

by the frequency of one specific train line, indicating that increasing line frequency more 

effective than opening new park and ride facilities or new train stations.  
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1 Introduction 
Highly urbanized regions in the world nowadays face well known problems in the 

traffic system, like congestion, use of scarce space in cities by vehicles and 

infrastructure and the emission of greenhouse gases. A shift from the car to public 

modes is likely to alleviate these problems, but investments in public transport (PT) 

infrastructure require large financial recourses. To take more advantage out of the 

existing PT infrastructure, facilitating an easy transfer from private modes (bicycle 

and car) to PT modes (bus, tram, metro, train) may stimulate the use of PT, while 

limiting the budget that is needed. Therefore, we focus on network developments that 

enable multimodal trips, like opening new park and ride facilities, opening of new 

train stations or opening new or changing existing transit lines. The car and bicycle 

network are assumed to be given. 

 

When such transportation network developments are planned, the decision is often 

based on an evaluation of a few pre-defined scenario’s based on expert judgment, 

usually using multiple criteria. However, the best from these scenarios is still likely to 

have room for improvement. Another method is to optimize a network with respect to 

accessibility, taking bounds into account for externalities, for example an emission 

reduction target or a budget constraint. This results in one optimal network solution, 

but does not provide insight in the dependencies between objectives, i.e. the extent to 

which the objectives are opposed or aligned, neither is information provided on the 

possibilities to improve the network further if the budget is slightly increased. 

Another common method is to combine the objectives beforehand using certain 

weighting factors (e.g. using a weighted sum), where the weighting factors represent 

the compensation principle between the objectives which policy makers are willing to 

accept. However, setting these weights is not trivial: if these are determined in 

advance, uncertainty concerning these weighting factors is not incorporated and the 

sensitivity of the outcome to these weighting is not known in advance. For these 

reasons in this paper a multi-objective optimization approach is adopted, which 

enables us to identify trade-offs between objectives by studying the Pareto optimal set 

(Coello et al. 2006). 

 

The resulting mathematical problem is known as the multi-objective network design 

problem, and received a lot of attention in the literature, in many different versions. 

One subclass of problems is the transit network design problem, which has been 

studied in various ways, as reviewed by (Guihaire and Hao 2008). This includes 

greedy algorithms, evolutionary algorithms and design meetings involving expert 

judgments. In addition to that, the unimodal road network design problem has, for 

example, been studied in general by (Mathew and Sharma 2006; Chen et al. 2010). 

Applications in a multimodal context are less common, but they do exists, for 

example road link capacity and bus routes (Miandoabchi et al. 2011) or pricing of 

private and public links (Hamdouch et al. 2007).  

 

Section 2 defined the problem in more detail. Section 3 addresses the solution 

method: it describes the mathematical optimization technique and the way multimodal 

trips are modelled. In section 4 the case study is introduced and the results for the case 

are presented. Finally, section 5 contains the conclusions.  
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2 Problem definition 

2.1 Bi-level problem 
The transportation network design problem is often solved as a bi-level optimization 

problem, for example (Viti et al. 2003; dell'Olio et al. 2006; Tahmasseby 2009). In 

our research, the network design problem is regarded as a bi-level system as well. In 

our case the problem is discrete. The upper level represents a network authority that 

wants to optimize system objectives. In the lower level the travelers minimize their 

own generalized costs in the multimodal network, which results in a stochastic user 

equilibrium. The upper level reflects the behaviour of the planner, acting as a 

government, optimizing system objectives. The network design in the upper level 

interacts with the behaviour of the travelers in the network: the lower level. Each 

traveler minimizes his or her own generalized costs (e.g. travel time, expense), by 

making individually optimal choices. This is put into operation by a traffic model, 

which assumes user equilibrium. This results in a network state (for example travel 

times and loads) for each solution, from which the objective function values can be 

derived. This equilibrium is a constraint for the upper level problem. 

2.2 Network and demand definition 
The network is defined as a directed graph G, consisting of nodes N and links A. 

Transportation zones Z are a subset of N and act as origins and destinations. Total 

fixed transportation demand D is stored in a Z Z  matrix. Furthermore, transit 

service lines L are defined as ordered subsets Al of A and transit stations or stops S are 

defined as a subset of N.  

