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Abstract— In this paper we propose state-dependent impor-
tance sampling heuristics to estimate the probability of popu-
lation overflow in Markovian networks of series and parallel
queues. These heuristics capture state-dependence along the
boundaries (when one or more queues are empty) which is
critical for the asymptotic optimality of the change of measure.
The approach does not require difficult (and often intractable)
mathematical analysis or costly optimization involved in adap-
tive importance sampling methodologies. Experimental results
on tandem and parallel networks with a moderate number
of nodes yield asymptotically efficient estimates (often with
bounded relative error) where no other state-independent
importance sampling techniques are known to be efficient.
Insight drawn from simulating basic networks in this paper
promises the applicability of the proposed methodology to
larger networks with more general topologies.

I. I NTRODUCTION

Efficient simulation of queueing networks has long been
the focus of much research, owing to its applicability in the
modeling, analysis and dimensioning of logistic, production
and communication networks. In particular, the analysis of
rare yet critical events, such as buffer overflow, has been a
challenging problem attracting a huge number of scientists
and practitioners over the past few decades. Despite vast
theoretical and empirical efforts, progress is markedly slow
as evidenced by the lack of generally applicable techniques
and tools equipped to deal with the difficulty inherent in
simulating rare events in queueing networks.

Among the most effective methodologies researched and
applied so far are those based on importance sampling (see,
e.g., [9], [18], [2], [19]) and importance splitting (see, e.g.,
[15], [31], [14]) techniques. (Importance sampling is the
methodology adopted in this paper.) However, the success
of these techniques has been mostly limited to simulations of
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single server queues, under restrictive assumptions regarding
the underlying arrival and service processes (e.g., having
light-tail distributions [26], [29]). Some queueing networks
of certian topologies have also been considered (see, e.g.,
[8], [23], [22]). The overflow event of interest is usually
that of an individual buffer or that of the total network
population. Most previous work has focused on estimating
the probability of the latter event, given some initial network
state (typically, starting from an empty network).

Until recently, only state-independent importance sam-
pling heuristics were developed and considered for anal-
ysis. In these heuristics, the change of measure is ’static’
and independent of the network state (i.e., the number of
customers at each node in a Jackson network). A relatively
simple (and well known) heuristic change of measure for
simulations of population overflow in queueing networks
is that proposed in [26] and further investigated in [11]
and [12]. However, even for the simplest Jackson queueing
network (e.g., 2-node tandem network), the effectiveness of
this heuristic is limited to only some region of the (arrival
and service) parameters space (see [16], [17], [7]). (We use
the term ‘effectiveness’ interchangeably with ‘asymptotic ef-
ficiency,’ see Section II-B for a precise definition.) Effective
bandwidth methods have been used to develop heuristics
for simulating overflow of an individual buffer in some
specific class of networks, e.g., feed-forward [10] and in-
tree [8] fluid flow networks. More recently [20] proposed
a heuristic change of measure for simulating the overflow
of an individual buffer in queueing networks of general
topology and arbitrary routing (i.e., including feedback).
Under some regularity conditions, the heuristic is provably
effective for any feasible set of network parameters (e.g.,
arrival and service rates in a Jackson network). This marks
a significant advance, since the heuristic is applicable to a
broad class of networks under less restrictive (and possi-
bly, non-Markovian) assumptions. State-independence is a
common feature of the heuristics mentioned above. Also,
none of them is provably effective for simulating population
overflow in networks with an arbitrary and feasible set of
parameters ([16], [20], [7]).



Based on Markov additive process formulation of a two-
node tandem network and large deviations arguments, work
in [22] reveals that a state-dependent change of measure
is effective where, provably, no effective state-independent
change of measure exists ([16], [7]). This finding triggered
more research to develop methodologies for obtaining state-
dependent importance sampling heuristics that are demon-
strably effective (at least empirically). Initially, the work in
[6] which uses an adaptive optimization technique based
on the method of cross-entropy [28] to approximate the
‘optimal’ state-dependent change of measure. Later, a simi-
lar adaptive approach based on stochastic approximation is
introduced in [1]. To date, these approaches appear to be
the most promising for application to Markovian (Jackson)
networks of general topology. A drawback, however, is the
computational and storage demands for large state-space
models associated with large networks.

Most recently, tandem networks are considered in [24]
and [33] with the aim to develop a (heuristic) state-
dependent change of measure that is sufficiently close to the
“optimal” without tedious mathematical analyses or costly
optimizations involved in adaptive methodologies. The key
observation is that the “optimal” change of measure depends
on the network state only along and close to the boundaries
(when one or more nodes are empty), and tends to become
state-independent in the interior of the state-space. There-
fore, if we can determine the change of measure along the
boundaries and at the interior of the state-space, then we
may be able to combine them appropriately to construct
a state-dependent change of measure that approximates
the “optimal” one in the entire state-space. The proposed
methodology is dubbed “state-dependent heuristic” or SDH
in short. Experimental results using the so obtained change
of measure to simulate tandem networks yield estimates
with a bounded relative error for almost any feasible set
of network parameters (see [33] and [24]). Only when the
lowest service rates are equal (i.e., there is more than one
bottleneck), then the relative error increases at most linearly
with the overflow level.

In this paper we review and refine some recent work
using this heuristic approach to simulate tandem networks,
and further extend its utility for the efficient simulation of
parallel queues. Experimental results to estimate the proba-
bility of population overflow in these (tandem and parallel)
networks produce asymptotically efficient estimates, with
relative error increasing at most linearly with the overflow
level. The proposed heuristics are robust and effective, yet
easier-to-implement and could be more efficient than those
based on adaptive importance sampling methodologies (e.g.,
[6]), particularly for large networks.

In Section II we give some preliminaries, introduce
the basic model and define the probability of interest.
The importance sampling technique is briefly reviewed. In

Section III we motivate the proposed SDH and give its
formal representation for tandem and parallel networks,
respectively. In Section IV we present experimental results
and comparisons with other known methods to estimate
the probability of population overflow in some example
networks. Conclusions highlighting the advantages and chal-
lenges associated with the proposed methodology are given
in Section V.

II. PRELIMINARIES

The queueing network model and associated notation are
introduced in Section II-A. A brief review of importance
sampling and some properties of simulation estimators are
provided in Section II-B.

