
Modelling Social-Technical Attacks
with Timed Automata

Nicolas David
∗

University of Nantes/LINA,
France

nicolas.david1@univ-nantes.fr

Alexandre David
Aalborg University, Denmark

adavid@cs.aau.dk

René Rydhof Hansen
Aalborg University, Denmark

rrh@cs.aau.dk

Kim G. Larsen
Aalborg University, Denmark

kgl@cs.aau.dk

Axel Legay
Inria, France

axel.legay@inria.fr

Mads Chr. Olesen
Aalborg University, Denmark

mchro@cs.aau.dk

Christian W. Probst
Technical University of Denmark

cwpr@dtu.dk

ABSTRACT
Attacks on a system often exploit vulnerabilities that arise
from human behaviour or other human activity. Attacks
of this type, so-called socio-technical attacks, cover every-
thing from social engineering to insider attacks, and they
can have a devastating impact on an unprepared organisa-
tion. In this paper we develop an approach towards mod-
elling socio-technical systems in general and socio-technical
attacks in particular, using timed automata and illustrate its
application by a complex case study. Thanks to automated
model checking and automata theory, we can automatically
generate possible attacks in our model and perform analysis
and simulation of both model and attack, revealing details
about the specific interaction between attacker and victim.
Using timed automata also allows for intuitive modelling of
systems, in which quantities like time and cost can be easily
added and analysed.

Categories and Subject Descriptors
D2.4 [Software/Program Verification]: Formal meth-
ods; Model checking; H.1.2 [User/Machine Systems]: Hu-
man factors

Keywords
Insider threats; timed automata; attack trees; attack gener-
ation

∗The work for this paper was done during an internship at
Aalborg University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MIST’15 October 16, 2015, Denver, Colorado, USA
c© 2015 ACM. ISBN 978-1-4503-3824-0/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808783.2808787.

1. INTRODUCTION
When considering attacks on organisations, the “chain of

security” is no stronger than the weakest link in the chain.
While users are not the main source of vulnerabilities of or-
ganisations, often the weakest link involves some form of hu-
man behaviour or activity, e.g., executing a particular work
flow or following a predictable routine. Such socio-technical
attacks exploit human behaviour in conjunction with tech-
nology, and range from social engineering of the unwary to
abuse of insider knowledge and access. Combined with the
rapid adoption of information technology in all aspects of
life, the risk and potential impact of such attacks are quickly
exploding, and are likely to continue to increase rapidly as
well in the coming years.

In recognition of this problem, several novel modelling for-
malisms have recently been developed that explicitly take
human behaviour into account when modelling a system [3,
9, 10]. The goal of these formalisms is to enable easier
and more direct modelling of socio-technical systems, and
thereby also the potential socio-technical attacks against
them. The advantage of having formal models of a system,
is that they enable the full range of formal methods to be
used in modelling, analysing, and verifying the security of
a system. They are thus an important element in identi-
fying threats against the modelled organisation. However,
while these formalisms are excellent for modelling and for-
mal (manual) analysis, they all lack automated tool support,
e.g., for large scale modelling and (automated) analysis of
attacks. This lack of tool support naturally limits the size
and complexity of systems that can be usefully modelled and
analysed.

The goal of the TREsPASS project [14] is to close this gap
by developing mod- els and analytic processes that support
risk assessment in complex organisations including human
factors and physical infrastructure. The goal of this support
is to simplify the identification of possible attacks and to
provide qualified assess- ment and ranking of attacks based
on the expected impact.

In this paper we show how this problem can be solved by
using timed automata as an intermediate formalism for mod-
elling socio-technical attacks and systems, e.g., by translat-
ing models from one of the modelling languages mentioned

21

above into a timed automata model. Using timed automata
enables the application of state-of-the-art tools for analysis
of the models, including the use of model checking for find-
ing attacks against a system. In particular, we show how a
real-life case study, developed and studied in the TREsPASS
project [14] can be modelled and analysed using timed au-
tomata. We furthermore show how the attack trees, result-
ing from the extensive attack modelling of the case study
carried out in the TREsPASS project, also can be re-cast
using timed automata and thereby enable the use of model
checking tools for automatically finding attacks against the
model. Indeed, using the UPPAAL model checker [1], we
succeed in finding a novel attack variation that was not pre-
viously considered by the attack tree analysis.

