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Modeling Power Amplifiers using Memory
Polynomials
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In this paper we present measured in- and output data of a power amplifier (PA). We
compare this data with an AM-AM and AM-PM model. We conclude that a more sophisti-
cated PA model is needed to cope with severe memory effects. We suggest to use memory
polynomials and introduce two approaches to deduce the polynomial coefficients from the
measured data: the Least-Squares and Crosscorrelation approaches. We construct PA
models according to both approaches, using the measured data. We compare the two PA
models with the original AM-AM and AM-PM model.

Introduction

Power Amplifiers (PAs) are inherently non-linear. There areseveral techniques to lin-
earize PAs in both the analog and digital domain. One of the techniques is digital predis-
tortion at baseband (see [1]), where the general principle is to determine the baseband-
equivalent input-output behavior of the PA and to apply the inverse of this relation to the
baseband signal before it is converted from digital to analog.
Because the input-output relation of the PA changes in time due to temperature changes
and aging of components, a control mechanism constantly adapts the predistortion. For
that purpose, the behavior of the PA has to be monitored. At fixed time intervals, a
baseband-equivalent model of the PA behavior is deduced using measured data. The
model obtained is used to adapt the predistortion. In for example UMTS basestations,
the behavior of the PA can change relatively fast, in the order of milliseconds and the
creation of a PA model has to be of low computational complexity. However, for digital
predistortion to be effective, the PA model has to be very accurate.
This paper starts with the presentation of measured baseband-equivalent input- and out-
put data of a real PA and its corresponding AM-AM and AM-PM PA model. Both are
provided by Philips Semiconductors in Nijmegen. Second, wepresent two approaches to
generate PA models: the Least-Squares- and Crosscorrelation PA modeling approaches.
Third, we compare the PA models obtained via these two approaches with the original
data and the AM-AM and AM-PM PA model. Finally, we draw some conclusions.

PA data and model

The data provided by Philips Semiconductors Nijmegen consisted of:

• Results of measurements on a PA, consisting of 48k samples ofa stimulus signal
and the corresponding response signal. The specific PA is dedicated to 2.11-2.17
GHz WCDMA operation, biased in class AB. The typenumber of the device is
BLF4G22-100 and it is realized in the Philips fourth generation LDMOST technol-
ogy.
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Figure 1: AM-AM distortion of the Philips data and the Philips model

• A model of the PA, based on the measurements. The specific PA model, provided
by Philips, is described by the following expression:

y(n) = f(|x(n)|) · ei·g(|x(n)|) ·
x(n)

|x(n)|
(1)

where

f(x) = 0.0204 + 0.8445 x+ 0.2918 x2 −

0.0588 x3 − 0.0729 x4 + 0.0175 x5

g(x) = 0.0660 − 0.0388 x+ 0.1963 x2 −

0.2777 x3 + 0.1140x4 − 0.0146x5

The polynomialsf(x) and g(x) describe the so-called AM-AM or Amplitude-
Amplitude distortion and AM-PM or Amplitude-Phase distortion respectively.

Both the measured in- and output samples are used to generateAM-AM and AM-PM
plots. Using the PA model described above, measured input samples are used to determine
corresponding output samples. In figure 1, the AM-AM distortion for the original data
and the model provided by Philips are presented.
In figure 2, the AM-PM distortion for the original data and themodel provided by Philips
are presented.
From both figures we see that the original data is rather scattered, in contrast with the
results obtained via the PA model. The scattering is due to severe memory effects, intro-
duced by the PA, which are not covered by the AM-AM and AM-PM PAmodel. A very
general way to model a non-linearity including memory effects is a Volterra model. A
general Volterra model consists of many parameters and the complexity of an algorithm
to determine these parameters is high. A simplified Volterramodel is a model consisting
of memory polynomials. Modeling the behavior of a PA, for thepurpose of digital predis-
tortion by means of a memory polynomial, was introduced by [2]. A general description
of a memory polynomial is given in expression 2.

y(t) =D0(x(t)) +D1(x(t− 1)) +D2(x(t− 2)) + ... (2)
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Figure 2: AM-PM distortion of the Philips data and the Philips model

where
Di(x) = a0iψ0(x) + a1iψ1(x) + a2iψ2(x)... (3)

In this expressionx indicates the sampled baseband equivalent input signal of the PA
andy indicates the output. The functionsψi are polynomials. In our approach we use
orthogonal polynomials because they yield more stable behavior when applied in a dig-
ital predistortion system compared to ’normal’ polynomials (see [3]). The orthogonal
polynomials are:

ψ0(x) = x | x |−1

ψ1(x) = x

ψ2(x) = 4 | x | x− 3x

ψ3(x) = 15 | x |2 x− 20 | x | x+ 6x

ψ4(x) = 56 | x |3 x− 105 | x |2 x+ 60 | x | x− 10x

ψ5(x) = 210 | x |4 x− 504 | x |3 x+ 420 | x |2 x

− 140 | x | x+ 15x

(4)

We limit ourselves to polynomials up to the fifth degree whichgive satisfactory results in
practical situations.
When using memory polynomials, the behavior of the PA is deduced by estimating the
polymial coefficientsakτ given the samples of the inputx and the outputy. A relatively
straightforward way to estimate the polynomial coefficients is by using the Least Squares
criterion.