A. Model and Notation

Consider a Jackson network consisting ofn nodes
(queues), each having its own buffer of infinite size. Cus-
tomers arrive at nodei (i = 1, . . . , n) according to a Poisson
process with rateλi. The service time of a customer at node
i is exponentially distributed with rateµi (i = 1, . . . , n).
Customers that leave nodei join node j with probability
pij (i = 1, . . . , n; j = 1, . . . , n) or leave the network with
probability pie (i = 1, . . . , n). We also assume that the
queueing network is stable, i.e.,γi < µi for all i = 1, . . . , n,
whereγi is the total arrival rate at nodei, as determined
from the traffic equations

γi = λi +
∑

∀j

γj pji .

Let Xi,t (i = 1, . . . , n) denote the number of customers
at nodei at time t > 0 (including those in service). Then
the vectorXt = (X1,t, X2,t, ..., Xn,t) is a Markov process
representing the state of the network at timet. Denote by
St the total number of customers in the network (network
population) at timet, i.e., St =

∑n
i=1 Xi,t.

Assuming that the initial network state isX0 (usually,
X0 = (0, 0, ..., 0) corresponding to an empty network), we
are interested in the probability that the network population
reaches some high levelL ∈ N before becoming empty. We
denote this probability byγ(L) and refer to it as thepop-
ulation overflow probability, starting from the initial state
X0. Since the associated event is typically rare, importance
sampling may be used to efficiently estimate this probability.

B. Importance Sampling

Importance sampling involves simulating the system un-
der different underlying probability distributions so as to
increase the frequency of typical sample paths leading to
the rare event. Formally, letw be a sample path over the
interval [0, t]. Then, the likelihood ratio associated withw
is given by Wt(w) = P (w)

P̃ (w)
, whereP (w) and P̃ (w) are

the probabilities (or likelihoods) of sample pathw under
the original and the new measure, respectively. Obviously,



P̃ (w) > 0 wheneverP (w) > 0. Starting fromX0, defineτ
as the first timeSt hits levelL or level 0, then

γ(L) = E I{Sτ =L} = Ẽ Wτ I{Sτ=L} , (1)

whereI. is the indicator function taking the value 1 if the
event. is true and 0 otherwise, andWτ is the likelihood ratio
over the interval[0, τ ]. E and Ẽ are the expectations under
the original and the new changes of measure, respectively.
The variance of the estimator̃E Wτ I{Sτ =L} is given by

Ẽ Wτ
2 I{Sτ=L} − (γ(L))2 . (2)

The relative error is the ratio of the standard deviation of
the estimator over its expectation, i.e.,

√

Ẽ Wτ
2 I{Sτ=L}

(γ(L))2
− 1 . (3)

The estimator̃E Wτ I{Sτ =L} is said to beasymptotically
efficient if its relative error grows at sub-exponential (e.g.,
polynomial) rate asL → ∞ (i.e., asγ(L) → 0). Formally,
let limL→∞

1
L

log γ(L) = θ. That is,θ is the asymptotic
decay rate of the overflow probabilityγ(L) as L → ∞.
Then, from Equation 3, asymptotic efficiency is obtained if

lim
L→∞

1

L
log Ẽ Wτ

2 I{Sτ =L} = 2θ . (4)

The estimator is said to havebounded relative errorif its
relative error is bounded inL as γ(L) → 0. This implies
asymptotic efficiency, however, it is a stronger and more
desirable property for any importance sampling estimator.
It has long been a topic of intensive and mathematically in-
volved research to develop asymptotically efficient changes
of measure to estimate overflow probabilities in queueing
(and in particular, tandem) networks. Some early work can
be found in, e.g., [26], [12], [13], [3], and [30].

It is important to note that a change of measure may,
in general, depend on the state of the system, even if
the original underlying distributions do not depend on the
system state. For instance, the arrival and service rates
in a Markovian queueing network are typically fixed and
independent of the network state (i.e., the buffer content
at each node). However, a change of measure to be used in
importance sampling simulation may involve new arrival and
service rates that depend on the state of the network. Recent
works confirm that state-dependent changes of measure are
generally more effective in simulations of rare events in
queueing networks (see, e.g., [22], [6]). Therefore, in this
paper we aim at developing heuristics to approximate the
“optimal” state-dependent change of measure.

III. STATE-DEPENDENT HEURISTICS

Even for the simplest (2-node) tandem network, no state-
independent change of measure that is asymptotically effi-
cient over the entire range of feasible network parameters
(arrival and service rates) is known to exist ([16], [7]). Only
state-dependent change of measures, developed through

analysis (e.g., [22]) or determined using adaptive importance
sampling (e.g., [6], [1]), have shown to be effective for any
feasible set of network parameters. Unfortunately, however,
these methodologies have some drawbacks. It is not clear
whether the analysis in [22] can be easily extended to
larger and more general networks. On the other hand, large
state-space limits the effectiveness of adaptive importance
sampling to Markovian networks with a small number of
nodes ([1], [6]). Evidently, it is of much interest to find
more practical and robust approaches to develop effective
state-dependent changes of measure.

Roughly speaking, a state-dependent change of measure
allows to influence sample paths behaviour more freely than
a state-independent one. Therefore, it is more suited to
change the average sample path behaviour of the simulated
system so as to follow the “optimal” (most likely) path lead-
ing to the rare event. In a Jackson network, such a change of
measure depends on the state of the network, i.e., the number
of customers at each network node. Indeed, theoretical and
empirical results in [22] and [6] indicate that an effective
(asymptotically optimal) state-dependent change of measure
always exists and can often be determined (through analysis
or adaptively), also when provably no state-independent
change of measure exists. Even when the latter exists, a
properly determined state-dependent change of measure is
almost always more effective. For the “optimal” change
of measure, state dependence is also shown to be strong
along the boundaries of the state-space (i.e., when one or
more buffers are empty) and diminishes toward the interior
of the state-space (i.e., when the contents of all buffers
are sufficiently large). Capturing dependencies along the
boundaries have shown to be very crucial for the asymptotic
efficiency (“optimality”) of the change of measure.

