
Implementing Business Rules on Sensor Nodes

M. Marin-Perianu

University of Twente

Enschede, The Netherlands

Email: m.marinperianu@utwente.nl

T.J. Hofmeijer

Ambient Systems

Enschede, The Netherlands

Email: hofmeijer@ambient-systems.net

P.J.M. Havinga

University of Twente

Enschede, The Netherlands

Email: p.j.m.havinga@utwente.nl

Abstract— Wireless sensor networks (WSNs) will be able to
assist industrial and business processes and to render rich
functionality in a dependable way. Two key elements that can
make this real are: a simple and efficient way of expressing
the business logic, and a reliable mechanism for selectively
reconfiguring sensor nodes. We present a solution that combines
both elements. The main objective is to guarantee the dissem-
ination of business rules to multicast groups of sensor nodes,
while striving for energy efficiency and low overhead. Simple
cross-layer optimizations are used to achieve this. For scalability
reasons, our solution demands only local knowledge, performs
local retransmission of lost packets and uses aggregation of
acknowledgements. The results of our evaluation indicate a good
ability of recovering from serious errors, even under high error
rates.

I. INTRODUCTION

A large range of business processes [2], [18] can benefit

from relocating more logic at the point of action, through

the use of intelligent sensor networks. To make this real we

need reliable and easy to reconfigure sensor nodes that can

overcome resource limitations through collaboration. In the

following we study this requirement from both perspectives

(reconfiguration and reliability) and describe a complete solu-

tion targeting a concrete scenario.

The scenario concerns transport and logistics processes [4],

which deal with the large-scale distribution of perishable goods

(such as flowers) from the producer to the retail shops. The

distribution process involves a number of phases: (1) the transit

phase, from the production plant to the distribution center,

(2) the loading phase, where goods are prepared for shipping

according to shop orders, (3) the long-distance transportation

phase and (4) the delivery to shops phase. In all the phases

there are a number of errors to be considered, e.g. goods

are improperly stored, lost, loaded incorrectly or delivered

to the wrong store. Often during the delivery process, the

goods are transported in rolling containers, or Returnable

Transport Items (RTIs). The RTIs intended for a specific shop

are grouped together, either at the distribution center (in an

area called “expedition floor”) or in the trailer. By outfitting

the RTIs with wireless sensor nodes, errors can be detected

and avoided. The tasks of the sensor nodes are: (1) observe

the current situation (e.g. climatic conditions, location, time,

neighbourhood, etc.), (2) check if the situation matches a set

of rules (further referred as business rules for sensor nodes)

specified for each shop, and (3) trigger alarms or even take

actions if the rules are not fulfilled.

Due to the dynamics of the business process, the rules

are expected to change accordingly. The central system or

a mobile operator has to reconfigure frequently the various

groups of nodes in a reliable way (see Figure 1). It is

therefore desired to have a multicast reliable protocol, which

disseminates the new rules to the specified group and affects

as less as possible the other nodes (in terms of energy and

bandwidth).

The main requirement of such a protocol is to correctly

deliver all the data to every intended recipient. However, in the

context of WSNs, this requirement exhibits unique challenges

due to the scarcity of available energy, memory, computing

power and bandwidth. To answer to these challenges, we

propose a compact form of expressing and executing simple

business logic through rules, and an energy efficient, reliable

dissemination protocol. We perform both simulation and prac-

tical evaluation of the integrated solution.

II. RELATED WORK

Previous research has also considered the idea of a rule

engine for embedded devices. Cooperative Artefacts [18], for

example, can autonomously reason about their situation by

means of an inference engine similar to a Prolog interpreter.

The functionality of the inference engine is however limited

since it has to run on resource-poor devices, such as sen-

sor nodes. An application specific virtual machine, such as

Maté [11], offers more flexibility for programming sensor

networks, but at the price of significant overhead. TinyDB [12]

is a SQL-like query engine for sensor nodes, mainly intended

for the “traditional” data-gathering applications.

The topics of reliable data dissemination and reconfiguration

account for a considerable number of research contributions.

