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Abstract— In this paper we propose state-dependent impor-  single server queues, under restrictive assumptionsaegar
tance sampling heuristics to estimate the probability of ppu-  the underlying arrival and service processes (e.g., having
lation overflow in Markovian networks of series and parallel light-tail distributions [26], [29]). Some queueing netke

queues. These heuristics capture state-dependence alorget . . .
boundaries (when one or more queues are empty) which is of certian topologies have also been considered (see, e.g.,

critical for the asymptotic optimality of the change of measre.  [8], [23], [22]). The overflow event of interest is usually

The approach does not require difficult (and often intractade) that of an individual buffer or that of the total network

mathematical analysis or costly optimization involved in @ap-  population. Most previous work has focused on estimating

tive importance sampling methodologies. Experimental rasts the probability of the latter event, given some initial netk

on tandem and parallel networks with a moderate number . . !

of nodes vyield asymptotically efficient estimates (often \th state (typlcally, starting from. an empty nettwork).

bounded relative error) where no other state-independent ~ Until recently, only state-independent importance sam-

importance sampling techniques are known to be efficient. pling heuristics were developed and considered for anal-

Insight drawn from simulating basic networks in this paper ysjs. In these heuristics, the change of measure is ’static’

promises the applicability of the proposed methodology 10 5nq independent of the network state (i.e., the number of

larger networks with more general topologies. . ’ .
customers at each node in a Jackson network). A relatively

. INTRODUCTION simple (and well known) heuristic change of measure for

Efficient simulation of queueing networks has long beeﬂ'mulations of population overflow in _queuging ne_tworks
the focus of much research, owing to its applicability in thi$ that proposed in [26] and further investigated in [11]
modeling, analysis and dimensioning of logistic, prodorcti and [12]. However, even for the simplest Jackson_ queueing
and communication networks. In particular, the analysis WOk (e.g., 2-node tandem network), the effectivenéss o
rare yet critical events, such as buffer overflow, has beerffis heuristic is limited to only some region of the (arrival
challenging problem attracting a huge number of scienti}8d Service) parameters space (see [16], [17], [7]). (We use
and practitioners over the past few decades. Despite v trm ‘effectiveness’interchangeably with ‘asympteti-
theoretical and empirical efforts, progress is markedbyvs| f|C|enc3_/, see Section II-B for a precise definition.) Efﬁeet_ _
as evidenced by the lack of generally applicable technigu@@ndwidth methods have been used to develop heuristics
and tools equipped to deal with the difficulty inherent ifO" Simulating overflow of an individual buffer in some
simulating rare events in queueing networks. specific cla_lss of networks, e.g., feed-forward [10] and in-

Among the most effective methodologies researched afi§€ [8] fluid flow networks. More recently [20] proposed
applied so far are those based on importance sampling (&d1euristic change of measure for simulating the overflow
e.g., [9], [18], [2], [19]) and importance splitiing (seege of an individual puffer in queueing networks of general
[15], [31], [14]) techniques. (Importance sampling is th&opology and arbltrgry routing (i.e., mclud_mg f_eedback)
methodology adopted in this paper.) However, the succed@der some regularity conditions, the heuristic is proyabl
of these techniques has been mostly limited to simulations&fective for any feasible set of network parameters (e.g.,

arrival and service rates in a Jackson network). This marks

0 a significant advance, since the heuristic is applicable to a
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Based on Markov additive process formulation of a twdSection Ill we motivate the proposed SDH and give its
node tandem network and large deviations arguments, wddkmal representation for tandem and parallel networks,
in [22] reveals that a state-dependent change of meastespectively. In Section IV we present experimental rasult
is effective where, provably, no effective state-indepmrid and comparisons with other known methods to estimate
change of measure exists ([16], [7]). This finding triggeretthe probability of population overflow in some example
more research to develop methodologies for obtaining-stateetworks. Conclusions highlighting the advantages ant cha
dependent importance sampling heuristics that are demdsnges associated with the proposed methodology are given
strably effective (at least empirically). Initially, theork in in Section V.
[6] which uses an adaptive optimization technique based
on the method of cross-entropy [28] to approximate the Il PRELIMINARIES
‘optimal’ state-dependent change of measure. Later, a simi The queueing network model and associated notation are
lar adaptive approach based on stochastic approximatiofigoduced in Section II-A. A brief review of importance
introduced in [1]. To date, these approaches appear to $Mpling and some properties of simulation estimators are
the most promising for application to Markovian (Jacksorrovided in Section II-B.
networks of general topology. A drawback, however, is th'g_ Model and Notation

computational and storage demands for large state-space id K K . f nod
models associated with large networks. Consider a Jackson network consisting of nodes

Most recently, tandem networks are considered in [Zﬁiueues), each having its own buffer of infinite size. Cus-
and [33] with the aim to develop a (heuristic) statelOmersarriveatnode(i =1,...,n) according to a Poisson
dependent change of measure that is sufficiently close to €SS With raté;. The service time of a customer at node
“soptimal” without tedious mathematical analyses or costly 'S €xponentially distributed with ratg; (i = 1,...,n).
optimizations involved in adaptive methodologies. The ke%UStomerS that leave nodejoin node j with probability
observation is that the “optimal” change of measure deperfié (¢ = 1,---.n:j = 1,...,n) or leave the network with
on the network state only along and close to the boundarR@Pability pic (i = 1,...,n). We also assume that the
(when one or more nodes are empty), and tends to becofyU€ing network is stable, i.e; < p; foralli =1,....n,
state-independent in the interior of the state-space.eFhefN€reé: is the total arrival rate at nodg as determined
fore, if we can determine the change of measure along @M the traffic equations

boundaries and at the_ interior of the state-space, then we vi= N+ Z% Dji -

may be able to combine them appropriately to construct v

a state-dependent change of measure that approximates ‘

the “optimal” one in the entire state-space. The propost§t it (¢ = 1....,n) denote the number of customers

methodology is dubbed “state-dependent heuristic” or SDi} Node: at timet > 0 (including those in sekrvice). Then
in short. Experimental results using the so obtained changé vectorX, = (X1t, X2ty .y Xnye) 18 @ Markov process
resenting the state of the network at timéenote by

of measure to simulate tandem networks yield estimat )
with a bounded relative error for almost any feasible sg¢ € total number of customers in the network (network
of network parameters (see [33] and [24]). Only when tHePPUlation) at time, i.e., S = 52, Xi.