The above observation suggests that if we know the
“optimal” change of measure along the boundaries and
in the interior of the state-space, then we might be able
to construct a change of measure that approximates the
“optimal” one over the entire state-space. If the approxi-
mation is sufficiently good, then the so constructed change
of measure may yield asymptotically efficient estimators. To
realize the above idea we need to determine the “optimal”
change of measure in the interior and along the boundaries
of the state-space. In [24] heuristics based on combining
known large deviations results and time-reversal arguments
are used to construct such a change of measure for the 2-
node tandem network (see Section III-A). Empirical results
show that it produces asymptotically efficient estimators,
with a bounded relative error for almost the entire feasible
range of network parameters. In Section III-A we refine and
generalize the change of measure in [24] to tandem networks
with any number of nodes. In Section III-B we propose a
state-dependent heuristic change of measure for the efficient
simulation of parallel networks with any number of nodes.



A. SDH for then-node Tandem Network

Let λ andµi (i = 1, . . . , n) be the arrival rate at the first
node and the service rate at thei − th node, respectively.
Denote byρi = λ

µi

the traffic intensity at nodei, and
assume thatρ1 6 ρ2 6 . . . ρn < 1. We note, however,
that this ordering is not a restriction, since the probability
of population overflow is invariant with respect to the
placement order of nodes in a Jackson tandem network [32].
Without loss of generality we assume thatλ+

∑n
i=1 µi = 1.

Let xi, i = 1, . . . , n, be the number of customers at node
i at time t. Then the state of the network,Xt, is given by
the vectorx = (x1, x2, ..., xn). The new rates may depend
on the network state and, therefore, they are functions of the
vectorx. Denote bỹλ(x) andµ̃i(x) (i = 1, . . . , n) the rates
under the new change of measure, and bySDHTn

i (x) (i =
1, . . . , n) the (n + 1)× (n + 1) SDH transformation matrix
to simulate population overflow in the firsti nodes of the
n-node tandem network. (The superscript Tn is a reference
to the entiren-node tandem network.) Thus,SDHTn

n (x) is
a linear operator transforming the original rates into the new
rates used to simulate population overflow in the network
Tn. (For convenience, we occasionally abuse notation by
dropping the vectorx).

Consider a 2-node tandem network(T2) with arrival and
service ratesλ, µ1 andµ2, respectively. Denote byM0 the
original change of measure, byM1, the change of measure:
λ̃ = µ1 , µ̃1 = λ , µ̃2 = µ2 , and by M2, the change
of measure:̃λ = µ2 , µ̃1 = µ1 , µ̃2 = λ . In words, our
proposed state-dependent heuristic for the 2-node tandem
network can be described as follows: Initially (starting from
an empty network) applyM0 (i.e., no change of measure).
As the number of customers at node 1(x1) increases,
gradually go fromM0 to M1. At the same time, as the
number of customers at node 2(x2) increases, gradually go
from M0 and/orM1 to M2. Thus, for a sufficiently large
x2, M2 is applied. Asx2 decreases, gradually go fromM2

to M0 and/orM1, depending onx1.
The above state-dependent change of measure for the 2-

node tandem network(T2) is formally expressed in the
following proposition.

Proposition 1 (SDH for the 2-node Tandem Network)
Define [a]+ = max(a, 0) and [a]1 = min(a, 1), and let

1 ≤ bi ≤ ∞, i = 1, 2, be a fixed integer. The following
equation expresses the proposed state-dependent change of
measure for the 2-node tandem network [24]:





λ̃
µ̃1

µ̃2



 = SDHT2
2





λ
µ1

µ2



 , (5)

SDHT2
2 =

[

x2

b2

]1




0 0 1
0 1 0
1 0 0



 +

[

b2 − x2

b2

]+

SDHT2
1 ,

SDHT2
1 =

[

x1

b1

]1




0 1 0
1 0 0
0 0 1





+

[

b1 − x1

b1

]+




1 0 0
0 1 0
0 0 1



 .

The first matrix is the identity matrix with the first and the
third rows interchanged; this corresponds to interchanging
the arrival rateλ with the service rateµ2. The second matrix
is the identity matrix with the first and the second rows
interchanged; this corresponds to interchanging the arrival
rate λ with the service rateµ1. The third matrix is the
identity matrix, corresponding to no change of measure.
Note that the new arrival and service rates (essentially) do
not correspond to a stable network, and they depend on the
state of the network(x1, x2), the number of customers at
each node.

Consistent with an earlier variant of the same heuristic
in [24], and as set in our experiments with 2-node tandem
networks, letb1 = 1. Then the above change of measure
depends only onx2. In this case, the heuristic implies a
gradual “transition” between two changes of measure(M1)
and (M2) (as indicated schematically in Figure 4): Along
the boundary,x2 = 0, the change of measure is(M1). In
the interior,x2 ≥ b2, the change of measure is(M2). In
the interim,1 < x2 < b2, the new rates are simply linear
interpolation of their values atx2 = 0 andx2 = b2.

Let us follow a sample path starting from an arrival
to an empty network. The proposed change of measure
(with b1 = 1) implies the following: Initially, and while
x2 = 0, exchange the arrival rate (λ) with the service rate
at node 1 (µ1), i.e., start with overloading the first node
(making it unstable) while the second node is stable. As
the number of customers at the second node increases in
the range(1 < x2 < b2), gradually and simultaneously
reduce the load on the first node while increasing the load
on the second node. When the number of customers at the
second node reaches levelb2 and whilex2 ≥ b2, exchange
the arrival rate (λ) with the service rate at node 2 (µ2);
i.e., overload the second node (making it unstable) while
the first node is stable (resp. “critical”) ifµ2 < µ1 (resp.
µ2 = µ1). In the interior(x2 ≥ b2), the new rates do not
depend on the network state (i.e., neitherx1 nor x2).

Time Reversal Argument

The effectiveness of the change of measure in Proposi-
tion 1 may be explained using time-reversal argument [21].



However, by no means this should be interpreted as a formal
validation of its asymptotic efficiency. The reverse time
process is also a 2-node tandem network (see Figure 2);
however, arrivals (rateλ) enter the network at Node 2
(service rateµ2) and exit from Node 1 (service rateµ1).