2.3 Decision variables 
Decision variables in this multimodal network design problem are related to transfer 

facilities or to PT facilities and are defined in table 1. These decision variables can be 

related to design dilemmas. Park and ride facilities cost money to operate, but 

increase the service area of PT stations for travelers with a car available. Both new 

stations as new express train statuses are a typical example of the trade-off between 

speed for through travelers and the area coverage of the PT system. Finally, 

increasing the frequency of PT is mainly a trade-off between costs and reduction of 

waiting time (and thus reduction of travel time).  

Table 1: Definition and explanation of decision variables 

Decision 

variable 

Formulation Explanation 

Park and Ride 

facility at 

station s 

 0,1sp   This binary variable indicates whether it is possible 

to park the car at a station s. At existing stations with 

park and ride facility, this variable is fixed to 1. At 

candidate locations, this variable can take values 0 

and 1. 

Existence of 

station s 
 0,1st   This binary variable indicates whether transit 

vehicles call at station s or not. At existing stations 

this variable is fixed to 1, at candidate locations this 

variable can take values 0 and 1.  
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Express status 

of station s 
 0,1se   This binary variable indicates whether transit 

vehicles of express lines call at station s or not. At 

existing stations this variable is fixed to 1, at 

candidate locations this variable can take values 0 

and 1. 

Frequency of 

transit line l 
l lf F  Fl contains possible values for the frequency of 

transit line  l . Existing transit lines can either be 

fixed (Fl 
 contains only 1 element) or free (Fl 

 

contains 2 or more elements). In the latter case 0 may 

also be included. For candidate transit lines Fl  
always contains at least 2 elements, including 0.   

 

For every potential network development, a decision variables is defined in advance. 

Network developments are only included as a candidate location if spatial and 

physical constraints are met. The car and bicycle networks are assumed to be fixed. 

To some extent, predefinition of candidate locations weakens the power of the 

optimization approach, because it restricts the solutions space when compared to a 

complete free design of park and ride, stations and transit lines. If a potential good 

candidate solution is not included in this set, it will never be chosen in the final 

network design. However, it still explores a much bigger region than the current 

practice of evaluation of a few scenarios (the feasible set consists of 4.9 billion 

solutions). This includes different combinations of measures, that may have a bigger 

benefit than the sum of the benefits of the individual measures. Furthermore, we think 

that the current transportation network is not likely to change strongly, as 

infrastructure in developed countries in general developed only gradually in recent 

years. Finally, high calculation times make a limited size of the decision space 

desirable.  

2.4 Objective functions 
The values of the objective functions are calculated based on loads and costs in the 

network, which are stored in link characteristics and in Z Z  matrices. The 

objectives are operationalized by total travel time, number of car trips to urban zones 

(to represent use of urban space for parking), CO2 emissions and exploitation costs 

(see table 2). Investment costs are not considered, because the chosen decision 

variables typically involve higher exploitation costs instead of high investment costs. 

All four objectives are to be minimized. 

Table 2: Definition of objective functions and list of symbols 

Policy objective Measured by Formulation

 
Accessibility Total travel time ijm ijm

ijm

T D  

Climate impact CO2 emissions  CO2

ab ad bd a a

abd

q E v k  

Use of urban space 
Number car trips to 

and from urban zones , , , ,U O U D

ijm ijm

i Z j m M i j Z m M

D D
   

   

Cost efficiency 

Operation subsidies 

(operation costs – 

operation revenues) 
,

[ ] [ ]
PT PT l

b ab ab bl b a la

b B a b B l a A

C q t f k p
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With: 

ijmT  Travel time from origin i to destination j with mode or mode chain m (min) 

ijmD  Transportation demand from origin i to destination j with mode or mode chain m 

abq  Flow on link a for vehicle type b (veh per hour) 

ad  Road type indicator, equals 1 if link a is of road type d, 0 otherwise 

2 ( )
CO

nb abE v

 

CO2 emission factor of vehicle type b on road type d, depending on average speed 

of link a for vehicle type b abv (grams/(veh*km)) 

ak  Length of link a (km) 