lowest service rates are equal (i.e., there is more than ond‘SSUming that the initial network state X, (usually,

bottleneck), then the relative error increases at mosatige Xo - 0,0,..., Q) correspondjpg to an empty network), we
with the overflow level. are interested in the probability that the network popatati

In this paper we review and refine some recent wofigacnes some high levélc N before becoming empty. We

using this heuristic approach to simulate tandem networlge,n_Ote this probability k?YY(L) ar_1d refer to it as 'thaop-
and further extend its utility for the efficient simulatiofi o Ulation overflow probability starting from the initial state

parallel queues. Experimental results to estimate theaprol?((" Sli_nce the sssocizted ?{e_nt iT typif:ally rarz?’ impborta_LIrjce
bility of population overflow in these (tandem and paralle{j2MP!ING May be USe to efficiently estimate this probabilit

networks produce asymptotically efficient estimates, with, |mportance Sampling
relative error increasing qt r_nost linearly with the ovgrflow Importance sampling involves simulating the system un-
Ievgl. Thg proposed heuristics are robust ?”.d effective, Yfer different underlying probability distributions so as t
eaS|er-to-|mpIemer1_t and could be more efficient thap thoi?ﬂecrease the frequency of typical sample paths leading to
based on adaptive importance sampling methodologies (etHe rare event. Formally, leb be a sample path over the
[6]), particularly for large networks. !

. ? L _ interval [0, ¢]. Then, the likelihood ratio associated with
In Section Il we give some preliminaries, mtroducriz iven by Wi (w) — 202 where P(w) and P(w) are
the basic model and define the probability of interest, 9 y e ~ P(w)’

The importance sampling technique is briefly reviewed. | € pr_ol_)abilities (or likelinoods) of sample_ path undfar
the original and the new measure, respectively. Obviously,



P(w) > 0 wheneverP(w) > 0. Starting fromXy, definer analysis (e.g., [22]) or determined using adaptive impur¢a
as the first timeS; hits level L or level 0, then sampling (e.g., [6], [1]), have shown to be effective for any
L) = BElg,—1y = EW, Its.=1} (1) feasible set of netyvork parameters. Unfortunately, howeve
. o . ) ) these methodologies have some drawbacks. It is not clear
Where.[ is the indicator fL!ncuon tal_<|ng th.e vglue 1 |f.th hether the analysis in [22] can be easily extended to
event Is t_rue and 0 otherwise, andl; is the I|keI|hpod ratio larger and more general networks. On the other hand, large
over the interval0, 7]. E andE are the expectations understate-space limits the effectiveness of adaptive impogtan

the original and the new changes of measure, respectivelyhjing to Markovian networks with a small number of
The variance of the estimat@ W, Iys, —r} Is gven by 464 (11], [6]). Evidently, it is of much interest to find

EW,? Iis -1y — (y(L))?. (2) more practical and robust approaches to develop effective
The relative error is the ratio of the standard deviation Gtate-dependent changes of measure.
the estimator over its expectation, i.e., Roughly speaking, a state-dependent change of measure
— allows to influence sample paths behaviour more freely than
EW-"Iis =1y 1 3) a state-independent one. Therefore, it is more suited to
(v(L))? ' change the average sample path behaviour of the simulated

The estimatoi IV, Iys._y, is said to beasymptotically _system so as to follow the “optimal” (most likely) path lead-

efficientif its relative error grows at sub-exponential (e.g.',ng to thedrare e\éent. Itr;]a ch;ks?r:hnetwi)rk, iu.Ch atﬁhangebof
polynomial) rate as. — o (i.e., asy(L) — 0). Formally, measure depends on the state of the network, i.e., the numbel

let lim; . L 1 L) — 0. That is, 0 is the asymptotic of cqs_tomers at e_ach network no_de._ Indeed, theoretical_ and
dec;I;lLratog éf %gevf)v)erflow probability(Z) as Ly—>poo empirical results in [22] and [6] indicate that an effective

Then, from Equation 3, asymptotic efficiency is obtained ﬁasymptot?cally optimal) state-depende.nt change of measu
always exists and can often be determined (through analysis

lim ilogEWTQ Is.—1y = 26. (4) Oor adaptively), also when provably no state—independent

L—oo L change of measure exists. Even when the latter exists, a
The estimator is said to haveounded relative erroif its properly determined state-dependent change of measure is
relative error is bounded id as~y(L) — 0. This implies aimost always more effective. For the “optimal” change
asymptotic efficiency, however, it is a stronger and mog measure, state dependence is also shown to be strong
desirable property for any importance sampling estimatfiong the boundaries of the state-space (i.e., when one or
It has long been a topic of intensive and mathematically ifnore buffers are empty) and diminishes toward the interior
volved research to develop asymptotically efficient changgf the state-space (i.e., when the contents of all buffers
of measure to estimate overflow probabilities in queueinge sufficiently large). Capturing dependencies along the
(and in particular, tandem) networks. Some early work cajpundaries have shown to be very crucial for the asymptotic
be found in, e.g., [26], [12], [13], [3], and [30]. efficiency (“optimality”) of the change of measure.

It is important to note that a change of measure may, The above observation suggests that if we know the
in general, depend on the state of the system, even«ijptimal’ change of measure along the boundaries and
the original underlying distributions do not depend on thg the interior of the state-space, then we might be able
system state. For instance, the arrival and service raigSconstruct a change of measure that approximates the
in a Markovian queueing network are typically fixed andgptimal” one over the entire state-space. If the approxi-
independent of the network state (i.e., the buffer contepfation is sufficiently good, then the so constructed change
at each node). However, a change of measure to be usegfitheasure may yield asymptotically efficient estimators. T
importance sampling simulation may involve new arrival angba|ize the above idea we need to determine the “optimal”
service rates that depend on the state of the network. Recgiinge of measure in the interior and along the boundaries
works confirm that state-dependent changes of measure gfehe state-space. In [24] heuristics based on combining
generally more effective in simulations of rare events iRnown large deviations results and time-reversal argusient
queueing networks (see, e.g., [22], [6]). Therefore, i thhre used to construct such a change of measure for the 2-
paper we aim at developing heuristics to approximate th@de tandem network (see Section IlI-A). Empirical results
“‘optimal” state-dependent change of measure. show that it produces asymptotically efficient estimators,

IIl. STATE-DEPENDENT HEURISTICS with a bounded relative error for almost the entire feasible