Roughly speaking, according to [3], in the limit asL →
∞, the most likely path to the rare set (i.e., population
overflow) in the forward time process is the same path by
which the reverse time process evolves, given that the latter
starts from the rare set. Since both Node 1 and Node 2
may be non-empty upon entry into the rare set, the hitting
state(x1, x2) is somewhere along the linex1 +x2 = L. Let
µ2 ≤ µ1, and the reverse time process starts at(L1, L2) such
that L1 + L2 = L. Node 2 has arrival rateλ and initially
its departure rate isµ2, thus it empties at rate(µ2 − λ). In
the meantime, Node 1 has input rateµ2 and a departure rate
µ1, thus it also empties at rate(µ1 − µ2). If µ1 = µ2, then
node 1 is “critical” and does not empty; this corresponds to
Path III in Figure 3. If and when Node 2 empties first, its
arrival and departure rates are equal toλ. At that time, Node
1 has arrival rateλ and departure rateµ1, thus it empties
at rate(µ1 − λ). This corresponds to Path II in Figure 3.
If and when Node 1 empties first, its arrival and departure
rates are equal toµ2. At that time, Node 2 has arrival rate
λ and departure rateµ2, thus it empties at rate(µ2 − λ).
This corresponds to Path I in Figure 3.

Note that departures (resp. arrivals) in reverse time cor-
respond to arrivals (resp. departures) in forward time. It
follows that along the most likely path from an empty
network to population overflow (in forward-time), there
are two possible scenarios depending on the entry state
(L1, L2) into the rare set, which in turn depends on the
arrival and service rates [19]: One scenario corresponds to
Path I, in which Node 2 builds up first while Node 1 is
stable (i.e.,λ̃ = µ2, µ̃1 = µ1, µ̃2 = λ). At some point,
also Node 1 starts to build up until the rare set is hit (i.e.,
λ̃ = µ1, µ̃1 = µ2, µ̃2 = λ). This scenario is more likely
when µ2 ≪ µ1. A second scenario corresponds to Path II
(or Path III), in which Node 1 builds up first while Node
2 is stable (i.e.,̃λ = µ1, µ̃1 = λ, µ̃2 = µ2). At some point,
also Node 2 starts to build up until the rare set is hit (i.e.,
λ̃ = µ1, µ̃1 = µ2, µ̃2 = λ). This scenario is more likely
whenµ2 is less than, but sufficiently close to,µ1. Paths III
is simply the limit of Path II whenµ1 = µ2.

Now, if µ2 6 µ1 (as we assume above), then the heuristic
in [26] exchangesλ andµ2 leavingµ1 unchanged; i.e., Node
1 is stable, and Node 2 builds up all the way until the rare
set is hit. This corresponds to the Path PW in Figure 3.
It is interesting note that forµ2 ≪ µ1 Path I is the most
likely and it gets closer to Path PW, which explains the
effectiveness of the heuristic in [26] for sufficiently small
µ2. For largerµ2 (closer toµ1) the most likely path deviates
further form Path PW and gets closer to Path II, which

clarifies the ineffectiveness of the heuristic in [26].
On the other hand, by appropriately settingb1 and b2,

the state-dependent heuristic in Proposition 1 can (roughly)
capture the most likely path to overflow (i.e., Path I, Path II
or Path III, depending on the network parameters). Indeed,
this clarifies the robustness and effectiveness of this heuristic
over the entire feasible parameter range (as evidenced from
experimental results in Section IV-A).

The heuristic in Proposition 1 can be generalized ton
nodes in tandem as follows.

Proposition 2 (SDH for the n-node Tandem Network)
Let Θ be a vector with the original network parameters,

i.e., Θ
T = [λ, µ1, . . . , µn]. Similarly, Θ̃(x) is a vector

with the new parameters (depending on the network state
x) for simulating the network under importance sampling.
The SDH for ann-node tandem network is given by

Θ̃ = SDHTn
n Θ,

with the transformation matrixSDHTn
n expressed recur-

sively as follows:

SDHTn
k =

[

xk

bk

]1

ITn
k +

[

bk − xk

bk

]+

SDHTn
k−1, k = 1, . . . , n,

(6)
whereSDHTn

0 = ITn
0 andITn

k (k = 1, . . . , n) is the identity
matrix of dimension(n+1) with the first and the(k+1)-st
rows interchanged.

Note that, except forn = 1 (single server), by setting
bi = ∞ for i = 1, . . . , n − 1 and bn = 1, the above
heuristic does not reduce to the well known heuristic of
interchanging the arrival rate (λ) and the slowest service
rate (µn) [26]. The latter exchangesλ andµn upon arrival
to an empty network and does not depend on the network
state; i.e., importance sampling is applied upon the first
arrival to node 1 and continues until the network empties
or the rare event is reached. The heuristic in Proposition 2
exchangesλ and µn upon the first arrival to noden
and only as long as it is non-empty, i.e., importance
sampling is applied only during the busy periods of node
n and continues until it empties or the rare event is reached.

Remark 1 Note that bi ≥ 1 is the number of boundary
levels alongxi for which the change of measure depends
on xi (we also refer to it as the “dependence range”). These
are the only variable parameters in the above heuristic, and
their proper selection is crucial for achieving asymptotic
efficiency, particularly for larger networks. In general, the
“best” values ofbi, i = 1, . . . , n (yielding estimates with
the lowest variance) may depend on the set of network
parameters as well as the overflow levelL. However, em-
pirical results suggest robustness. For example, for a given



parameter point, by settingbi = b at all nodesi = 1, . . . , n
(as we do in most experiments with tandem networks in
Section IV-A), the change of measure remains effective for
a range ofb values around the optimal. However, for some
regions in the parameter space, the effectiveness may be
more sensitive tob, whose “best” value may vary from one
parameter point to another and may also depend onL.

B. SDH for then-node Parallel Network

Let λi and µi be, respectively, the arrival rate and the
service rate at nodei, and denote its traffic intensity by
ρi = λi

µi

< 1 (i = 1, . . . , n). Without loss of generality we
assume that

∑n
i=1 (λi + µi) = 1.

The new rates may depend on the network state and,
therefore, are they are functions of the vectorx =
(x1, x2, ..., xn). Denote bỹλi(x) andµ̃i(x) the correspond-
ing rates at nodei under the new change of measure, and
by SDHi(x) the2×2 linear operator (matrix) transforming
the original rates into the new rates at nodei, i.e.,

[

λ̃i

µ̃i

]

= SDHi

[

λi

µi

]

, i = 1, . . . , n. (7)

As before, define[a]+ = max(a, 0) and[a]1 = min(a, 1).
The following proposition gives the state-dependent heuris-
tic change of measure forn parallel nodes.