UZ  Set of highly urban zones 

OM  Set of modes (including mode chains) that start the trip with a car leg  

DM  Set of modes (including mode chains) that end the trip with a car leg  

PTB  Set of vehicle types that are part of the public transport system 

lA  Set of links that are traversed by line l
 

bC  Exploitation costs for vehicle type b (euros per vehicle*hour) 

abt  Travel time in link a for vehicle type b 

bl  PT vehicle type indicator, equals 1 if line l is of vehicle type b, 0 otherwise 

bf  Fare for using PT of vehicle type b (euros per km) 

lap
 Passenger flow in transit line l on link a (passenger per hour) 

 

3 Solution method 

3.1 Upper level 
The problem is hard to solve and is computationally too expensive to be solved 

exactly, so we rely on a genetic algorithm. This class of algorithms is often used to 

solve multi-objective problems, because they do not end up in a local minimum, they 

do not require the calculation of a gradient and are able to produce a diverse Pareto set 

(Deb 2001).  

 

More specifically, we use the NSGA-II algorithm, developed in (Deb et al. 2002). 

NSGA-II has been successfully applied by researchers to solve multi-objective 

optimization problems in traffic engineering and proved to be efficient for this type of 

problems (Sharma et al. 2009; Wismans et al. 2011). It is a multi-objective 

optimization algorithm that optimizes multiple objectives (4 in this paper) 

simultaneously, searching for a set of non-dominated solutions, i.e. the Pareto optimal 

set. It is a genetic algorithm, based on the principles of natural selection within 

evolution, combining solutions to new solutions (crossover), where the solutions with 
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a higher fitness value have a larger chance to survive over worse solutions. In the next 

generation, these enhanced solutions are recombined again, until no progress is made 

any more or until the maximum number of iterations is reached.  Within NSGA-II, the 

mating selection is done by binary tournament selection with replacement. In addition 

to this mating process, a random mutation operator is applied to a limited number of 

solutions from each generation, to promote the exploration of different regions in the 

solution space. Furthermore, NSGA-II contains elitism, to preserve good solutions in 

an archive. If the number of non-dominated solutions grows bigger than the archive, 

the archive only contains the best non-dominated solutions based on the defined 

fitness value.  

 

The fitness value is calculated in two steps. In the first step (non-dominated sorting), 

the solutions are ranked based on Pareto dominance. All solutions in the Pareto set 

receive rank 1. In the next step, these solutions are extracted from the set and all 

Pareto solutions in the remaining set receive rank 2, etc. In the second step, the 

solutions are sorted within these ranks based on their crowding distance. Crowding 

distance calculation requires sorting of the population according to each objective 

value. The extreme values for each objective are assigned an infinite value, assuring 

that these values survive. All intermediate solutions are assigned a value equal to the 

absolute difference in the function values of two adjacent solutions. Concluding, the 

crowding distance value (and thus the fitness value) is higher if a solutions is more 

isolated, promoting a more diverse Pareto optimal set. For details on the algorithm, 

the reader is referred to (Deb et al. 2002). 

3.2 Lower level 
To be able to assess a multimodal network in a suitable way, a multimodal traffic 

assignment model is applied in the lower level (see fig. 1). This includes a nested logit 

mode choice model, a car assignment model and a PT assignment model. In the 

following section, each component is described. 

 

 

Figure 1: Multimodal traffic assignment model used in the lower level with N 
iterations 
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3.2.1 Modal split 
In this approach various combinations of access mode, PT and egress mode are seen 

as separate modes. These combinations of modes are also called trip chains. Apart 

from these PT related modes, the car mode is considered as a separate mode. The 

bicycle is not considered as a separate mode, because the focus here is on 

interregional trips, where the bicycle can only play a minor role on its own. Therefore, 

the bicycle trips are not included in the demand data.  However, the bicycle is 

considered to be an important mode as an access and egress mode.  

Depending on the costs per mode, a distribution over de modes is calculated by using 

a nested logit model (Ben-Akiva and Bierlaire 1999). This step splits the total OD 

matrix Dij 
into several OD matrices Dijm, one for every mode. Within the nested logit 

model, we use two nests: one for the mode car and one for all trip chains with PT as a 

main mode. The latter nest contains the trip chains that include walking, bicycle and 

car as access mode as well as trip chains that contain walking, bicycle and car as 

egress mode. By doing so, the most attractive PT option mainly competes with the 

private car. In the case a second, evenly attractive PT mode is added to the choice set, 

the use of this new option mainly contains former PT travelers, rather than former car 

travelers.  