In addition to finding new attacks, model checking and
related techniques can be used for many other kinds of anal-
ysis that are useful for evaluating the security of a system,
e.g., the potential impact of an attack or the time it takes to
perform an attack. Also potential locations of attackers at
time t after an attack or observed event can be approximated
by the techniques presented.

In summary, we consider the following to be the main
contributions the paper: (1) a novel application of timed
automata for modelling socio-technical attacks and systems;
(2) a general technique for converting, or re-interpreting,
attack trees as timed automata.

The rest of this paper is structured as follows. After dis-
cussing related work in the next section, we present the
case study considered in Section 3. Our automata-based
approach for attack modeling is introduced in Section 4 to-
gether with experimental results, followed by a discussion
of more advanced modeling of victim and attacker actions
in Section 5. Finally, Section 6 concludes this paper.

2. RELATED WORK
There are two major areas of related work: attack rep-

resentation and (socio-technical) system models. The for-
mer is mainly concerned with representing possible attacks
against a system, in a way that allows for efficient compu-
tation of relevant properties, e.g., cost or likelihood of an
attack. The goal of the latter is to model entire systems,
not only attacks, in order to find or generate (new) attacks,
simulate attacks, e.g., to evaluate countermeasure, and also
for computing relevant properties.

One popular approach to modelling attacks including so-
cio-technical attacks, is that of attack trees [12, 13]. Attack
trees are a formalism inspired by fault trees, well-known
in safety engineering, and are used to succinctly, in a top-
down manner describe a set of attacks or attack scenarios1.
The top-down approach of attack trees, combined with the
inherent compositionality, makes attack trees very conve-
nient, not least for non-experts. From a formal methods
perspective, the tree structure supports efficient algorithms
for analysis of attack trees, at least for properties that nat-
urally can be computed in a compositional manner. Never-
theless, attack trees have several limitations: (1) It is non-
trivial to give a formal foundation for attack trees, cf. [8].
(2) It is non-trivial to integrate, and formalise the semantics

1In fact there are many different and competing definitions
of attack trees. They all share (only) the basic idea of a top-
down attack goal recursively refined, either conjunctively or
disjunctively, in a tree structure.

of, certain important operators into the attack tree formal-
ism, most notably sequencing. (3) Important factors in an
attack are not (normally) modelled as part of the attack
tree, e.g., victim actions and countermeasures, although so-
called attack-defense trees attempt to integrate the latter.
(4) Since trees do not allow for sharing of nodes or leafs,
attack trees may contain significant redundancy (in [7] an
approach is discussed using directed acyclic graphs to allow
for sharing). (5) While simple quantities, like time and cost,
can be easily added to attack trees, more complex quantities
such as probabilities, e.g., likelihood of a successful attack,
require additional assumptions on the model of attack trees.

In the socio-technical modeling approach we do not only
represent the attacks, but also all the relevant parts of the
entire system (ideally), including physical infrastructure, IT
infrastructure, as well as actors, in particular human ac-
tors, within the system. Modelling the entire system also
to capture operational models of attacks to be made. Such
operational attack models can capture detailed aspects of
an attack in terms its interaction with the attacked system
and thus reveal properties both of the attack and the system
that would otherwise be impossible or difficult to find.