E for the simplest (2-node) tand work ; trange of network parameters. In Section IlI-A we refine and
| =ven forine simpies (2-node) tan em network, no Stalfe heralize the change of measure in [24] to tandem networks
independent change of measure that is asymptotically e

iont th . ¢ feasibl work ; ith any number of nodes. In Section IlI-B we propose a
cient over the entire range of Teasible network parame esrt%lte—dependent heuristic change of measure for the efficie
(arrival and service rates) is known to exist ([16], [7]).1Pn

simulation of parallel networks with any number of nodes.
state-dependent change of measures, developed through P y



A. SDH for then-node Tandem Network
Let A andy; (i =1,...,n) be the arrival rate at the first

0 0 1 n
T by —

node and the service rate at the- th node, respectively. SDH;r2 = [b—Q] 0 1 0|+ { 2 5 2] SDHIQ,
Denote byp; = 2 the traffic intensity at node, and 21100 2
assume thap; < p2 < ...p, < 1. We note, however, 01 0
that this ordering is not a restriction, since the probgpili SDHT2 _ 'ﬂ ! 10 0
of population overflow is invariant with respect to the . 00 1
placement order of nodes in a Jackson tandem network [32].
Without loss of generality we assume that > | p1; = 1. by—az ]t | L 00

Letz;,i = 1,...,n, be the number of customers at node + o 010
i at timet. Then the state of the networKy, is given by 0 0 1

the vectorx = (x4, 22, ..., ). The new rates may depend

on the network state and, therefore, they are functionseof th The first matrix is the identity matrix with the first and the
vectorx. Denote by (x) a,ndﬂi (%) (i’: 1.....n) the rates third rows interchanged; this corresponds to interchangin

under the new change of measure, anciSlﬁy-|;|-n(x) (i = _the arrlyal ra_te)\ W|th_the _serwce r_atgag. The second matrix
: . is the identity matrix with the first and the second rows
1,...,n) the(n+1) x (n+1) SDH transformation matrix . s : . .
: . . - interchanged; this corresponds to interchanging the arriv
to simulate population overflow in the firstnodes of the

. . rate A with the service rateu;. The third matrix is the
n-node tandem network. (The superscript Tn is a referen%e . . )
__ldéntity matrix, corresponding to no change of measure.

: n
to the entiren-node tandem network.) ThuSDH,, "(x) IS Note that the new arrival and service rates (essentially) do

a linear operator transforming the original rates into tae/n ot correspond to a stable network, and they depend on the
rates used to simulate population overflow in the netwoafate of the networkz:, z5), the nu'mber of customers at
Tn. (For convenience, we occasionally abuse notation RY 1 node e

dropping the vectox). Consistent with an earlier variant of the same heuristic

an3|der a 2-node tandem net_wc(FrQ) with arrival and [24], and as set in our experiments with 2-node tandem
service rates\, pi1 andpus, respectively. Denote by, the networks, leth; = 1. Then the above change of measure
original change of measure, by, the change of measure'depends only ores. In this case, the heuristic implies a

A=, = A, iz = p2, and by My, the change gradual “transition” between two changes of meaguveé; )

Of measure:\ = yip, fir = fu, fiz = A. In Words, oUr 504 r1.) (as indicated schematically in Figure 4): Along
proposed state-dependent heuristic for the 2-node tandgm boundaryz» = 0, the change of measure (8;). In

network can be described as follows: Initially (startingrfr the interior,z» > b, the change of measure {8\). In
an empty network) apply\o (i.e., no change of measure) e interim, 1 < 2, < by, the new rates are simply linear
As the number of customers at node(%;) increases, interpolation of their values at, — 0 andas = b.

gradually go fromM, to M. At the same time, as the | o 5 follow a sample path starting from an arrival

number of customers at node2-) increases,_gradually 99ty an empty network. The proposed change of measure
from Mg and/orM; to M. Thus, for a sufficiently large (with b; = 1) implies the following: Initially, and while

@2, M is applied. Asz; decreases, gradually go frofv; xo = 0, exchange the arrival rate\\ with the service rate

to M, and/or M;, depending onx;. at node 1 f.), i.e., start with overloading the first node

'I(;he abgve state—dep_(rend(_antfchanﬁe of measu;e_for;hehﬁéking it unstable) while the second node is stable. As
node tandem networkT2) is formally expressed in t € the number of customers at the second node increases in

following proposition. the range(l < z3 < by), gradually and simultaneously
reduce the load on the first node while increasing the load
Proposition 1 (SDH for the 2-node Tandem Network)  on the second node. When the number of customers at the
Define [a]* = max(a,0) and [a]! = min(a,1), and let second node reaches levgland whilexz, > b, exchange
1 <b; <o0,i=1,2, be a fixed integer. The following the arrival rate ) with the service rate at node 2:4);
equation expresses the proposed state-dependent changeegfoverload the second node (making it unstable) while

measure for the 2-node tandem network [24]: the first node is stable (resp. “critical”) jiz < p1 (resp.
~ w2 = u1). In the interior(z2 > by), the new rates do not
A S depend on the network state (i.e., neithgrnor z»).
fir | = SDHy" | p1 |, (5)
fe2 12

Time Reversal Argument

The effectiveness of the change of measure in Proposi-
tion 1 may be explained using time-reversal argument [21].



However, by no means this should be interpreted as a forne#drifies the ineffectiveness of the heuristic in [26].
validation of its asymptotic efficiency. The reverse time On the other hand, by appropriately settibg and bo,
process is also a 2-node tandem network (see Figure e state-dependent heuristic in Proposition 1 can (rggghl
however, arrivals (rate\) enter the network at Node 2capture the most likely path to overflow (i.e., Path I, Path Il
(service rateus) and exit from Node 1 (service raje). or Path Ill, depending on the network parameters). Indeed,
Roughly speaking, according to [3], in the limit &s— this clarifies the robustness and effectiveness of thisistéur
oo, the most likely path to the rare set (i.e., populationver the entire feasible parameter range (as evidenced from
overflow) in the forward time process is the same path Bxperimental results in Section IV-A).
which the reverse time process evolves, given that ther latte The heuristic in Proposition 1 can be generalized:to
starts from the rare set. Since both Node 1 and Noden2des in tandem as follows.
may be non-empty upon entry into the rare set, the hitting

stat<e(a:1, azgzjltshsomewhe;_e along the Im;q Tt z L. Le;[] Proposition 2 (SDH for the n-node Tandem Network)
‘ﬁ —L‘“’ ag 7eLre\|<|er§e ;mhe proce_ssls agslat g ?)'S'UI(I: Let © be a vector with the original network parameters,
that L, + Lo = L. Node 2 has arrival ratd and initially o "gr _ (A, g1, .., pn). Similarly, ©(x) is a vector

|tths departgre ra'Ile (;&Qit}? us .'t er?ptles a;[j ratd@Q _t)‘)' Int with the new parameters (depending on the network state
e meantime, Node 1 has input ratgand a departure ra ex) for simulating the network under importance sampling.