With respect to our solution, we distinguish three broad related

areas: general-purpose multicast protocols, reliable transport

solutions for WSNs and sensor network reprogramming. For

the first area, Levine et al. [9] give a comprehensive taxonomy

and show analytically that tree-based protocols constitute the

most scalable class of all reliable multicast protocols and

also the best choice in terms of processing and memory

requirements. The problem of reliable transport in WSNs has

received increasing concern lately. The proposed solutions

consider performing hop-by-hop error recoveries (see PSFQ

protocol [19]) or constructing a loss recovery infrastructure

(see GARUDA [15]). Stann and Heidemann [16] propose

RMST (Reliable Multi-Segment Transport), a transport layer

Fig. 1. The expedition floor.

designed for Directed Diffusion and discuss several design

choices for MAC, transport and application layers. Finally, the

existing work on sensor network reprogramming can be split

in two sub-categories: entire code delivery (see MOAP [17],

Deluge [7] and MNP [8]) and difference-based update (see

Maté [11]). The usual approach is to distribute the code or

the updates in a hop-by-hop manner, with repairs being done

within the local neighbourhood.

Our contribution consists in providing an integrated solution

for programming and reliably reconfiguring groups of sensor

nodes at scale. Compared to other programming abstractions

mentioned above, our business rule engine has very little over-

head (less than 1 kB memory footprint) and renders enough

flexibility for being useful in a large range of applications.

Furthermore, we propose a multicast-based, reliable dissemi-

nation protocol, through which the applications running in the

network are more selective, closer to the real processes and

more scalable. Compared to the solutions generally available

for WSNs, our protocol focuses on guaranteeing the delivery

rather than improving the delivery ratio. In addition, to satisfy

the energy, memory and bandwidth constraints, our protocol

uses cross-layer interaction and aggregation, and requires only

local knowledge.

III. BUSINESS RULES FOR SENSOR NODES

The business rules represent a simple, yet powerful method

of programming sensor nodes. The structure of the rules aims

to express simple business logic in a compact and efficient

way. Since the sensor nodes will assist real-life processes, the

most common tasks are expected to address the monitoring

of parameters against certain conditions. If the conditions are

not met or erroneous situations are detected, the nodes should

inform the backend system and take corresponding actions.

A simple example would be the following rule: ”Measure

humidity x at rate r; if it is outside the interval [xmin;xmax],
launch alarm service Salarm”. Complex conditions can also be

expressed by forming chains of rules (logically linked) and by

providing more elaborate actions to be taken when the rules

are fulfilled or not.

The structure of a business rule is defined in Figure 3.

Fig. 2. Business rule engine architecture.

Fig. 3. The structure of a business rule.

Each rule is evaluated at the specified sample rate by testing

the values provided by the sensing driver against certain

conditions. The driver usually represents the code that samples

the sensed data, but it can be any function that provides a

numerical result. In this way, richer functionality, computation

or reasoning (e.g. in our scenario, obtain a consensus with

the other group members) can be embedded in the rules. The

conditions specify interval limits for minimum and maximum

values, as well as the admissible variation ∆ of the last sample

compared with the previous ones. The evaluation of the rule

outputs a TRUE or FALSE result that activates a service, i.e.

executes a user defined code module. Moreover, each rule may

be valid only for a certain running time, given by the start and

stop moments. Finally, in order to construct chains of rules, a

next rule field is provided.

Figure 2 gives an architectural overview of the business

rule engine. The sensing infrastructure comprises not only

environmental sensed data (such as humidity in the previous

example), but also other contextual information that can be

captured by sensor nodes and is relevant to the application

(such as location information, neighbouring nodes and even

users, identified by the devices they are carrying with them).

The rule engine is a standalone task, which evaluates the

sensed information, provided by the drivers, according to the

current set of rules. For every rule in turn, according to its

sample rate, the rule engine calls the driver function, compares

the data against the conditions and launches the appropriate

service. The service can trigger a local action (such as a local

alarm or an actuation), a remote connection to the central

system, or even an interaction with a nearby user.