Proposition 3 (SDH for the n-node Parallel Network)
Let Θ be a vector with the original network parameters,

i.e., ΘT = [λ1, µ1, . . . , λn, µn]. Similarly, Θ̃(x) is a vector
with the new network parameters, and define the2n × 2n

transformation matrixSDHPn(x) as follows (occasionally,
we abuse notation by dropping the vectorx).

SDHPn =











SDH1 0 . . . 0
0 SDH2 . . . 0
...

...
. . .

...
0 0 . . . SDHn











, (8)

with

SDHi =

[

xi

bi

]1 [

0 1
1 0

]

+

[

bi − xi

bi

]+ [

1 0
0 1

]

,

(9)

for some integerbi ≥ 1, and i = 1, . . . , n. Then the SDH
for an n-node parallel network is given by

Θ̃ = SDHPn
Θ .

The superscript Pn refers to a network ofn parallel nodes.
In Equation 9 forSDHi, the first matrix is the identity
matrix with the first and the second rows interchanged,
which corresponds to interchanging the arrival and service

rates at nodei. The second matrix is the identity matrix,
corresponding to no change of measure. Note that the
equality

∑n
i=1 (λ̃i + µ̃i) = 1 holds under the above change

of measure.

Remark 2 Note thatbi is the number of boundary levels
for which the change of measure at nodei depends on the
contentxi (we also refer to it as the dependence range at
nodei). Proper selection of thebi’s is crucial for achieving
asymptotic efficiency. Empirical results suggest that the
“optimal” bi’s (yielding estimates with the lowest variance)
depend on the traffic intensitiesρi’s at all network nodes as
well as the overflow levelL.

According to the above change of measure, all nodes
may be “pushed” (overloaded) simultaneously, however, to
different extents depending on their respective ratios of
contentxi relative to bi. This is a state-dependent change
of measure, by which busy nodes(xi ≥ 1) are “pushed”
harder for higherxi/bi.

The well-known heuristic in [26] suggests interchanging
the arrival and service rates at the bottleneck node (with the
highestρi). This is a state-independent change of measure,
which is shown to work well only in a limited region of the
network parameters space (namely, when the utilization at
the bottleneck node is sufficiently higher than those at all
other nodes). For a single node, say, nodei, our change of
measure, withbi = 1, is identical to that in [26]; both are
asymptotically efficient.

Time Reversal Argument

As for the tandem network, the effectiveness of the change
of measure in Proposition 3 for the simulation of parallel
networks may be explained using time-reversal argument
[21]. The reverse time process is also ann-node parallel
network. At nodei (i = 1, . . . , n), the arrival and service
rates areλi andµi, respectively (i.e., same as in the forward
time process). However, the reverse time process starts from
the hitting state into the rare set, say,(L1, L2, . . . , Ln) with
∑n

i=1 Li = L. In the reverse time, the number of customers
at nodei (i = 1, . . . , n) is initially Li and it empties at
rate (δi = µi − λi). The (reverse) time needed to clear the
backlog at nodei is therefore given byLi

δi

. Clearly, the order
in which the backlogs at different nodes disappear depends
on the initial (hitting) state as well as the arrival and service
rates at each node. Intuitively, the bottleneck node (with the
highestρi) is likely to have the largest backlog upon hitting
the rare set, and because it empties at a slower rate, its
backlog is likely to be the last to disappear. (In forward time,
this implies that the bottleneck node is likely to start its build
up sooner than other nodes.) Note that it may take some
time for the network to empty after all backlogs disappear;
this also depends on the traffic intensities and the overflow
level L.



Note that departures (resp. arrivals) in reverse time cor-
respond to arrivals (resp. departures) in forward time. It
follows that along the most likely path from an empty
network to population overflow, each node starts building
up a backlog after some (own) initial period. The build
up at nodei continues at rateδi = µi − λi until the
population overflow levelL is reached. Highly loaded nodes
are likely to start their backlog build up sooner than lightly
loaded nodes. If the traffic intensity at the bottleneck nodeis
sufficiently higher than at other nodes, then the most likely
path to overflow involves a build up only at the bottleneck
node. This is consistent with the heuristic in [26] which
exchanges the arrival and service rates only at the bottleneck
node, and therefore clarifies its effectiveness in this case.

By appropriately settingbi, for i = 1, . . . , n, the state-
dependent heuristic in Proposition 3 can (roughly) capture
the most likely path to overflow in a network ofn parallel
nodes. The above time reversal argument along with some
experimentation may provide helpful insights into how to
properly set thebis at the different nodes. Empirical results
in Section IV-B show that the heuristic is very effective and
robust over the entire feasible parameter range .

IV. EXPERIMENTAL RESULTS

Importance sampling to estimate the probability of pop-
ulation overflow(γ(L)) involves generating, say,N , inde-
pendent and identically distributed (i.i.d.) busy cycles (i.e.,
starting with an empty network). Starting a cycle at time
0, define τL as the instant when the network population
reaches levelL for the first time. Similarly, defineτ0 as the
instant when the network population returns to0 for the first
time. The indicator functionIi(τL < τ0) takes the value 1
if the population overflow (levelL) is reached in cyclei,
otherwise it takes the value 0.

In each cycle, the change of measure is applied until either
the population overflow event is reached or the network
population returns to0. Let Wi be the likelihood ratio
associated with cyclei (as defined in Section II-B), then
an unbiased estimator̃γ of γ(L) is given by

γ̃ =
1

N

i=N
∑

i=1

Ii Wi . (10)

The second moment ofI W is estimated by

γ̃2 =
1

N

i=N
∑

i=1

Ii Wi
2 . (11)

The variance and the relative error of the importance sam-
pling estimator̃γ are given by VAR(γ̃) = (γ̃2 − (γ̃)2)/(N−
1) and RE(γ̃) =

√

VAR(γ̃)/ γ̃, respectively. Another useful
measure for comparing the efficiency of different estimators
is the “relative time variance”(RTV) product, which is
defined as the simulation time (in seconds) multiplied by
the squared relative error of the estimator. As the estimate

becomes more stable, its RTV tends to a constant value,
which is smaller for a more efficient estimator. For example,
if RTV2 (for Estimator 2) is larger than RTV1 (for Estimator
1), then it will take Estimator 2 a longer simulation time
to reach the same accuracy. For efficiency comparisons we
use the variance reduction ratio, VRR= RTV2 / RTV1,
which represents the efficiency gain when using Estimator
1 relative to that when using Estimator 2.