The costs of a mode are calculated by adding the different cost components to one 

generalized cost value. In the case of car these costs consist of travel time and of 

distance to represent fuel costs and other variable costs, for example maintenance 

costs. In the case of PT these costs consist of travel time, waiting time, transfer 

penalty and of distance to represent the ticket price. 

3.2.2 Car assignment 
The car-only trips are assigned to the network using the standard capacity dependent 

user equilibrium assignment of Frank-Wolfe. The costs of car depend on the flow 

following a BPR curve. 

3.2.3 Public transport assignment 
The PT assignment method (including various access and egress modes) includes 

multiple routing based on the principles of optimal strategies, as developed by (Spiess 

and Florian 1989), without capacity restrictions 

 

As indicated before, costs are calculated for several trip chains, consisting of an 

access mode, PT as main mode and an egress mode. The number of travelers using a 

certain chain is determined in the modal split step, so for the PT assignment algorithm 

the access and egress modes are fixed. The route choice algorithm consists of two 

steps: stop choice and line choice. For stop choice, a set of candidate stops is specified 

by defining an access mode specific search radius. All stops within this distance are 

added to the set of candidate stops. Moreover, a minimum number of stops to be 

found can be set, i.e. if the number of stops within the search radius is smaller than 

this number, the search radius is extended until the minimum number of stops has 

been found. Within this set of candidate stops, the distribution of travelers among 

stops is calculated using formula 1: a multinomial logit model using the generalized 

costs of the stops in the candidate set. 
s

x

O

G

s G

x S

e
P

e














  (1)

  Ps:  fraction of travelers that choose stop s 

 Gs:  generalized costs when using stop s 

 SO:  set of candidate stops at the origin 

 θ:  logit parameters for stop choice 
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The generalized costs when using a certain stop depends on the distribution of 

travelers among the transit lines serving that stop. This distribution is calculated by 

formula 2. It is a combination of a logit model depending on generalized costs of a 

line alternative and on the frequency of that line. The latter is to model the situation in 

which a fast vehicle has just departed and the traveler prefers to take the next slower 

vehicle over waiting for the next fast vehicle.  
ls

x

s

G

l
ls G

x

x L

f e
P

f e














 (2)

 

 

 

 

So concluding, the PT demand is assigned to the PT network, using multiple routes 

and multiple access and egress modes, without capacity restrictions. For every 

combination of access and egress modes a separate OD matrix is taken as input.  

4 Case study 
The optimization framework is applied to a case study in the Amsterdam metropolitan 

area, which covers a large part of the Randstad (fig. 2). It contains a detailed 

multimodal network, including bicycle links, car links, transit lines (including 

distinction between local services and express services). This enables a detailed 

modeling of the trip chain. On the other hand, the number of zones is limited, to 

ensure fast calculation times.  

 

Figure 2: the area of the case study 

 Pb:  fraction of travelers that choose line l at stop s 

 fb:   frequency of line b 

 Gb:  generalized costs when using line l at stop s 

 Ls:  set of candidate lines at stop s 

 λ:  service choice parameter 
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4.1 Decision variables 
In the case study, 26 decision variables are defined. The decision variables correspond 

to the following possible measures: 

 6 candidate locations for new park and ride facilities 

 3 candidate locations for new train stations 

 4 candidate locations for express train status of train station 

 Frequency of transit lines, from which 

 5 train lines 

 6 bus lines 

 2 candidate locations for tram line extension 

The remaining of the network is unchanged. This includes the networks of access and 

egress modes as well as the car network.  

4.2 Results 
The resulting Pareto set gives insight in the interdependencies and tradeoffs between 

objectives. Furthermore, decision variables can be identified that strongly influence 

the result. In total 2960 solutions are calculated during the execution of the algorithm. 

From these solutions, 339 appear to be non-dominated or Pareto optimal with respect 

to the set of calculated solutions. Note that these Pareto set is an approximation of the 

real Pareto set, since it is impossible to calculate all solutions and thus the true Pareto 

set is not known.  

4.2.1 Trade-offs 
The plots in figures 3 to 5 show 2 dimensional plots of the 4 dimensional Pareto set.  

Each plot shows 2 objective functions and every solution in the Pareto set is plotted 

by one dot based on the corresponding objective values. Note that each plot contains 

dominated solutions if we look at only those 2 objectives, but in the 4 dimensional 

space the plots only contains Pareto solutions.  