Designing socio-technical modelling languages is a rela-
tively new field; recent contributions include approaches such
as ExASyM [10], Portunes [3], and ANKH [9]. The ExASyM
modelling formalism was created with the goal of analysing
security properties in the context of (human) workflows and
physical infrastructure, e.g., would an intruder be able to ac-
cess a restricted area during an emergency. In Portunes, the
focus is on connectivity and, in particular, how connectivity
can change over time. Finally, the ANKH (Actor-Network
Hypergraph) model, also aims at modelling connectivity and
interaction, but takes a more abstract approach using hyper-
graphs as the underlying formalism. All three languages sup-
port a graphical notation, making it easier for non-experts
to design models, and all three also support various forms
of analysis, e.g., through specialised static analysis or model
checking. However, in order to apply such tools, the socio-
technical models must first be converted into a formalism
supported by the tool of interest, which may lead to loss of
fidelity in the model.

Recent work on identifying attacks in system models aims
at analysing and invalidating policies [4, 5, 6] or at analysing
systems directly [15]. In contrast to these approaches, we
identify attacks based on model checking the timed automata
representing the system.

3. HOME PAYMENT SYSTEM:
A CASE STUDY

In this section we describe the “IPTV case study that will
be used as a running example throughout the paper2. The
case study is based on an internal case study of the TREs-
PASS project. The technical details as well as the people and
companies involved are confidential and we therefore present
an anonymised and slightly redacted version of the original
case study. However, all the important features have been
retained and the work in this paper has also been performed
on the original case study with similar results.

The case study concerns a system supporting primarily
elderly and disabled people in performing online payments

2Here IPTV refers to television service(s) provided over the
IP protocol.

22

Figure 1: IPTV case study

and managing their accounts from their home. With the tar-
get demographic in mind, the system should be integrated
into an existing device that is familiar and easy to use for
the intended user groups, namely the television set. In prac-
tice this is accomplished by hooking up a small, dedicated
computer to the TV and an enhanced remote control with a
built-in card reader for authentication as illustrated in Fig-
ure 1.

This case study features many different security aspects
that may be considered: from the strictly technical, such as
how information is protected while stored or transmitted, to
the socio-technical, covering security issues arising from the
use of and interaction with the technology. In this paper we
focus mostly on the socio-technical aspects, both to demon-
strate the potential for formal modelling of such aspects, but
also because that is where the technical skills required of a
potential attacker are at the lowest and thus admits a much
larger group of attackers.

Figure 1 shows an overview of the IPTV case study. There
are two primary actors: the attacker (represented by a devil
in the figure) and the victim (the IPTV owner/user). Un-
der normal operation, the user would first open a session on
the IPTV, using a standard, password-based authentication
scheme. From this session, the user can then use different
services, e.g., pay a bill or transfer money, by using a pay-
ment card with the concomitant PIN code. The payment
card is read by a card reader built into the IPTV remote
control on which the PIN code is also entered.

In the following we make a number of assumptions about
the context for the case study to simplify treatment:

1. The card-holder has a functional IPTV in his/her house
prior to the attack.

2. The IPTV security configuration ensures security for
the communication of data between the different phys-
ical devices.

3. One Internet Service Provider (ISP) is used for all In-
ternet access.

4. The source code of the software of the IPTV system is
not freely available.

5. Firmware updates are not cryptographically encoded.

6. The IPTV set-top box uses a standard API.

7. The user can log on and off the IPTV system at will.

While these assumptions help delineate the scope of the case
study, they are not critical and can be relaxed or modified
to better capture a specific system.

Before considering actual attacks against the IPTV sys-
tem, the goal or goals of the attacker must be decided upon.
Since the IPTV system is designed to handle money and
payments, one obvious choice goal for an attacker is, how
to “acquire” money using the IPTV system. Within the
TREsPASS project, domain experts have developed an at-
tack tree to explore different attacker strategies for achieving
this goal. We will not repeat the analysis and attack tree
here, but instead focus on three of the attack strategies con-
sidered:

1. Steal payment card and related access codes; gain phys-
ical access to the IPTV system and transfer money.

2. Social engineer (threaten, blackmail, trick) the card-
holder to transfer money.

3. Manipulate the hardware and/or software of the IPTV
set-top box to allow remote access for money transfer
or stealing critical information.