pa, thus it also empties at ralgn — jiz). If 11 = ji2, ten 0 gpgor A node tandem network is given by
node 1 is “critical” and does not empty; this corresponds to

Path Il in Figure 3. If and when Node 2 empties first, its e = SDHZn 0,

arrival and departure rates are equaktdt that time, Node . , Tn

1 has arrival rate\ and departure ratg;, thus it empties W'th the transfo_rmatlon matrbSDH,,

at rate(u; — ). This corresponds to Path Il in Figure 3.S'V3|y as follows:

If and when Node 1 empties first, its arrival and departure 1 n

rates are equal tp,. At that time, Node 2 has arrival rategpy] " — {%} 1y {M} SDHIM k=1,....n,

A and departure ratgs, thus it empties at ratéus — \). br, b

This corresponds to Path | in Figure 3. ™ .Tn n , _ @
Note that departures (resp. arrivals) in reverse time cdfN€€SDHy " = 1o andl; ™ (k = 1,....n) is the identity

respond to arrivals (resp. departures) in forward time. Tpatrix of dimensior(n +1) with the first and thek +1)-st

follows that along the most likely path from an empty©OWs interchanged.

network to population overflow (in forward-time), there

are two possible scenarios depending on the entry st%t

expressed recur-

é\lote that, except fon = 1 (single server), by setting

(L1, L) into the rare set, which in turn depends on thg — o foré = 1,...,n —1 andb, = 1, the above

arrival and service rates [19]: One scenario corresponds, 8””5“0 dpes not reduce to the well known heurlstl_c of
Path I, in which Node 2 builds up first while Node 1 iénterchangmg the arrival rate\Y and the slowest service

stable (i.e.\ — jia, i1 — j, s — A). At some point rate (1,) [26]. The latter exchanges and p,, upon arrival

also Node 1 starts to build up until the rare set is hit (i.et.0 an empty network and does not depend on the network

N = p1.jit = pia, jis = )). This scenario is more likely State; i.e., importance sampling is applied upon the first

when s < 1. A second scenario corresponds to Path ﬁrrival to node 1 and continues until the network empties
(or Patﬁ I |1n which Node 1 builds up first while Node®" the rare event is reached. The heuristic in Proposition 2

2 is stable (i.e.) = u1, /i1 = A, fis — 112). At some point, exchanges\ and p, upon the first arrival to noden

also Node 2 starts to build up until the rare set is hit (i.e&.md only as long as it is non-empty, i.e., importance

N = p1.jit = pia, jis = )). This scenario is more likely Sampling is applied only during the busy periods of node
whenu; is less tr;an but sufficiently close to;. Paths Il ™ and continues until it empties or the rare event is reached.

is simply the limit of Path Il whenu; = pus.

Now, if 1o < 411 (as we assume above), then the heurist emark 1 Note thatb; > 1 is the number of boundary

in 1261 exchanaes andu. leavin nchanged: i.e.. Node evels alongz; for which the change of measure depends
In [26] ex g #z teavingi U ged; ! i (we also refer to it as the “dependence range”). These

1 is stable, and Node 2 builds up all the way until the ra h | bl ters in the ab heuristi d
set is hit. This corresponds to the Path PW in Figure %:e € only variablé parameters in the above heunstic, an

It is interesting note that for, < w1 Path | is the most t ﬁe.'r. proper stg Iecl:tlcl)n f's (I:ruual fotrWaclTlevllng asyr;lpt?tlc
likely and it gets closer to Path PW, which explains the iciency, particularly for larger networks. in generaie

effectiveness of the heuristic in [26] for sufficiently sinal est” values ofb;, i = 1,...,n (yielding estimates with

115 For largers, (closer toy,) the most likely path deviatesthe lowest variance) may depend on the set of network

further form Path PW and gets closer to Path I, whicﬂarameters as well as the overflow lenlel However, em-.
pirical results suggest robustness. For example, for angive



parameter point, by setting = b at all nodes = 1,...,n rates at node. The second matrix is the identity matrix,

(as we do in most experiments with tandem networks torresponding to no change of measure. Note that the

Section IV-A), the change of measure remains effective fequalityy ", (5\2- + ;) = 1 holds under the above change

a range ofb values around the optimal. However, for somef measure.

regions in the parameter space, the effectiveness may be

more sensitive td, whose “best” value may vary from oneRemark 2 Note thatb; is the number of boundary levels

parameter point to another and may also depend..on for which the change of measure at naddepends on the
contentz; (we also refer to it as the dependence range at

B. SDH for then-node Parallel Network nodei). Proper selection of thg’s is crucial for achieving

Let \; and p; be, respectively, the arrival rate and thé@symptotic efficiency. Empirical results suggest that the
service rate at node, and denote its traffic intensity by “optimal” b;'s (yielding estimates with the lowest variance)
pi =2 <1 (i=1,...,n). Without loss of generality we depend on the traffic intensitigs’s at all network nodes as
assume thay ", (A + i) = 1. well as the overflow leveL.

The new rates may depend on the network state and, ]
therefore, are they are functions of the vector — According to the above change of measure, all nodes

(1,22, ..., ). Denote bei(x) andji; (x) the correspond- may be “pushed” (overloaded) simultaneously, however, to

ing rates at node under the new change of measure, andifferent extents depending on their respective ratios of

by SDH; (x) the 2 x 2 linear operator (matrix) transforming ONteNnt; relative tob;. This is a state—depend“ent chaTge
the original rates into the new rates at nagee., of measure, by which busy nodgs; > 1) are “pushed
~ harder for higher; /b;.