It is important to point out that the rule engine can handle

both polling and events, depending on the sensing hardware

available. For usual passive sensors, polling at the specified

sample rate is the only option. In this case, the rule engine

has the advantage that it triggers an action only when the

sensed data does not match the conditions, saving thus network

communication and energy, consequently. If active sensors

are utilized (such as movement or vibration detection, push-

buttons, or intelligent sensors that can be configured for low

and high thresholds), then additional energy per individual

node can be saved. The sample rate field can be ignored and

the rule engine task is triggered directly by the drivers of

the corresponding sensors (for implementation and operating

system details, see Section VI).

IV. TREE-BASED DISSEMINATION

Tree-based reliable multicast protocols (TRMP) [9], [14]

are shown to have good scalability properties by delegating

responsibility to local groups (i.e., a node and its children in

the tree). In addition, a considerable amount of network traffic

can be saved by using local and aggregate ACKs. Although

WSNs usually rely on a mesh structure, a tree or cluster

overlay organisation is often required for a proper, distributed

operation. The reliable multicast protocol can thus directly use

the available overlay structure. This paper does not focus on

the construction or maintenance of such a tree structure, but on

its efficient exploitation with respect to the problem of reliable

data dissemination.

A. Cross-layer approach

In our previous work [13] we reported on experiments with

several reliable transport solutions in a sensor network testbed.

The experimental results showed the following:

1) Traditional end-to-end error control cannot be applied

directly in WSNs, but it has to be combined with local

error detection and recovery.

2) Errors usually occur in burst and determine the loss of

one or more packets. Therefore, a transport protocol

should mainly handle packet losses, while leaving bit

errors to be dealt with at MAC level.

3) A cross-layer approach, where the transport layer in-

teracts with routing and MAC, brings about significant

benefits in terms of energy and throughput.

One specifically important optimization was to use local

MAC ACKs for each packet and resort to transport layer ACKs

only for the whole window. The reason is that MAC ACKs

consume less time and energy than transport layer ACKs (in

fact, in our implementation, they take no additional time or

power, since we use a TDMA-based MAC protocol). In this

paper, we extend the idea for the multicast situation, following

the scheme described by Levine et. al [10]: the local ACKs are

MAC-based and the aggregate ACKs correspond to window

ACKs. The aggregate ACKs are needed for two reasons: (1)

MAC ACKs increase the confidence in the correct reception of

a packet, but do not guarantee it, and (2) the source must have

an indication for safely releasing the data from the memory.

B. Protocol Description

We consider the case of a dense network of heterogeneous

nodes, organised into multicast groups according to application

specific criteria (for example, nodes with similar resources or

(a) (b)

Fig. 4. Protocol operation.

placed in a certain area). For simplicity, we consider that the

protocol operates on a multicast tree rooted at the source. The

nodes of the tree are either members of the group or forwarders

needed for propagating the information.

The message to be disseminated is split in fixed size

windows of packets. The packets are identified by sequence

numbers. The receivers acknowledge the window with ACK

or NACK packets indicating through a bitmask the correctly

received and missed packets, respectively.

The protocol starts with an initial phase, during which a

packet announcing the new message is flooded into the tree

and the nodes initialize the dissemination session as follows:

1) Set the protocol parameters, such as sequence numbers,

message length, etc.

2) Forward the message announcement to all children,

3) Based on the replies from the children, compute the

height in the tree, the timeouts and decide the role,

4) Acknowledge the parent and piggyback the height and

role.

Acknowledgements and retransmissions are used to ensure

that the initial phase ends up correctly and all interested nodes

are ready to receive the message.

After the completion of the initial phase, the source starts to

send the message. Each packet from a window is sent until all

the direct children acknowledge it through MAC ACKs (see

Figure 4(a)) or a maximum number of errors is exceeded. At

the end of one window, the source waits for transport level

ACKs/NACKs from all the direct children. If there are NACKs

or a timeout occurs, the source will start resending the missed

packets (or the whole window), following the same procedure.