In the following sections, two sets of experiments are
presented; one for tandem networks and the second for
parallel networks. Each set consists of six experiments; three
for a small network with 2 nodes and the other three for
a larger network with 4 nodes. In order to illustrate the
utility of our approach, all parameter points are chosen in
regions where the well-known heuristic in [26] is shown
(formally or empirically) to be ineffective. In all simulation
experiments, the same number of replications, namely,106,
is used to obtain estimates of the population overflow
probability γ(L). For each estimate in these tables, we
include the relative error RE% (in percentage). For the
purpose of comparing the heuristics in this paper (termed
SDH) and the adaptive importance sampling methodology
(termed SDA) in de [6], we also include the ratio VRR
(relative to SDA). Hence, VRR> 1 implies efficiency gain
of SDH over SDA. Estimates obtained using the well known
heuristic in [26] (termed PW) are also presented, although
these are not necessarily accurate or stable. In general,
numerical results are difficult to obtain for larger and/or
higher overflow levels (i.e., for larger sate-space). Whenever
feasible, numerical results (for example, using the algorithm
outlined in [4]) are included to verify the correctness of
the simulation estimates. Otherwise, the corresponding table
entry is marked with a “∗”. In the absence of numerical
results, agreement of different estimators (e.g., using SDH
and SDA) may be an indication of correctness.

A. Simulation of Tandem Networks

The experiments in this section are designed to demon-
strate that the state-dependent change of measure proposed
in Section III-A always yield asymptotically efficient esti-
mates (mostly with bounded relative error), also in those
regions where no state-independent change of measure is
known to be asymptotically efficient. In the experiments
with 2-node tandem networks, we setb1 = 1 and b2 = b,
with b yielding stable estimates having the lowest relative
error. In experiments with 4-node tandem networks, we
set bi = b at all nodesi = 1, . . . , n. Again, b is set
to yield stable estimates with the lowest (or close to the
lowest) relative error. Similar to SDH, adaptive method-
ologies (such as SDA) assume state-dependence only over
a (small) number of boundary layers (say,b) which must
be properly determined to ensure the effectiveness and
efficiency of these methods. Too smallb may not capture



crucial dependencies close to the boundaries. Too largeb
may render SDH ineffective, but it will only reduce the
efficiency of SDA. In either SDH or SDA, the “optimal”b
which maximizes the efficiency (minimizes the RTV) may
be determined by repeating the simulation for successively
increasingb. Experimental results with SDH and SDA are
obtained using their respective “optimal”b.

For the 2-node tandem network, it is proven or shown
empirically (see [16] and [7]) that the state-independent
heuristic (PW) in [26] yields estimates with bounded rel-
ative error only in some (non-contiguous) regions of the
feasible parameter space. (The feasible parameter space is
that corresponding to stable networks.) Thus, as depicted
in Figure 1 for the 2-node tandem network [7], the feasible
parameter space may be divided into two regions, depending
on the asymptotic properties of the PW estimator:
BRE Region - PW is asymptotically efficient (with bounded
relative error); corresponds to Region I (BRE) in Figure 1.
NAE Region - PW is not asymptotically efficient (with
exponentially growing or infinite relative error); corresponds
to Regions II (ERE) and III (IRE) in Figure 1.

Empirical studies seem to confirm that the above division
of the feasible parameter space holds also for tandem
networks with any number of nodes (i.e., for any feasible
set of network parameters, PW is either BRE or NAE).
For the n-node tandem network, sufficient conditions for
the asymptotic (and non-asymptotic) efficiency of the PW
heuristic are given in [16]. These conditions are strong and
do not cover the entire parameter space, i.e., not all feasible
parameter points may be determined as BRE or NAE.

We experiment with tandem networks having 2 and 4
nodes, respectively, with the parameters chosen in the NAE
Region (i.e., where the heuristic in [26] is not effective).
For each network three experiments with different parameter
sets are executed; two with symmetric loads (low and high)
and the third with asymmetric loads. Typically, it is most
difficult to efficiently estimate the probability of overflow
when some service rates are equal (or almost equal).

Table I displays numerical and simulation results for the
symmetric 2-node tandem network (with low loads):λ =
0.04 andµ1 = µ2 = 0.48 (i.e., ρ1 = ρ2 = 0.083). Table II
displays numerical and simulation results for the symmetric
2-node tandem network (with high loads):λ = 0.2 and
µ1 = µ2 = 0.4 (i.e., ρ1 = ρ2 = 0.5). Table III displays
numerical and simulation results for the asymmetric 2-node
tandem network:λ = 0.18, µ1 = 0.42 and µ2 = 0.4
(i.e., ρ1 = 0.43 and ρ2 = 0.45). Experimental results
in Tables I, II and III show that unlike PW, SDH (as
described in Section III-A) yields correct (compare with
numerical results) and asymptotically efficient estimates
with a (seemingly) bounded relative error.

Table IV displays numerical (if feasible; otherwise the
table entry is marked by∗) and simulation results for

the symmetric 4-node tandem network (with low loads):
λ = 0.04 andµi = 0.24 (i.e., ρi = 0.167) for i = 1, 2, 3, 4.
Table V displays simulation results for the symmetric 4-node
tandem network (with high loads):λ = 0.1 andµi = 0.225
(i.e., ρi = 0.044) for i = 1, 2, 3, 4. Table VI displays sim-
ulation results for the asymmetric 4-node tandem network:
λ = 0.1, µ1 = 0.28, µ2 = 0.24, µ3 = 0.21 andµ4 = 0.17
(i.e., ρ1 = 0.357, ρ2 = 0.417, ρ3 = 0.476 andρ4 = 0.588).
Experimental results in Tables IV, V and VI show that unlike
PW, SDH (as described in Section III-A) yields correct
(compare with SDA results) and asymptotically efficient
estimates with a (seemingly) bounded relative error.