[ {\i } — SDH; { Ai } Ci=1,....n. (7 The well-known heuristic in [26] suggests interchanging
i the arrival and service rates at the bottleneck node (wih th
As before, definéa]* = max(a, 0) and[a]! = min(a, 1). hig.hes.tpi). This is a state—indepe_nden_t c_hange pf measure,

The following proposition gives the state-dependent haauriv"h'Ch is shown to work well only in a limited region of Fhe

tic change of measure for parallel nodes. network parameters _space_(r_1amely,_ when the utilization at

the bottleneck node is sufficiently higher than those at all
other nodes). For a single node, say, nedeur change of

Proposition 3 (SDH for the n-node Parallel Network) measure, withh, = 1, is identical to that in [26]; both are
Let © be a vector with the original network parametergsymptotically efficient.

i.e.,®T = [\1, 1, ..., A\, i1n). Similarly, ©(x) is a vector

with the new network parameters, and define 2hex 2n _

transformation matri>SDHPn(x) as follows (occasionally, As for the tandem network, the effectiveness of the change

%

Time Reversal Argument

we abuse notation by dropping the vector of measure in Proposition 3 for the simulation of parallel
networks may be explained using time-reversal argument
SbH, 0 ... 0 [21]. The reverse time process is also amode parallel
PN 0 SDbHy ... 0 network. At nodei (i = 1,...,n), the arrival and service
SDH" "' = i ) ) ,  (8) . : .
: : . : rates are\; andy;, respectively (i.e., same as in the forward
0 0 ... SDH, time process). However, the reverse time process starts fro
_ the hitting state into the rare set, s@¥;, Lo, ..., L,,) with
with S, Li = L. In the reverse time, the number of customers
T o 1 at node: (: = 1,...,n) is initially L, and it empties at
SDH; = [_J [ 1 0 } rate (6; = p; — A;). The (reverse) time needed to clear the
b1 11 0 9) backlog at node is therefore given by Clearly, the order
+ [ ! Z} [ 0 1 } , in which the backlogs at different nodes disappear depends
bi on the initial (hitting) state as well as the arrival and sesv
for some integeb; > 1, andi = 1,...,n. Then the SDH rates at each node. Intuitively, the bottleneck node (With t
for ann-node parallel network is given by highestp;) is likely to have the largest backlog upon hitting

the rare set, and because it empties at a slower rate, its
backlog is likely to be the last to disappear. (In forwardejm

_ this implies that the bottleneck node is likely to start itsld

The supe_rscnpt Pn refers to a_network_mp_arallel _node_s. up sooner than other nodes.) Note that it may take some
In Equation 9 forSDH;, the first matrix is the identity e for the network to empty after all backlogs disappear;

matrix with the first and the second rows interchangeg;is 515 depends on the traffic intensities and the overflow
which corresponds to interchanging the arrival and servigg | 1

6-spHMe.



Note that departures (resp. arrivals) in reverse time cdrecomes more stable, its RTV tends to a constant value,
respond to arrivals (resp. departures) in forward time. Which is smaller for a more efficient estimator. For example,
follows that along the most likely path from an emptyf RTV, (for Estimator 2) is larger than RTMfor Estimator
network to population overflow, each node starts building), then it will take Estimator 2 a longer simulation time
up a backlog after some (own) initial period. The buildo reach the same accuracy. For efficiency comparisons we
up at node: continues at rated; = p; — A; until the use the variance reduction ratio, VRR RTVs /RTVj,
population overflow level is reached. Highly loaded nodeswhich represents the efficiency gain when using Estimator
are likely to start their backlog build up sooner than lightl1 relative to that when using Estimator 2.
loaded nodes. If the traffic intensity at the bottleneck nigde In the following sections, two sets of experiments are
sufficiently higher than at other nodes, then the most likefyresented; one for tandem networks and the second for
path to overflow involves a build up only at the bottleneckarallel networks. Each set consists of six experimentsgth
node. This is consistent with the heuristic in [26] whiclior a small network with 2 nodes and the other three for
exchanges the arrival and service rates only at the bottkene larger network with 4 nodes. In order to illustrate the
node, and therefore clarifies its effectiveness in this.caseutility of our approach, all parameter points are chosen in

By appropriately setting;, for i = 1,...,n, the state- regions where the well-known heuristic in [26] is shown
dependent heuristic in Proposition 3 can (roughly) captu(®rmally or empirically) to be ineffective. In all simuian
the most likely path to overflow in a network af parallel experiments, the same number of replications, namefy,
nodes. The above time reversal argument along with soliseused to obtain estimates of the population overflow
experimentation may provide helpful insights into how tprobability v(L). For each estimate in these tables, we
properly set thé;s at the different nodes. Empirical resultsnclude the relative error RE (in percentage). For the
in Section 1V-B show that the heuristic is very effective angurpose of comparing the heuristics in this paper (termed
robust over the entire feasible parameter range . SDH) and the adaptive importance sampling methodology

(termed SDA) in de [6], we also include the ratio VRR
IV. EXPERIMENTAL RESULTS (relative to SDA). Hen[c<]a, VRR- 1 implies efficiency gain

Importance sampling to estimate the probability of poRsf SDH over SDA. Estimates obtained using the well known
ulation overflow(y(L)) involves generating, sayy, inde- heyristic in [26] (termed PW) are also presented, although
pendent and identically distributed (i.i.d.) busy cycles.( these are not necessarily accurate or stable. In general,
starting with an empty network). Starting a cycle at timgymerical results are difficult to obtain for larger and/or
0, definer, as the instant when the network populatioRjgher overflow levels (i.e., for larger sate-space). Whene
reaches level for the first time. Slmllal’ly, deﬁne'() as the feasib|e' numerical results (for examp|e, using the aigun
instant when the network pOpulation returnS)tf]Dr the first out”ned in [4]) are inc'uded to Verify the correctness of
time. The indicator function;(r, < 7o) takes the value 1 the simulation estimates. Otherwise, the correspondioig ta
if the population overflow (level) is reached in cycle, entry is marked with a+". In the absence of numerical
otherwise it takes the value O. results, agreement of different estimators (e.g., usingi SD