The first two attack strategies are not IPTV specific and
can be applied to a wide range of targets, e.g., net banking
systems in general. We have included them here to illustrate
how such essentially non-technical, human-based attacks can
be modelled and analysed in our approach.

The last of the above attacks can be implemented by the
attacker gaining physical access to the IPTV set-top box
and installing modified hardware and/or software. Alterna-
tively, the attacker can use social engineering techniques to
make the victim, i.e., the owner of the IPTV set-top box, in-
stall the modified hardware and/or software. Figure 2 shows
a slightly modified part of an attack tree representation of
these possible attacks, originally developed by domain ex-
perts within the TREsPASS project. As discussed in Sec-
tion 2, attack trees are a top-down approach to exploring

23

Manipulate the IPTV box

to use it remotely

or as a keylogger

Install malicious

hardware/software

Make victim install

malicious hardware/software

Perform installationGain physicial access

to the IPTV box

Social engineer

the victim

Victim perfoms

installation

Confirm victim is

at home (in order to set up)

Threaten Impersonate Make victim go home Wait for the victim

to go home

Threaten Impersonate

Figure 2: Subtree for attacking the IPTV system

possible attack strategies. The focus is on the attacker’s
primary goal, which is placed as the root node, and further
refined into sub-goals. This refinement is continued recur-
sively until reaching a sub-goal that corresponds to a basic
action, which is then placed as a leaf node. The sub-goals
can either be conjunctive or disjunctive with the former rep-
resenting steps that are all necessary to reach the goal and
the latter representing alternatives for reaching a particular
sub-goal [11]. In Figure 2 conjunctive sub-goals are shown
with an arc across the edges connecting to further sub-goals.

The attack strategies described in the preceding para-
graph will all be modelled as timed automata using our
approach. In this modelling, each of the mentioned attack
sub-goals will be refined further and formalised. One of the
benefits of using timed automata, rather than trees, is that
some of the redundancy that is evident even in a simple at-
tack tree such as the one shown in Figure 2, can be reduced
or even completely avoided. This is important in several
ways, for example, to ease understanding the attack tree.
Most importantly, reducing redundancy also reduces the to-
tal size of the model, making automated analysis more fea-
sible.

4. AN AUTOMATA-BASED APPROACH
FOR ATTACK MODELING

In this section, we introduce our automata-based approach
for modelling socio-technical systems. For lack of space, we
do not give the formalisation in full detail but refer instead
to [2].

The fundamental concept in our formalisation is called a
step. Similar to the sub-goals in attack trees, steps allow to
describe the different goals and sub-goals of an attack. While
attack trees contain sub-trees for sub-goals, each step is for-
malised as a separate automaton describing the behaviour

of that step. In contrast to the inherently dynamic nature
of automata, nodes in attack trees are static.

The step-automata use locations to represent their cur-
rent status, which can be Idle, Ready, Chosen, or Done.
An example of this can be seen in Figure 3. Moving from
Idle to Ready requires that some dependencies are satisfied.
Boolean resources are used to realize dependencies between
steps that must be enabled to switch from Idle to Ready.
Once a step is successfully completed, new resources are
generated (set to 1) or consumed (reset to 0), updating the
set of steps which are ready to be performed. Dealing with
conjunctions and disjunctions within those dependencies is
taken in account by using set resources that allow to perform
a step.

In Figure 3, transitions of the first automaton are labelled
with guards or updates linking the behaviour to those de-
pendencies. As an example, isReady()==1 tests if one set
of resources is fully enabled, whereas updateResources() up-
dates the corresponding resources. We use an encoding in
UPPAAL to provide those data to automata: each step is
automatically instantiated over a specification.

Definition 1 (Step). Let R be the set of resources and
S be the set of steps. A step s is a set (n, d,D,E,M) where
:

• n ∈ N is the number of sets enabling the step;

• d ∈ N is the number of dependency couples used to
describe the step;

• D is the set of dependency couples so that
|D| = d and ∀e ∈ D, e = (r, w) where r ∈ N and r <
N RESOURCES is a resource needed and w ∈ N∗
and w ≤ n is a set in which r is needed;

• E is the boolean array of length N RESOURCES of
enabled resources

24

vulnerable!
attackV ictim?

attackV ictimFinished?

eludeAttack!