To converge properly, our basic (non-optimized) imple-
mentation of SDA may require many iterations, each with a
large number of cycles (i.e., long simulation time). On the
other hand, if and when it converges, it gives very small
relative error. (For more on SDA and its implementation
details see [6].) For the examples presented here, SDH
typically requires only a few minutes to achieve relative
errors less than 1%, and could be more efficient than SDA
(VRR > 1) even though its displayed relative error may be
higher. In fact, experiments not presented here show that a
finer “tuning” of thebis in SDH (e.g., by allowing different,
rather than equal,bis at different network nodes) may yield
further reduction of the relative error.

B. Simulation of Parallel Networks

In this section we experiment with 2- and 4-node (sym-
metric and asymmetric) parallel networks. Network param-
eters are chosen in regions where the heuristic in [26] is not
effective. This is typically the case in symmetric parallel
networks (i.e., all nodes have the same utilization) or when
the higher utilizations are sufficiently close.

Table VII displays numerical and simulation results for
the symmetric 2-node parallel network (with low loads):
λ1 = λ2 = 0.1 andµ1 = µ2 = 0.4 (i.e., ρ1 = ρ2 = 0.25).
Table VIII displays numerical and simulation results for the
symmetric 2-node parallel network (with high loads):λ1 =
λ2 = 0.15 and µ1 = µ2 = 0.35 (i.e., ρ1 = ρ2 = 0.43).
Table IX displays numerical and simulation results for the
asymmetric 2-node parallel network:λ1 = 0.12, λ2 = 0.08
andµ1 = µ2 = 0.4 (i.e., ρ1 = 0.3, ρ2 = 0.2). Experimental
results in Tables VII, VIII and IX show that unlike PW,
SDH (as described in Section III-B) yields correct (compare
with numerical results), stable and asymptotically efficient
estimates with relative error increasing (sub-)linearly in the
overflow levelL. Note that the “best”b1 and b2 are equal
only in the symmetric networks. In the asymmetric network,
b1 = 2 and b2(> 2) increases with the overflow levelL.
Also SDA produces correct and stable results; however, it
is mostly less efficient than SDH (as indicated by VRR> 1).

Table X displays simulation results (numerical results
were not feasible for the 4-node parallel network; the



corresponding table entries are marked by∗) for the sym-
metric 4-node parallel network (with low loads):λi = 0.05
and µi = 0.2 for i = 1, 2, 3, 4 (i.e., ρi = 0.25, for
i = 1, 2, 3, 4). Table XI displays simulation results for
the symmetric 4-node parallel network (with high loads):
λi = 0.08 andµi = 0.17, for i = 1, 2, 3, 4 (i.e., ρi = 0.47,
for i = 1, 2, 3, 4). Table XII displays simulation results for
the asymmetric 4-node parallel network:λ1 = 0.06, λ2 =
λ3 = 0.04, λ4 = 0.02 andµi = 0.2, for i = 1, 2, 3, 4 (i.e.,
ρ1 = 0.3, ρ2 = ρ3 = 0.2, ρ4 = 0.1). Experimental results
in Tables X, XI and XII show that unlike PW, SDH (as
described in Section III-B) yields correct (numerical results
are not feasible, but agreement with SDA estimates suggest
correctness), stable and asymptotically efficient estimates
with relative error increasing (sub-)linearly in the overflow
level L. Note that the “best”bis are equal when the loads
are symmetric. For asymmetric loads,b1 = 2 andbi > 2, for
i = 2, 3, 4, and increases with the overflow levelL. Finer
“tuning” of the bis (by allowing them to be different) has
shown to yield further reduction in the relative error.

In the experiments presented here, SDH typically requires
only a few minutes to achieve relative errors less than 1%
and is evidently much more efficient than SDA (VRR≫ 1)
even though its displayed relative error may be higher. Also
SDA produces correct and stable results; however, it is not
clear why it performs much worse (relative to SDH) for
4-node parallel networks than it does for 4-node tandem
networks (compare with VRRs in Tables IV, V and VI).

V. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed and experimented with
a heuristic approach to approximate the “optimal” state-
dependent change of measure for the efficient simulation of
networks with nodes in series or in parallel. The developed
changes of measure (which we refer to as SDH) are used
to estimate (using importance sampling) the probability of
population overflow in tandem and parallel queueing net-
works. Experimental results indicate that the heuristics yield
asymptotically efficient estimates, with relative error grow-
ing at most (sub-)linearly with the overflow levelL. The
efficiency of the obtained changes of measure compares well
with those determined using adaptive importance sampling
methodologies. Yet, our approach does not require costly
pre-computation and avoids complicated (or intractable)
mathematical analyses. Moreover, its effectiveness is not
diminished for large networks with huge state-space.

Needless to say, the utility of the approach needs to be
tested on larger networks and more complex topologies,
including feed-forward and feedback networks. Also, simple
and robust guidelines for selecting the number of boundary
layers (dependence range) is an important challenge.
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TABLE I

2-NODE TANDEM NETWORK - SYMMETRIC (λ = 0.04, µ1 = µ2 = 0.48) (ρ1 = ρ2 = 0.083)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 2.8722e-025 2.6050e-025± 8.64 3 2.8729e-025± 0.06 3 2.8767e-025± 0.13 4.11
50 6.0327e-052 2.3672e-052± 4.67 3 6.0340e-052± 0.07 3 6.0367e-052± 0.12 3.89
100 1.3270e-105 3.5984e-106± 19.5 3 1.3255e-105± 0.07 3 1.3301e-105± 0.17 1.63

TABLE II

2-NODE TANDEM NETWORK - SYMMETRIC (λ = 0.2, µ1 = µ2 = 0.4) (ρ1 = ρ2 = 0.5)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 7.1526e-07 6.8876e-07± 3.71 7 7.1532e-07± 0.04 9 7.1637e-07± 0.14 1.72
50 4.3521e-14 2.7323e-14± 5.99 7 4.3509e-14± 0.06 9 4.3556e-14± 0.11 5.37
100 7.8097e-29 2.5780e-29± 11.8 7 7.8150e-29± 0.10 9 7.7953e-29± 0.13 3.48

TABLE III

2-NODE TANDEM NETWORK - ASYMMETRIC (λ = 0.18, µ1 = 0.42, µ2 = 0.4) (ρ1 = 0.43, ρ2 = 0.45)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 3.8066e-08 4.2325e-08± 8.53 5 3.8046e-08± 0.04 6 3.8089e-08± 0.10 1.91
50 1.0684e-16 1.1551e-16± 13.8 7 1.0681e-16± 0.02 6 1.0687e-16± 0.08 1.79
100 5.3355e-34 3.8945e-34± 3.00 6 5.3357e-34± 0.03 6 5.3390e-34± 0.07 2.51