In each cycle, the change of measure is applied until eithgig SDA) may be an indication of correctness.
the population overflow event is reached or the network

population returns ta). Let W; be the likelihood ratio A- Simulation of Tandem Networks
associated with cyclé (as defined in Section 1I-B), then The experiments in this section are designed to demon-

an unbiased estimatdr of (L) is given by strate that the state-dependent change of measure propose
N in Section IlI-A always yield asymptotically efficient esti
5 = 1 Z I W; . (10) mates (mostly with bounded relative error), also in those
N P regions where no state-independent change of measure is

known to be asymptotically efficient. In the experiments
with 2-node tandem networks, we dat= 1 and b, = b,
5 1 =X 9 with b yielding stable estimates having the lowest relative
TN Z LW A1) error. In experiments with 4-node tandem networks, we
=1 seth; = b at all nodesi = 1,...,n. Again, b is set
The variance and the relative error of the importance safy yield stable estimates with the lowest (or close to the
pling estimatory are given by VARY) = (v — (%)*)/(N—  |owest) relative error. Similar to SDH, adaptive method-
1) and RE%) = +/VAR(%) /4, respectively. Another useful ologies (such as SDA) assume state-dependence only ovel
measure for comparing the efficiency of different estinmitog (small) number of boundary layers (s&y,which must
is the ‘relative time variance{RTV) product, which is pe properly determined to ensure the effectiveness and

the squared relative error of the estimator. As the estimate

The second moment af W is estimated by



crucial dependencies close to the boundaries. Too largé¢he symmetric 4-node tandem network (with low loads):
may render SDH ineffective, but it will only reduce the\ = 0.04 andu; = 0.24 (i.e., p; = 0.167) for i = 1,2, 3, 4.
efficiency of SDA. In either SDH or SDA, the “optimall Table V displays simulation results for the symmetric 4-@od
which maximizes the efficiency (minimizes the RTV) mayandem network (with high loads) = 0.1 andu; = 0.225
be determined by repeating the simulation for successivele., p; = 0.044) for i = 1,2, 3,4. Table VI displays sim-
increasingb. Experimental results with SDH and SDA areulation results for the asymmetric 4-node tandem network:
obtained using their respective “optimai” A=0.1, p1 =0.28, up = 0.24, u3 = 0.21 and g = 0.17
For the 2-node tandem network, it is proven or showfi.e., p; = 0.357, p2 = 0.417, p3 = 0.476 and p, = 0.588).
empirically (see [16] and [7]) that the state-independefixperimental results in Tables IV, V and VI show that unlike
heuristic (PW) in [26] yields estimates with bounded relPW, SDH (as described in Section IlI-A) yields correct
ative error only in some (non-contiguous) regions of th@ompare with SDA results) and asymptotically efficient
feasible parameter space. (The feasible parameter spacestimates with a (seemingly) bounded relative error.
that corresponding to stable networks.) Thus, as depictedlo converge properly, our basic (hon-optimized) imple-
in Figure 1 for the 2-node tandem network [7], the feasiblmentation of SDA may require many iterations, each with a
parameter space may be divided into two regions, dependiagge number of cycles (i.e., long simulation time). On the
on the asymptotic properties of the PW estimator: other hand, if and when it converges, it gives very small
BRE Region - PW is asymptotically efficient (with boundedelative error. (For more on SDA and its implementation
relative error); corresponds to Region | (BRE) in Figure ldetails see [6].) For the examples presented here, SDH
NAE Region - PW is not asymptotically efficient (withtypically requires only a few minutes to achieve relative
exponentially growing or infinite relative error); correspuls errors less than 1%, and could be more efficient than SDA
to Regions Il (ERE) and Ill (IRE) in Figure 1. (VRR > 1) even though its displayed relative error may be
Empirical studies seem to confirm that the above divisidrigher. In fact, experiments not presented here show that a
of the feasible parameter space holds also for tanddimer “tuning” of theb;s in SDH (e.g., by allowing different,
networks with any number of nodes (i.e., for any feasibl@ther than equah;s at different network nodes) may yield
set of network parameters, PW is either BRE or NAEJurther reduction of the relative error.
For the n-node tandem network, sufficient conditions fo
the asymptotic (and non-asymptotic) efficiency of the P
heuristic are given in [16]. These conditions are strong and!n this section we experiment with 2- and 4-node (sym-
do not cover the entire parameter space, i.e., not all feasipietric and asymmetric) parallel networks. Network param-
parameter points may be determined as BRE or NAE. eters are chosen in regions where the heuristic in [26] is not
We experiment with tandem networks ha\/ing 2 and qﬁective. This is typlcally the case in Symmetric parallel
nodes, respectively, with the parameters chosen in the NABtworks (i.e., all nodes have the same utilization) or when
Region (i.e., where the heuristic in [26] is not effectivethe higher utilizations are sufficiently close.
For each network three experiments with different paramete Table VIl displays numerical and simulation results for
sets are executed; two with symmetric loads (low and higi)e symmetric 2-node parallel network (with low loads):
and the third with asymmetric loads. Typically, it is most1 = A2 = 0.1 anduy = po = 0.4 (i.e., p1 = p2 = 0.25).
difficult to efficiently estimate the probability of overflow Table VIII displays numerical and simulation results foe th
when some service rates are equal (or almost equal). Symmetric 2-node parallel network (with high loads): =
Table | displays numerical and simulation results for thé2 = 0.15 and p; = p2 = 0.35 (i.e., p1 = p2 = 0.43).
symmetric 2-node tandem network (with low loads)= Table IX displays numerical and simulation results for the
0.04 and pi; = po = 0.48 (i.e., p1 = p2 = 0.083). Table Il asymmetric 2-node parallel networkj = 0.12, Ao = 0.08
displays numerical and simulation results for the symmet@nd u1 = p2 = 0.4 (i.e., p1 = 0.3, p2 = 0.2). Experimental
2-node tandem network (with high loads): = 0.2 and results in Tables VII, VIII and IX show that unlike PW,
= po = 0.4 (i.e., p1 = po = 0.5). Table Il displays SDH (as described in Section 11I-B) yields correct (compare
numerical and simulation results for the asymmetric 2-nodéth numerical results), stable and asymptotically efficie
tandem network:\ = 0.18, 1 = 0.42 and puy = 0.4 estimates with relative error increasing (sub-)lineanlythie
(i.e., p1 = 0.43 and p» = 0.45). Experimental results overflow level L. Note that the “bestb, andb, are equal
in Tables I, Il and 1l show that unlike PW, SDH (asonlyin the symmetric networks. In the asymmetric network,
described in Section 1II-A) yields correct (compare witth1 = 2 andbz(> 2) increases with the overflow levdl.
numerical results) and asymptotically efficient estimatédso SDA produces correct and stable results; however, it
with a (seemingly) bounded relative error. is mostly less efficient than SDH (as indicated by VBR).
Table IV displays numerical (if feasible; otherwise the Table X displays simulation results (numerical results
table entry is marked byk) and simulation results for were not feasible for the 4-node parallel network; the