Hidden InTrouble

attack!
chooseStep?

checkReady!

attackF inished?

Hidden Exposed

Idle Ready Chosen

c c

Done

isReady() == 1
checkReady? choseStep! attack? attackF inished!

updateResources()

choseStep?
attackF inished!

consumeResources()

c c c

isReady() == 1
vulnerable? choseStep! attack? attackV ictim! attackV ictimFinished!

updateResources()

eludeAttack?

choseStep?

attackV ictimFinished!
consumeResources()

Step 1 solo

Step 2 synchro

Attacker Victim

Figure 3: Network of attack composed of 2 steps

∀i < N RESOURCES,E[i] = 1⇔ s enables i other-
wise E[i] = 0; and

• M is the boolean array of length N RESOURCES
that masks the disabled resources
∀i < N RESOURCES,E[i] = 0⇔ s disables i other-
wise E[i] = 1.

Step 1 and step 2 of Figure 3 illustrate the potential con-
currency between steps. An attack scenario is defined a
sequence of steps and can be represented by the network of
timed automata of Figure 3.

Definition 2 (Scenario). An attack scenario p is a
sequence of steps s0, s1, ..., sn over S such that:

• ∃setj0 ∈ 2R a set of resources that enables s0 such that
∀r ∈ setj0 , statusinit(r) is true

• ∀si, ∃setj a set of resources such that
∀r ∈ setj,statusp,si−1(r) is true,

where statusp,s is a function from R to {false, true} and
p, s is a scenario and a step of this scenario or the keyword
init such that, statusp,s(r) equals to the value of r once the
path p achieved the step s if p, s 6= init and to its initial
value otherwise.

To model the effect of an attacker, the network of timed
automata can be extended to include an automaton depict-
ing the activity of the attacker. In Figure 3, this extension

is illustrated by the Attacker automaton. Each time the at-
tacker reaches the hidden location, a new step can be chosen
among the ready steps set.

Similar to the attack automata, the network of timed au-
tomata can also include an automaton representing victim
behaviour, which marks a substantial increase in expressive-
ness compared to attack trees. In Figure 3 this component
is the Victim automaton. Indeed, this automaton simu-
lates a victim’s activity, generating and consuming specific
resources and creating new opportunities for the attacker.
The victim’s behaviour may for instance allow the attacker
to bypass some steps in order to reach the goal faster. On
the other hand, the victim can create pitfalls that would
make the attack more difficult.

Victim and attacker behaviours are specified in the UP-
PAAL encoding. We could for instance imagine an action
lose the payment card that would allow the attacker to find
it without stealing it. This introduces a refinement in the
description of steps: on the one hand, some steps can be
performed by an attacker on its own: “preparing a malware,
enable a location...”. We call those steps solo steps; on the
other hand, some steps require the victim to be vulnerable
in order to be performed: steal a password, make the victim
do something... We call those steps synchro steps. Synchro
steps can be performed when the victim is in the vulnerable
state. This explains why the two automata of Figure 3 solo
steps wait for the attacker’s signal ready whereas the syn-

25

Description request result states explored CPU time used (ms)

Standard model
E<> (status[20]==1) true 1422 160
E<> Step(3).Success true 1691 210
E<> Step(8).Success true 1595 190

Refined model
E<> (status[20]==1) true 7103 780
E<> Step(8).Success true 8002 850
E<> Step(13).Success true 45684756 1.614e+06

Table 1: Requests computed with an Intel(R) Core(TM) i7-4702MQ

chro steps wait for the victim’s signal vulnerable. A goal is
then defined by the possibility to reach a step or to generate
a resource.

4.1 Finding Possible Attacks
Using the above modeling approach, it is now straightfor-

ward to use model checking to generate all possible attacks
on a system. We are mainly interested in reasoning about
the goal of the attack and about properties of (sets of) re-
sources.