Accordingly, the leaves of the tree (i.e., nodes that do not have

children that are members or forwarders) will acknowledge

every packet at MAC level and every window at transport

level. The intermediate nodes carry out a double task, being

both parents and children, and therefore they are the most

exposed in terms of energy consumption. An intermediate

node maintains a small cache, equal to the window size, in

order to act as a source for its children, taking care of all

local repairs. Only after all the children have sent window

ACKs, it can send an aggregate window ACK to its parent

(see Figure 4(b)).

TABLE I

SIMULATION PARAMETERS

Average tree degree 1-16

Tree height 3-8 hops

Window size 5 packets

Packet loss rate 0-50%

Fault rate 1%

Source sending rate 1 packet/sec

Energy for transmission/reception ≈ 0.2 mJ/packet

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Packet loss rate

Source
Intermediate

Leaf

Fig. 5. Energy consumption on source, leaf and intermediate nodes, as a
function of the packet loss rate.

C. Errors

Our protocol can recover from the following types of errors:

• Packet losses. Packets may be lost or corrupted when

transmitted from parent to children. These errors are

detected by the parent at MAC layer or signaled by the

children through window NACKs.

• Faults. By fault we mean an error that causes the re-

transmission of the entire current window. There are

two possible reasons for a fault: a topology change

(a node loses the contact with its parent and has to

register to another parent) or a hardware error (due to

imperfect battery contacts, harsh environments, watchdog

behaviour, etc.).

We assume that the dissemination takes place in a static

setting, i.e. the nodes are stationary during the reconfigura-

tion. Therefore, we do not study the impact of mobility on

our protocol. The possible topology changes are supposed

to happen as a result of the inherent fluctuations of the

wireless communication medium. Accordingly, the fault rate

is expected to be low (< 2%), whereas the packet loss rate

might vary significantly in practice.

V. SIMULATION RESULTS

We implemented the business rules dissemination protocol

in OMNeT++ simulation environment [3]. In each simulation

run, we construct a tree of 300 nodes, with a specified average

tree degree, and disseminate a message of 10,000 packets.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Average tree degree

1% loss rate
10% loss rate
30% loss rate
50% loss rate

Fig. 6. Energy consumption on intermediate nodes, as a function of the
average tree degree, under various packet loss rates.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5

D
e
la

y
 (

s
e
c
o
n
d
s
)

Packet loss rate

Avg. tree degree = 4
Avg. tree degree = 8

Avg. tree degree = 16

Fig. 7. Average latency as a function of the of the packet loss rate.

Besides the correct operation of the protocol, we are interested

in the energy consumption and average latency.

Table I summarizes the various simulation parameters. Fig-

ure 5 shows the average energy costs for source, leaf and

intermediate nodes, as a function of the packet loss rate.

Figure 6 reflects the effect of the average tree degree on

the energy consumption observed at the intermediate nodes.

We can note that the local recovery and ACKs aggregation

mechanisms ensure a linear performance degradation, even

under high error rates. As a tradeoff, the intermediate nodes are

more loaded than the source or leaf nodes. We further evaluate

the average latency of the protocol, computed as the average

delay per successfully transmitted packet. Figure 7 shows the

average delay variation with the loss rate, for several values of

the tree degree. Other parameters that affect the dissemination

latency are the sending rate at the source node and the tree

height.

We finally study the influence of the window size w on

the energy consumption and throughput, respectively. Figure 8

shows the average energy cost at intermediate nodes, for a

successfully transmitted packet. We notice that increasing the

window size has a positive effect (mostly for w ≤ 7) as less

ACK packets are being produced. The throughput plotted in

Figure 9 is computed as the ratio of successfully transmitted

packets per second. The graphics indicate a good tradeoff for

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12

E
n
e
rg

y
 /
 p

a
c
k
e
t
[m

J
]

Window size

1% loss rate
10% loss rate
30% loss rate
50% loss rate

Fig. 8. Energy consumption on intermediate nodes, as a function of the
window size, under various packet loss rates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t
ra

ti
o

Window size

1% loss rate
10% loss rate
30% loss rate
50% loss rate

Fig. 9. Throughput ratio, as a function of the window size, under various
packet loss rates.