TABLE IV

4-NODE TANDEM NETWORK - SYMMETRIC (λ = 0.04, µ1 = µ2 = µ3 = µ4 = 0.24) (ρ1 = ρ2 = ρ3 = ρ4 = 0.167)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 5.0207e-016 4.1762e-016± 11.6 3 5.0277e-016± 0.14 4 5.1093e-016± 0.94 4.07
50 * 3.1024e-035± 37.0 3 1.3532e-034± 0.26 4 1.3560e-034± 1.04 3.58
100 * 6.7039e-074± 62.0 3 1.2775e-072± 0.86 5 1.2809e-072± 1.52 16.4

TABLE V

4-NODE TANDEM NETWORK - SYMMETRIC (λ = 0.1, µ1 = µ2 = µ3 = µ4 = 0.225) (ρ1 = ρ2 = ρ3 = ρ4 = 0.44)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 3.2961e-06± 4.76 3 5.1771e-06± 0.16 6 5.1053e-06± 1.04 2.42
50 * 4.1536e-14± 59.6 5 6.4774e-14± 0.18 7 6.3828e-14± 0.89 9.28
100 * 4.5737e-32± 13.4 5 1.2525e-30± 0.43 10 1.2808e-30± 1.18 13.2

TABLE VI

4-NODE TANDEM NETWORK - ASYMMETRIC (λ = 0.1, µ1 = 0.28, µ2 = 0.24, µ3 = 0.21, µ4 = 0.17)

(ρ1 = 0.36, ρ2 = 0.42, ρ3 = 0.48, ρ4 = 0.59)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b γ̃(L) ± RE% VRR

25 * 5.1899e-05± 1.17 3 5.43812e-005± 0.10 11 5.4232e-05± 0.28 5.40
50 * 9.4430e-11± 2.85 3 9.62647e-011± 0.17 11 9.6495e-11± 0.25 10.6
100 * 2.7979e-22± 1.59 4 2.90145e-022± 0.27 12 2.8865e-22± 0.25 37.8



TABLE VII

2-NODE PARALLEL NETWORK - SYMMETRIC (λi = 0.1, µi = 0.4) (ρ1 = ρ2 = 0.25)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, b2 γ̃(L) ± RE% VRR

25 6.4837e-14 2.4899e-14± 7.45 3 6.4826e-14± 0.06 3,3 6.4818e-14± 0.12 2.76
50 1.1675e-28 3.7971e-29± 36.2 4 1.1684e-28± 0.06 4,4 1.1650e-28± 0.15 1.67
100 1.8445e-58 1.9774e-59± 14.5 5 1.8527e-58± 0.08 5,5 1.8511e-58± 0.25 0.77

TABLE VIII

2-NODE PARALLEL NETWORK - SYMMETRIC (λi = 0.15, µi = 0.35) (ρ1 = ρ2 = 0.43)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, b2 γ̃(L) ± RE% VRR

25 1.9796e-08 1.1928e-08± 11.7 4 1.9800e-08± 0.06 4,4 1.9814e-08± 0.14 1.58
50 2.5813e-17 8.5168e-18± 12.7 5 2.5834e-17± 0.06 6,6 2.5904e-17± 0.17 0.98
100 2.0926e-35 2.3032e-35± 86.2 6 2.0923e-35± 0.07 7,7 2.0895e-35± 0.26 0.66

TABLE IX

2-NODE PARALLEL NETWORK - ASYMMETRIC (λ1 = 0.12, µ1 = 0.4, λ2 = 0.08, µ2 = 0.4) (ρ1 = 0.3, ρ2 = 0.2)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, b2 γ̃(L) ± RE% VRR

25 5.6704e-13 7.2661e-13± 22.1 3 5.6480e-13± 0.12 2,5 5.6600e-13± 0.15 5.87
50 4.8047e-26 4.7674e-26± 3.88 3 4.7993e-26± 0.16 2,7 4.8188e-26± 0.20 3.30
100 3.4493e-52 3.3333e-52± 3.01 3 3.4434e-52± 0.21 2,10 3.4563e-52± 0.28 3.23

TABLE X

4-NODE PARALLEL NETWORK - SYMMETRIC (λi = 0.05, µi = 0.2) (ρi = 0.25)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, bi γ̃(L) ± RE% VRR

25 * 8.5099e-13± 12.0 4 7.3197e-12± 0.08 4,4 7.3465e-12± 0.30 33.8
50 * 1.8289e-27± 48.1 4 5.0880e-26± 0.14 5,5 5.1083e-26± 0.41 43.0
100 * 4.6236e-58± 7.58 5 3.1658e-55± 0.14 5,5 3.1384e-55± 0.78 19.2

TABLE XI

4-NODE PARALLEL NETWORK - SYMMETRIC (λi = 0.08, µi = 0.17) (ρi = 0.47)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, bi γ̃(L) ± RE% VRR

25 * 7.2898e-06± 9.09 3 1.7915e-05± 0.13 8,8 1.7924e-05± 0.24 23.5
50 * 1.1733e-13± 18.0 4 9.8414e-13± 0.26 8,8 9.8027e-13± 0.31 120.
100 * 4.1708e-30± 16.5 5 3.4284e-28± 0.59 9,9 3.4008e-28± 0.49 386.

TABLE XII

4-NODE PARALLEL NETWORK - ASYMMETRIC (λ1 = 0.06, λ2 = 0.04, λ3 = 0.04, λ4 = 0.02; µ1 = µ2 = µ3 = µ4 = 0.2)

(ρ1 = 0.3, ρ2 = ρ3 = 0.2, ρ4 = 0.1)

L Numerical PW SDA SDH
γ(L) γ̃(L) ± RE% b γ̃(L) ± RE% b1, bi γ̃(L) ± RE% VRR

25 * 2.8583e-12± 18.9 4 2.4917e-12± 0.15 2,6 2.5012e-12± 0.35 135.
50 * 1.8266e-25± 2.59 4 2.1002e-25± 0.22 2,8 2.1268e-25± 0.64 56.7
100 * 1.4262e-51± 7.11 4 1.3031e-51± 0.37 2,10 1.5248e-51± 1.37 22.0