 

Figure 3: relation between urban space used and operation costs 
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Figure 3 shows the relation between the amount of urban space used by (parking of) 

cars and the operation costs of the PT and park and ride system. A clear relation can 

be identified: if the number of cars in the city centre is to be decreased, the PT system 

needs a higher budget. In the lower end of the graph it can be observed that the first 

reduction from 79 to 77.5 thousand urban cars trips can be achieved more easily that 

the second reduction from 77.5 to 76.8 thousand trips.  

 

   

Figure 4: Relation between travel time and CO2 emissions 

Figure 4 shows the relation between travel time and climate impact, i.e. CO2 

emission. These two objectives are roughly in line with each other: it is very well 

possible to minimize both climate impact and travel time simultaneously. In the 

multimodal context this makes sense, because using the multimodal decision variables 

in this paper, reducing travel time is possible by improving the PT system, which 

causes a modal shift from car to PT, achieving smaller CO2 emissions. However, in 

the left lower corner if the figure it can be seen that still a tradeoff exists between the 

objectives, which might be caused by solutions with such high PT quality that the 

additional CO2 emissions of the transit vehicles are not compensated any more by 

modal shift from car.  
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Figure 5: the relation between travel time and operation subsidies 

Finally, figure 5 shows the relation between travel time and PT operation subsidies. 

Here the relation is less clear, although a weak negative relation can be identified. 

These 2 objectives interact in a complex way for two reasons. Firstly, a better PT 

system increases costs, but if it is very beneficial for the travelers the PT revenues 

also increase and ultimately PT subsidies may decrease. Secondly, increasing the 

quality of PT cause a shift to PT modes, but due to the used logit model as a mode 

choice model, this shift already slightly takes place when the PT option is still slower 

than the car option, eventually increasing total travel time.  

4.2.2 Important decision variables 
Figure 6 shows the Pareto set for the objectives CO2 emission and operation subsidies, 

distinguishing between solutions that have a frequency of 0 or 2 for one specific train 

line in the network and solutions that have a frequency of 4 or 6 for that train line. 

When looking at the Pareto set, 2 clusters can be identified based on the value of the 

corresponding decision variable, namely the frequency of this main train line. 

Apparently, the frequency of this train line strongly determines the shape of the set. 

This clearly shows that a high frequency on this line is beneficial for CO2 emissions 

and a low frequency on this line is beneficial for lower operation subsidies. However, 

some overlap between the two categories can still be seen: within this overlap area 

other decision variables can still play a distinctive role with respect to the values for 

operation subsidies and CO2 emission.  



Multi-objective optimization of multimodal transport networks 11 

 

 

 

Figure 6: the relation between operation costs and CO2 emission 

5 Conclusions 
In this paper an optimization framework is set up to design a multimodal 

transportation network, based on a predefined set of candidate locations for network 

developments. The framework is applied to a real world case study with 26 decision 

variables. The result of the optimization process is an estimation of the Pareto optimal 

set, consisting of 339 possibly optimal solutions.  

 

Analysis of this Pareto set leads to the following observations. Firstly, a strong trade-

off exists between the use of urban space by cars and operation subsidies: a high 

quality, but expensive public transport system is needed to attract former car users. 

Secondly, it is possible to reduce travel time while also reducing climate impact. This 

is caused by the multimodal decision variables, that promote the sustainable mode of 

public transport, by improving the PT network. Travel time and operation subsidies 

do not show a clear relationship, probably because solutions with low travel times do 

not necessarily include high shares of PT: the car is able to provide reasonable travel 

times as well. Finally it is shown that the Pareto set is strongly influenced by the 

frequency of one specific train line, indicating a key role for that train line in the 

network of this case study. This may indicate that the quality of the public transport 

network itself is more important to achieve sustainability objectives by promoting 

multimodal trips than the quality of the transfer facilities. The low score for new train 

stations indicates that, based on the objectives in this case study, higher speeds for 

through travellers are to be preferred. However, further analysis of the influence of 

other variables on the objectives is desired in the future.  

 

Further effort will be put into analyses and methods to make the Pareto set more 

useful as decision support tool. This includes further identification of effective and 

ineffective decision variables, interrelation between decision variables and reduction 

of the Pareto set to a smaller amount of solutions, that is easier to interpret.  
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