5 ≤ w ≤ 7. For w > 7 the impact of faults (causing the

retransmission of the whole window) is dominant and therefore

the overall throughput decreases. However, it is difficult to

establish an optimum, since larger window sizes require more

storage on the nodes for caching, and memory is a critical

resource.

VI. PRACTICAL EVALUATION

In this section we present the implementation of the com-

plete solution for reliably disseminating business rules to

groups of sensor nodes and we describe the tests performed

within an experimental setting.

A. Platform

In our experiments, we are using Ambient uNode 2.0 plat-

form [1] (see also Figure 10). The onboard micro-controller is

the Texas Instruments MSP430, which offers 48kB of Flash

memory and 10kB of RAM. The radio transceiver has a maxi-

mum data rate of 100kbps. The uNodes run AmbientRT [6], a

real-time multitasking operating system designed for support-

ing data centric architectures. The key points of AmbientRT

are:

• Real-Time Scheduler, also providing mutual exclusion for

resource sharing;

Fig. 10. Node with SHT and LDR sensors.

Fig. 11. Cross-layer interactions.

• Data Manager, based on a publish/subscribe mechanism

for inter-task communication;

• Dynamic Loadable Modules (DLMs), which support sys-

tem reconfiguration at runtime.

B. Cross-layer interactions

As mentioned in Section IV-A, we rely on a cross-layer

design for increased efficiency. Figure 11 sketches the inter-

actions between the main modules: LMAC, the reliable dis-

semination protocol and the business rule engine. LMAC [5]

is a lightweight medium access control protocol that provides

the following features:

• Collision avoidance through scheduled access (each node

obtains periodically the right of using the medium for a

fixed time interval, called time slot),

• Neighbour information, including neighbour ID, link

quality and distance to gateway (in hops),

• Acknowledgments and retransmissions, within the local

neighbourhood,

• Control points through callbacks, an extension of the

original LMAC that practically enables the cross-layer

interaction.

LMAC delivers the received packets and notifies the MAC

ACKs to the dissemination module. The latter, in turn, instructs

LMAC to listen only to those packets intended to the specific

multicast group. Considerable energy is saved by applying this

selective listening scheme.

Fig. 12. Experimental setting.

When a new set of rules is announced in the initial phase

of the dissemination, the sensor nodes enter a reconfiguration

state. Since both the business rule engine and the reliable

dissemination are critical tasks and may compete for the

communication medium, we prevent them from running in

parallel. The dissemination protocol uses exclusively the radio

to transfer the data, while the rule engine is stopped. However,

in practice, we have to account for unexpected errors in the

dissemination process. Failures of the dissemination should

not corrupt the entire operation of the nodes. For this, as long

as the dissemination process is still active, it “freezes” the rule

engine task by periodically postponing its activation (similar

to a watchdog behaviour). If an exception occurs and the

dissemination does not terminate correctly, the business rule

engine eventually resumes its execution. If the new rules are

safely transferred, the dissemination process forwards them to

the rule engine for reconfiguration. Both partial and complete

reconfiguration are supported: new rules can be added to the

current set or can replace previous rules with the same IDs.

C. Tests

We used for evaluation a multihop network of 11 nodes

placed as indicated in Figure 12. The group members corre-

spond in our scenario to the RTIs for a given shop. We used the

dissemination protocol to reliably deploy and change sets of

rules for the group of nodes. A typical set of rules is presented

in Table II. Besides the internal voltage and temperature

sensors, the nodes were equipped with the following: one

light dependent resistor (LDR), one temperature and humidity

sensor (SHT) and one push-button (see rules 4-7).

We used for dissemination a mobile gateway composed of

a sensor node connected to an iPAQ through serial interface.

A second gateway (business rules gateway) was logging the

results issued by the business rules running on the nodes.

The communication on the serial links was done reliably by

using a simple stop-and-wait ARQ protocol. For efficiency

reasons, the packet size was chosen to fit one business rule.

We performed 30 experiments, in each disseminating a set of

TABLE II

EXAMPLE SET OF BUSINESS RULES.