To validate our approach to attack generation, we have
applied it to the case study as described in Section 3 (in the
following called “standard model”), as well as a version of
the case study where some of the attack goal were further
refined (in the following called “refined model”). The refine-
ment does not change the case study as such, but enables
more specific attacks to be generated and thus more states
to be covered by the model checker.

We do not discuss the generated model in more detail here,
but note that in both variants a successful attack is repre-

sented by the same resource number “20”. We use model
checking to test if this resource can be enabled, and then
generate the shortest trace to enable it. This is approach
enabled by UPPAAL options that extract examples from
model checking. Alternatively, we can try to find if one of
the steps which enable resource “20” can be reached success-
fully, that is to say, reach the state Done. For the first model,
the corresponding steps are Step 3 (representing Make the
victim use IPTV) and Step 8 (Use IPTV), for the second
(refined) model the corresponding steps are step 8 (Make
victim use service) and Step 13 (Use service).

The queries to identify attacks are simple reachability re-
quests, which provide results and examples of scenarios that
fit the conditions. On the model for the case study, UP-
PAAL finds an interesting scenario that was not captured by
the attack tree description of this case study shown in Fig-
ure 2, which was developed by domain experts: victim turn
on IPTV - attacker enable pub/house location - victim go
to the pub - attacker steal the card and the pin - attacker
use the card and the pin to use the service. Such a scenario

Figure 4: Victim template

Figure 5: Attacker template

26

Figure 6: Step template

is only possible thanks to the influence of the victim and
the use of dynamic resources to simulate the model creating
opportunities of attack. From this scenario a simple counter
measure can be proposed: always log-off an account when
you do not use it. Such a counter measure would be more
difficult to obtain with an attack tree, as we deduced it from
a trace which reflects the opportunities that arise while the
victim is acting.

Some statistics of our model checking experiment are shown
in Table 1. Note that in the refined model the number of
explored states increases rapidly. In order to deal with this
state space explosion in general, reduction techniques have
to be applied. We refer to [2] for further discussion and a
solution.

5. BEYOND ATTACK GENERATION
In the previous sections we have introduced our approach

to attack generation based on networks of timed automata.
In this section, we use the diversity provided by automata-
based modeling to present an improved model.

Since the actions of victims (as well as those of attackers)
are explicitly represented in our approach, it is straightfor-
ward to extend the victim model to take more complex inter-
actions into account, as illustrated by the template in Fig-
ure 4. Both the attacker and the “step” templates have to
be updated correspondingly. These are shown in Figures 5
and 6, respectively.

In the new victim model, the transition from Waiting-
Choice to WaitingDependencies labeled by acting[v]? means
that we have to verify dependencies each time that the vic-
tim performs an action which may change the set of enabled
resources.

The behaviour of the victim has been abstracted: we cre-
ated a set of resources depicting the status of the victim.
When the victim becomes vulnerable, the corresponding re-
source is set to 1. This resource is tested when former
synchro steps are verifying their dependencies. Therefore,
we can keep one global template for solo steps and synchro
steps. In any case, we need to specify if a step involves the

victim or not. This is realised with the resource called in-
volve. Indeed, when the victim is involved in a step, the
victim must not be able to act. This is a simple way to cre-
ate semaphore over the resources, without involving a pro-
cess that would increase the state space and complicate the
model. We also define a subset of consumable resources over
which the victim has control. Last, we define some physical
locations for the victim.

This new template comes with several assumptions: the
victim can only act over a limited set of resources and the
victim’s actions are atomic. In the initial state, the victim
is not involved and not vulnerable.

As future work, our approach lends itself easily to further
extension and experiments involving, e.g., statistical model
checking to introduce stochastic behaviour and statistical
estimates of attacker and victim behaviour.