. Simulation of Parallel Networks



corresponding table entries are marked)yfor the sym-
metric 4-node parallel network (with low loads); = 0.05 1]
and pu; = 0.2 for i = 1,2,3,4 (i.e., p;, = 0.25, for
i = 1,2,3,4). Table Xl displays simulation results for
the symmetric 4-node parallel network (with high loads):
A =0.08andu; = 0.17, for i = 1,2,3,4 (i.e., p; = 0.47,
for i = 1,2,3,4). Table XII displays simulation results for
the asymmetric 4-node parallel network; = 0.06, Ay =
A3 = 0.04, 4 = 0.02 andp; = 0.2, for i = 1,2,3,4 (i.e.,
p1 = 0.3,p2 = p3 = 0.2,p4 = 0.1). Experimental results
in Tables X, Xl and XllI show that unlike PW, SDH (as
described in Section 111-B) yields correct (numerical fesu
are not feasible, but agreement with SDA estimates suggest
correctness), stable and asymptotically efficient esgmat
with relative error increasing (sub-)linearly in the ovewvil
level L. Note that the “bestb;s are equal when the loads [®]
are symmetric. For asymmetric loads,= 2 andb; > 2, for
i = 2,3,4, and increases with the overflow levBl Finer
“tuning” of the b;s (by allowing them to be different) has
shown to yield further reduction in the relative error. 8
In the experiments presented here, SDH typically requires
only a few minutes to achieve relative errors less than 10/[%]
and is evidently much more efficient than SDA (VRR 1)
even though its displayed relative error may be higher. Also
SDA produces correct and stable results; however, it is ré¢!
clear why it performs much worse (relative to SDH) for
4-node parallel networks than it does for 4-node tandem
networks (compare with VRRs in Tables IV, V and VvI). [11]

V. CONCLUSIONS AND FURTHER WORK [12]

In this paper we have proposed and experimented with
a heuristic approach to approximate the “optimal” stat?l—]
dependent change of measure for the efficient simulation o?
networks with nodes in series or in parallel. The developed
changes of measure (which we refer to as SDH) are udéd
to estimate (using importance sampling) the probability ¢fs;
population overflow in tandem and parallel queueing net-
works. Experimental results indicate that the heuristietdy [16]
asymptotically efficient estimates, with relative erroogr
ing at most (sub-)linearly with the overflow levél. The
efficiency of the obtained changes of measure compares wedi
with those determined using adaptive importance sampling
methodologies. Yet, our approach does not require coskyl
pre-computation and avoids complicated (or intractablrfl)gl
mathematical analyses. Moreover, its effectiveness is no
diminished for large networks with huge state-space.

Needless to say, the utility of the approach needs to B!
tested on larger networks and more complex topologies,
including feed-forward and feedback networks. Also, sienpl21]
and robust guidelines for selecting the number of bounda[%]
layers (dependence range) is an important challenge.
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TABLE |

2-NODE TANDEM NETWORK - SYMMETRIC (A = 0.04, 11 = p2 = 0.48)

(p1 = p2 = 0.083)

L Numerical PW SDA SDH
~(L) 3(L) £ RE% b 3(L) £ RE% b 3(L) £ RE% VRR
25 2.8722e-025|| 2.6050e-025+ 8.64 || 3 | 2.8729e-025+ 0.06 || 3 | 2.8767e-025+ 0.13 | 4.11
50 6.0327e-052|| 2.3672e-052+ 4.67 || 3 | 6.0340e-052+ 0.07 || 3 | 6.0367e-052+ 0.12 | 3.89
100 || 1.3270e-105|| 3.5984e-106+ 19.5 || 3 | 1.3255e-105+ 0.07 || 3 | 1.3301e-105+ 0.17 | 1.63
TABLE Il
2-NODE TANDEM NETWORK - SYMMETRIC (A = 0.2, u1 = p2 = 0.4) (p1 = p2 =0.5)
L Numerical PW SDA SDH
~(L) 3(L) £ RE% b 3(L) £ RE% b 3(L) £ RE% VRR
25 7.1526e-07|| 6.8876e-07+ 3.71 || 7 | 7.1532e-07+ 0.04 || 9 | 7.1637e-07+ 0.14 | 1.72
50 || 4.3521e-14|| 2.7323e-14+ 5.99 || 7 | 4.3509e-14+ 0.06 || 9 | 4.3556e-14+ 0.11 | 5.37
100 || 7.8097e-29|| 2.5780e-29+ 11.8 |[[ 7 | 7.8150e-29+ 0.10 || 9 | 7.7953e-29+ 0.13 | 3.48
TABLE Il

2-NoDE TANDEM NETWORK - ASYMMETRIC (A = 0.18, 11 = 0.42, o = 0.4)

(p1 = 0.43, pz = 0.45)

4-NODE TANDEM NETWORK - SYMMETRIC (A = 0.04, 1 = p2 = p3 = pa = 0.24) (p1 = p2 = p3 = pa = 0.167)

L Numerical PW SDA SDH
(L) J(L) £ RE% b 5(L) £ RE% b 3(L) £ RE% VRR
25 3.8066e-08|| 4.2325e-08+ 8.53 || 5 | 3.8046e-08+ 0.04 || 6 | 3.8089e-08+ 0.10 | 1.91
50 1.0684e-16|| 1.1551e-16+ 13.8 || 7 | 1.0681e-164+ 0.02 || 6 | 1.0687e-164+ 0.08 | 1.79
100 || 5.3355e-34|| 3.8945e-344+ 3.00 || 6 | 5.3357e-34+ 0.03 || 6 | 5.3390e-34+ 0.07 | 2.51
TABLE IV

L Numerical PW SDA SDH
~(D) F(L) £ RE% b 7(L) £ RE% b (L) £ RE% VRR
25 || 5.0207e-016|| 4.1762e-016+ 11.6 || 3 | 5.0277e-016+ 0.14 || 4 | 5.1093e-016+ 0.94 | 4.07
50 * 3.1024e-035+ 37.0 || 3 | 1.3532e-034+ 0.26 || 4 | 1.3560e-034+ 1.04 | 3.58
100 * 6.7039e-074+ 62.0 || 3 | 1.2775e-072+ 0.86 || 5 | 1.2809e-072+ 1.52 | 16.4
TABLE V
4-NODE TANDEM NETWORK - SYMMETRIC (A = 0.1, 11 = p2 = pz = pa = 0.225) (p1 = p2 = p3 = pa = 0.44)
L Numerical PW SDA SDH
~(L) (L) £ RE% b F(L) £ RE% b 3(L) £ RE% VRR
25 * 3.2961e-06+ 4.76 || 3 | 5.1771e-06+ 0.16 || 6 | 5.1053e-06+ 1.04 | 2.42
50 * 4.1536e-14+ 59.6 || 5 | 6.4774e-14+- 0.18 || 7 | 6.3828e-14+ 0.89 | 9.28
100 * 4.5737e-32£ 13.4 || 5 | 1.2525e-30+ 0.43 || 10 | 1.2808e-30+ 1.18 | 13.2
TABLE VI