ID Name Driver Explanation

1 Vcc Internal Battery level

2 Tint Internal CPU temperature

3 Age Counter Running time

4 Light LDR Light level

5 T SHT Temperature

6 H SHT Humidity

7 Message Push-button User message

rules to the multicast group from Figure 12. In all the cases,

the nodes reconfigured correctly. The total disseminated data

(over all experiments) cumulated ≈ 4kB. Each node stored

logging information (such as the number of packets sent and

received, the type and number of errors, etc.) and reported it

back to the dissemination gateway. The user could thus follow

on the iPAQ the ongoing process and an estimation of the

energy consumption in the network.

We now discuss the most important numerical results. The

observed overall packet loss rate was 2,4% (no faults oc-

curred). Moreover, all lost packets have been received properly

at the first retransmission. This result points out that analysing

MAC ACKs and performing local retransmissions represent a

good choice. The average time for transferring one business

rule was 2.7 seconds, but this value depends substantially on

the parameters of the setting, listed in Table III. Figure 13 (a)

gives an overview of the average energy spent by each node for

disseminating one rule. Node 0 represents the source, i.e. the

dissemination gateway. As expected, the intermediate nodes

(nodes 1, 2, 4 and 5) are the most loaded, being involved in

forwarding both data and acknowledgements. The amount of

energy spent on transmissions and receptions is balanced. In

contrast, the leaf nodes and the source consume energy mostly

on one operation (sending or receiving), according to their

role. Finally, the nodes that are not group members (nodes 3,

6 and 7) remain passive during dissemination and save energy.

We performed a second round of 30 experiments, in order

to test the behaviour of our system under higher error rates.

We had to provoke the errors ourselves by randomly resetting

nodes involved in dissemination and forcing in this way the

protocol to recover from faults. The ratio of faults was on

average 1.5%. This had also a marginal effect on the packet

loss rate, which increased at 3.3%. It took, however, at most

two retransmissions to repair a packet loss. The most affected

parameter was the average time per business rule, which raised

at 6 seconds. Figure 13 (b) shows still reasonable values for

the energy consumption; the increase computed over the whole

network is ≈ 5%. This proves that the system has good ability

of recovering from serious errors, even under high error rates.

VII. CONCLUSIONS

Our work focuses on integrating WSNs into real-world

business applications. We approach this from two directions:

TABLE III

EXPERIMENTAL PARAMETERS

Average tree degree 2

Tree height 4 hops

Window size 5 packets

Packet size 32 bytes

MAC frame length 1 sec.

MAC slot time 625 msec.

Energy for transmission/reception ≈ 0.2 mJ/packet

reconfiguration and reliability. We propose a simple, yet ef-

ficient method of expressing the business logic, by means

of rules through which the nodes can verify if the observed

situations correspond to the proper conditions. Due to the

dynamics of the real-world processes, the rules are expected

to change often. Therefore, we devise and test a reliable

dissemination protocol addressing multicast groups of nodes.

We argue that such an approach is more selective and scalable

than unicast-based or flooding and, at the same time, maps

better to the application scenarios.

Our simulations and experimental results show the feasi-

bility of a resource-lean dissemination layer, which interacts

with lower layers, such as MAC, for increased efficiency.

Nevertheless, the implementation work on the sensor nodes

revealed that the cross-layer approach is indeed useful only

if the interaction methods between layers are enough uniform

and general. Otherwise, the code becomes error prone and

difficult to maintain or reuse.

We finally list several brief observations occurring from

our experiments. First, simple techniques, relying only on

local knowledge, should be favoured, as they can bring about

the desired reliability while leaving more resources for the

application space. Second, all theoretical assumptions about

link errors or node failures should be carefully considered.

In practice, all errors eventually happen and most usually in

a burst manner. Third, parameters such as timeouts, window

size or retry bounds prove important and their values may

affect considerably the real behaviour of the protocol. The best

values, however, can be determined only experimentally and

do not match all situations. Therefore, we consider improving

our protocol with an adaptive behaviour for future work.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Lodewijk van Hoesel,

Stefan Dulman, Maria Lijding and Nirvana Meratnia for

their constructive comments. This work has been partially

sponsored by the European Commission as part of the CoBIs

project (IST 004270).