Least-Squares PA modeling

In the Least Squares (LS) PA modeling approach, we try to find the coefficientsakτ in
such way that if we use these coeficients, together with the input samplesx, we obtain an
estimatêy of the output signaly in such way that| ŷ(t)−y(t) |2, summed over all samples,
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is minimized. This approach is elaborated in [3]. The numberof full-precision multiplca-
tions that have to be executed within the LS PA modeling approach is at leastO(T ); it
scales linearly with the number of samples used to estimate the polynomial coefficients
â. Since the number samples can be relatively large, the complexity is relatively high. An
alternative with reduced complexity is the Crosscorrelation PA modeling approach.

Crosscorrelation PA modeling

To reduce the digital complexity for PA modeling, we developed the Crosscorrelation PA
modeling algorithm. The algorithm consists of two parts. Inthe first part, crosscorrelation
functions are generated without full-precision multiplications being involved. The gener-
ated crosscorrelation functions consist of a fixed number ofelements (lags), independent
of the number of samples. In the second part we estimate the polynomial coefficients
using the least-squares solution based on the fourier transforms of the crosscorrelation
functions. In this part, full precision multiplications are involved but the number of ele-
ments of the crosscorrelation functions is fixed. This approach is explained in more detail
in [4].
In the Crosscorrelation PA modeling approach, the number ofspectral points equalsN . If
an FFT is used to transform the vectors from the time domain tothe frequency domain, the
complexity isO(N log2N). The complexity of the LS PA modeling approach isO(T ). In
generalN is much smaller thanT so the Crosscorrelation approach has lower complexity
than the LS approach. The reduction of the complexity is due to the crosscorrelation
which does not involve full-precision multiplications arerequired.

Results

We used both approaches, LS and Crosscorrelation, to determine PA models using the
measured data. Using these PA models, the measured input signalx is used to determine
a corresponding output signalŷ. The pairs of signals(x, ŷ) are used to generate AM-
AM and AM-PM plots. In figure 3, the AM-AM distortion of the memory polynomials,
determined by the LS- and Crosscorrelation approach, are given.
In figure 4, the AM-AM distortion of the memory polynomials, determined by the LS-
and Crosscorrelation approach, are given.
We see that the PA models result in scattered AM-AM and AM-PM plots. However,
using these plots it is difficult to determine the quality of the PA models. We therefore
determined the spectra of the original measured signaly and of the estimated outputŝy
using the different PA models. The spectra of the Philips response data, the response of
the model provided by Philips, the response of the PA model using the LS approach and
the response of the PA model using the Crosscorrelation approach are given in figure 5.
The input signal is an oversampled Wideband CDMA signal and because of the PA non-
linearity, there is significant power outside the primary channel as well. If we concentrate
on these Adjacent Channels, we see that the estimates of the power of the response of the
Crosscorrelation-based PA model is closest to the power of the actual Philips response
data.
Besides an analysis of the responses in the frequency domain, we analyzed the responses
in the time domain as well. We determined the Mean Square Error (MSE) between the
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Figure 3: AM-AM for the PA models based on the LS- and Crosscorrelation approach
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Figure 4: AM-PM for the PA models based on the LS- and Crosscorrelation approach
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Figure 5: Spectra Philips data, Philips model, LS- and Crosscorrelation model
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Philips response data and the responses based on the three PAmodels. The MSEs are
given in table 1.

PA model MSE
Philips 4.0231 10−5

LS based 1.1 10−3

Crosscorrelation based8.1758 10−4

Table 1: Mean Square Errors of the PA models

We see that the model provided by Philips Semiconductors gives the best estimate. We
also see that the model which gives the smallest MSE in the time domain does not auto-
matically generate a signal with a spectrum that fits the spectrum of the original response
data best.

Conclusion

In this paper we presented measured stimulus- and response data to construct a model of
a PA. The PA model is based on memory polynomials. We used a straightforward Least
Squares approach toe determine the polynomial coefficients. To reduce the complexity,
we developed the Crosscorrelation approach. Both approaches are used to generate a PA
model and together with the PA model provided by Philips, they are used to generate
responses using the measured stimulus data as input. These responses are compared with
the original response data to determine the quality of the PAmodels. The quality is
determined in the time domain and in the frequency domain. Inthe time domain, we use
the Mean Square Error between the measured response and the generated responses as
a measure of the quality. In this case, the PA model provided by Philips resembles the
behavior of the real PA best. If we use the power in the adjacent channels as an estimate
of the quality of the PA model in the frequency domain, the PA model obtained via the
Crosscorrelation approach resembles the real PA best. For digital predistortion of PAs,
it is important that an accurate model of PA can be constructed using an algorithm with
low complexity. We have shown that the Crosscorrelation approach effectively reduces
the complexity.
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