4-NODE TANDEM NETWORK - ASYMMETRIC (A = 0.1, 1 = 0.28, o = 0.24, pu3 = 0.21, pug = 0.17)
(p1 = 0.36, p2 = 0.42, p3 = 0.48, p4 = 0.59)

L Numerical PW SDA SDH

~(L) J(L) £ RE% b ¥(L) £ RE% b ¥(L) £ RE% VRR
25 * 5.1899e-05+ 1.17 || 3 | 5.43812e-005+ 0.10 || 11 | 5.4232e-05+ 0.28 | 5.40
50 * 9.4430e-114 2.85 || 3 | 9.62647e-01H4- 0.17 || 11 | 9.6495e-11+ 0.25 | 10.6
100 * 2.7979e-224+ 1.59 || 4 | 2.90145e-022+ 0.27 || 12 | 2.8865e-22+ 0.25 | 37.8




TABLE VI

2-NODE PARALLEL NETWORK - SYMMETRIC (A; = 0.1, u; = 0.4)

(p1 = p2 = 0.25)

L Numerical PW SDA SDH
~(L) F(L) £ RE% b 3(L) £ RE% b1, 02 3(L) £ RE% VRR
25 6.4837e-14|| 2.4899e-144+ 7.45 || 3 | 6.4826e-14+ 0.06 3,3 6.4818e-14+ 0.12 | 2.76
50 1.1675e-28|| 3.7971e-29+ 36.2 || 4 | 1.1684e-28+ 0.06 4,4 1.1650e-284+ 0.15 | 1.67
100 || 1.8445e-58|| 1.9774e-594+ 14.5 || 5 | 1.8527e-58+ 0.08 5,5 1.8511e-58+ 0.25 | 0.77
TABLE VI
2-NODE PARALLEL NETWORK - SYMMETRIC (A; = 0.15, j1; = 0.35) (p1 = p2 = 0.43)
L Numerical PW SDA SDH
~(L) 5(L) £ RE% b 3(L) £ RE% b1, 02 5(L) £ RE% VRR
25 1.9796e-08|| 1.1928e-08+ 11.7 || 4 | 1.9800e-08+ 0.06 4,4 1.9814e-08+ 0.14 | 1.58
50 || 2.5813e-17|] 8.5168e-18+ 12.7 || 5 | 2.5834e-17+ 0.06 6,6 | 2.5904e-17+ 0.17 | 0.98
100 || 2.0926e-35|| 2.3032e-35+ 86.2 || 6 | 2.0923e-35+ 0.07 7,7 | 2.0895e-35+ 0.26 | 0.66
TABLE IX
2-NODE PARALLEL NETWORK - ASYMMETRIC (A1 = 0.12, 1 = 0.4, A2 = 0.08, 2 = 0.4) (p1 =0.3,p2 =0.2)
L Numerical PW SDA SDH
(L) F(L) £ RE% b 3(L) £ RE% b1, b2 (L) £ RE% VRR
25 || 5.6704e-13[| 7.2661e-13+ 22.1 || 3 | 5.6480e-13+ 0.12 2,5 | 5.6600e-13+ 0.15 | 5.87
50 || 4.8047e-26|| 4.7674e-26+ 3.88 || 3 | 4.7993e-26+ 0.16 2,7 | 4.8188e-26+ 0.20 | 3.30
100 || 3.4493e-52|| 3.3333e-52+ 3.01 || 3 | 3.4434e-52+ 0.21 || 2,10 | 3.4563e-52+ 0.28 | 3.23
TABLE X
4-NODE PARALLEL NETWORK - SYMMETRIC (A; = 0.05, 15 = 0.2) (pi =0.25)
L Numerical PW SDA SDH
~(L) 5(L) £ RE% b 3(L) £ RE% b1,0; 3(L) £ RE% VRR
25 * 8.5099e-13+ 12.0 || 4 | 7.3197e-12+ 0.08 4,4 7.3465e-124+ 0.30 | 33.8
50 * 1.8289e-27+ 48.1 || 4 | 5.0880e-26+ 0.14 55 5.1083e-26+ 0.41 | 43.0
100 * 4.6236e-58+ 7.58 || 5 | 3.1658e-55+ 0.14 55 3.1384e-55+ 0.78 | 19.2
TABLE XI
4-NODE PARALLEL NETWORK - SYMMETRIC (A; = 0.08, u; = 0.17) (p;i =0.47)
L Numerical PW SDA SDH
(L) (L) £ RE% b (L) £ RE% b1, b; (L) £ RE% VRR
25 * 7.2898e-06+ 9.09 || 3 | 1.7915e-05+ 0.13 8,8 | 1.7924e-05+ 0.24 | 235
50 * 1.1733e-13+ 18.0 || 4 | 9.8414e-13+ 0.26 8,8 | 9.8027e-13+ 0.31 | 120.
100 * 4.1708e-30+ 16.5 || 5 | 3.4284e-28+ 0.59 9,9 | 3.4008e-28+ 0.49 | 386.

4-NODE PARALLEL NETWORK - ASYMMETRIC (A1 = 0.06, A2 = 0.04, A3 = 0.04, Ay = 0.02; 1 = po = p3 = pa = 0.2)

TABLE XII

(p1 =0.3,p2 = p3 =0.2,p4 =0.1)

L Numerical PW SDA SDH

~(L) J(L) £ RE% b J(L) £ RE% b1,b; ¥(L) £ RE% VRR
25 * 2.8583e-124 18.9 || 4 | 2.4917e-124+ 0.15 2,6 2.5012e-124+ 0.35 | 135.
50 * 1.8266e-25+ 2.59 || 4 | 2.1002e-25+ 0.22 2,8 2.1268e-25+ 0.64 | 56.7
100 * 1.4262e-514+ 7.11 || 4 | 1.3031le-51+ 0.37 2,10 | 1.5248e-51+ 1.37 | 22.0