REFERENCES

[1] Ambient System. http://www.ambient-systems.net.

[2] Collaborative Business Items (CoBIs). http://www.cobis-online.de.

[3] OMNeT++. http://www.omnetpp.org.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11

E
n

e
rg

y
 [

m
J
]

Node

Energy / rule

Receive
Send

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11

E
n

e
rg

y
 [

m
J
]

Node

Energy / rule

Receive
Send

(b)

Fig. 13. Energy consumption.

[4] L. Evers, M. J. J. Bijl, M. Marin-Perianu, R. Marin-Perianu, and P. J. M.
Havinga. Wireless sensor networks and beyond: A case study on
transport and logistics. In International Workshop on Wireless Ad-Hoc

Networks (IWWAN 2005), 2005.

[5] Lodewijk Van Hoesel, Tim Nieberg, Jian Wu, and Paul Havinga.
Prolonging the lifetime of wireless sensor networks by cross-layer
interaction. IEEE Wireless Communication Magazine, 12 2004.

[6] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M. Havinga. AmbientRT
- real time system software support for data centric sensor networks.
In Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), pages 61–66. IEEE Computer Society Press, 2004.

[7] Jonathan W. Hui and David Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In SenSys

’04, pages 81–94, NY, USA, 2004. ACM Press.

[8] Sandeep S. Kulkarni and Limin Wang. MNP: Multihop network repro-
gramming service for sensor networks. Technical Report MSU-CSE-04-
19, Department of Computer Science, Michigan State University, 2004.

[9] Brian Neil Levine and J.J. Garcia-Luna-Aceves. A comparison of
reliable multicast protocols. Multimedia Syst., 6:334–348, 1998.

[10] Brian Neil Levine, David B. Lavo, and J. J. Garcia-Luna-Aceves.
The case for reliable concurrent multicasting using shared ack trees.
In MULTIMEDIA ’96: Proceedings of the Fourth ACM International

Conference on Multimedia, pages 365–376, New York, NY, USA, 1996.
ACM Press.

[11] Philip Levis, David Gay, and David Culler. Bridging the gap: Pro-
gramming sensor networks with application specific virtual machines.
Technical Report UCB//CSD-04-1343, UC Berkeley, 2005.

[12] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TinyDB: An acquisitional query processing system for sensor
networks. ACM Transactions on Database Systems, 30:122–173, 2005.

[13] Mihai Marin-Perianu and Paul Havinga. Experiments with reliable data
delivery in wireless sensor networks. In Intelligent Sensors, Sensor

Networks and Information Processing Conference (ISSNIP), pages 109–
114, Melbourne, Australia, December 2005. IEEE Computer Society
Press.

[14] K. Obraczka. Multicast transport protocols: A survey and taxonomy.
IEEE Communications Magazine, 36(1):94–102, 1998.

[15] Seung-Jong Park, Ramanuja Vedantham, Raghupathy Sivakumar, and
Ian F. Akyildiz. A scalable approach for reliable downstream data
delivery in wireless sensor networks. In MobiHoc ’04: Proceedings of

the 5th ACM International Symposium on Mobile Ad Hoc Networking

and Computing, pages 78–89. ACM Press, 2004.
[16] Fred Stann and John Heidemann. RMST: Reliable data transport in

sensor networks. In Proceedings of the First International Workshop on

Sensor Net Protocols and Applications, pages 102–112, 2003.
[17] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote

code update mechanism for wireless sensor networks. Technical report,
UCLA, 2003.

[18] Martin Strohbach, Hans-Werner Gellersen, Gerd Kortuem, and Christian
Kray. Cooperative artefacts: Assessing real world situations with
embedded technology. In Ubicomp, pages 250–267, 2004.

[19] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy.
PSFQ: A reliable transport protocol for wireless sensor networks. In
WSNA ’02, pages 1–11. ACM Press, 2002.