6. CONCLUSION
We have presented a timed-automata based model to deal

with socio-technical attack problems such as insider threats.
Based on a simple encoding, non-experts would be able to
specify and simulate a complex system thanks to this kind
of tool. The systematic analysis provided by UPPAAL al-
lows finding interesting reachability results, which confirm
the strength of model-checking in the field of attack study.
Sequential modeling of attack considering victim’s behaviour
is especially relevant for dealing with insider threats, where
the weakness of the system comes both from the system and
the user.

Therefore we emphasize a simple but relevant counter-
measure based on generated traces. Moreover using au-
tomata opens perspectives toward a use of real time simula-
tion in such problems, but also prices or probabilities which
represent relevant future work areas to face the challenges
raised by socio-technical attack study. As future work, we
plan to study how statistical model checking, using the UP-
PAAL SMC tool, allows for more nuanced models of both
attackers and victims through weighted choices for the ac-

27

tors of the model. We also are investigating the relation of
our approach with policy invalidation [4, 5, 6].

7. ACKNOWLEDGMENTS
Part of the research leading to these results has received

funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 318003
(TRESPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be
made of the information contained herein.

References
[1] G. Behrmann, A. David, and K. G. Larsen. A tutorial

on Uppaal. In Formal Methods for the Design of
Real-Time Systems, volume 3185 of Lecture Notes in
Computer Science, pages 200–236. Springer, 2004.

[2] N. David. TREsPASS project. Master’s thesis, Ecole
Centrale de Nantes (IRCCYN), France, 2014.
Completed as part of internship at Aalborg University.

[3] T. Dimkov, W. Pieters, and P. H. Hartel. Portunes:
representing attack scenarios spanning through the
physical, digital and social domain. In Proceedings of
the Joint Workshop on Automated Reasoning for
Security Protocol Analysis and Issues in the Theory of
Security (ARSPA-WITS’10), volume 6186 of Lecture
Notes in Computer Science, pages 112–129. Springer.

[4] M. G. Ivanova, C. W. Probst, R. R. Hansen, and
F. Kammüller. Attack tree generation by policy
invalidation. In 9th International Conference on
Information Security Theory and Practice (WISTP).
Springer, 2015.

[5] F. Kammüller and C. W. Probst. Invalidating policies
using structural information. In 2nd International
IEEE Workshop on Research on Insider Threats
(WRIT’13). IEEE, 2013.

[6] F. Kammüller and C. W. Probst. Combining
generated data models with formal invalidation for

insider threat analysis. In 3rd International IEEE
Workshop on Research on Insider Threats (WRIT’14).
IEEE, 2014.

[7] B. Kordy, L. Pietre-Cambacedes, and P. Schweitzer.
DAG-based attack and defense modeling: Don’t miss
the forest for the attack trees. CoRR/arXiv:1303.7387,
2013.

[8] S. Mauw and M. Oostdijk. Foundations of attack
trees. In Proceedings of the International Conference
on Information Security and Cryptology (ICISC
2005), volume 3935 of Lecture Notes in Computer
Science, pages 186–198. Springer, 2005.

[9] W. Pieters. Representing humans in system security
models: An actor-network approach. Journal of
Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, 2(1):75–92, 2011.

[10] C. W. Probst and R. R. Hansen. An extensible
analysable system model. Information Security
Technical Report, 13(4):235–246, Nov. 2008.

[11] X. Qin and W. Lee. Attack plan recognition and
prediction using causal networks. In Proceedings of the
20th Annual Computer Security Applications
Conference (ACSAC 2004), pages 370–379, Dec. 2004.

[12] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner.
Toward a secure system engineering methodology. In
Proceedings of the 1998 New Security Paradigms
Workshop (NSPW’98), pages 2–10.

[13] B. Schneier. Attack trees: Modeling security threats.
Dr. Dobb’s Journal, Dec. 1999.

[14] The TREsPASS Consortium. Project web page.
Available at http://www.trespass-project.eu.

[15] R. Vigo, F. Nielson, and H. R. Nielson. Automated
generation of attack trees. In Proceedings of the 27th
Computer Security Foundations Symposium (CSF),
pages 337–350. IEEE, 2014.

28

