
Metamodels: Definitions of Structures or Ontological
Commitments?

Ivan Kurtev

Software Engineering Group, University of Twente
7500 AE Enschede, the Netherlands

kurtev@ewi.utwente.nl

Abstract. The concept of metamodel is central in Model Driven Engineering
(MDE). It is used to define the conceptual foundation of modeling languages.
There exist specialized languages for specifying metamodels known as meta-
languages. The most popular of them are object-oriented and support defining
structures of the metamodels without considering the semantical underpinnings
of the structures. In this paper we study the nature of metamodels from phi-
losophical perspective. We claim that a metamodel is something more than an
abstract syntax definition: it is an ontological commitment that guides the mod-
eler in his perception about the real world phenomenon. Therefore, metalan-
guages should derive their foundation from the study of Ontology. We employ
an ontological theory based on the Four-category ontology and the principles of
metaphysical realism. We propose a metalanguage called OGML (Ontology
Grounded Metalanguage) built upon the basic concepts of this ontology.

1 Introduction

In Model Driven Engineering, the term metamodel is assigned with several meanings
most of them related to the concept of modeling language. Often, metamodel is con-
sidered as the definition of the abstract syntax of a language. Another definition states
that a metamodel models the conceptual foundation of a modeling language. Since
MDE opens the possibility for defining multiple modeling languages, metamodeling
is an important and repeating activity in MDE. Currently it is supported by metalan-
guages (i.e. languages that express metamodels) and their accompanying tools. A
metalanguage is therefore a domain-specific language (DSL): its domain consists of
metamodels.

In the ideal case, the development of a DSL is preceded by a domain analysis.
Then the identified concepts in the domain are mapped to first class syntactical con-
structs in the DSL. Unfortunately, in the case of current metalanguages (e.g. MOF
[15], ECore [6], etc.) we can find only few traces of such a domain analysis. This puts
a question about the adequacy of these languages with respect to their problem do-
main and raises the need of a sound analysis of the metamodeling activity.

If a metamodel is perceived only as an abstract syntax definition, that is, a defini-
tion of a structure that abstracts from the concrete syntax, then we may employ multi-
ple languages to describe such a structure. In this case, we even do not need to under-

stand deeply the nature of metamodeling. Current metalanguages are designed to
satisfy mostly pragmatical needs or are a result of some historical development. For
example, MOF is conceived as a subset of UML and is based on object-oriented con-
cepts. This is easy to understand: object-orientation is the dominant development
paradigm today. An object-oriented metalanguage is expected to be easily embraced
by many users familiar with OO programming. However, often MOF is considered as
a rather complex language. Nowadays we observe a successful adoption of ECore
and KM3 [10]. These two languages provide a significant simplification of MOF and
add another pragmatic motivation apart from the familiarity to the developers com-
munity: simplicity. None of these languages is built upon an analysis of the domain of
metamodeling.

If we only aim at metamodels as definitions of structures then we can choose arbi-
trary language for metamodeling. Metamodels may be represented as graphs and
therefore we may benefit from the sound mathematical foundation of the graph the-
ory. Depending on the “cultural” background of the metamodeler he/she may also
choose first-order logic, grammars, DTDs, XML schemas, ontologies, etc. In other
words, the choice of a metalanguage is somehow arbitrary and the factors that matter
are not related to the metamodeling at all.

The result of this approach is that many issues related to metamodeling and lan-
guage definition are not well-understood. These issues are reported in the literature
[2, 4, 5]: different instantiation mechanisms, replication of concepts across
metalevels, the number of metalevels and criterion for determining them, lack of
higher-order types, etc. These issues would have been addressed if the second view
on metamodels was taken as a leading one: a metamodel is a model of the conceptual
foundation of a modeling language. This view logically leads to the need for studying
the nature of this conceptual foundation.

In this paper we study the domain of metamodeling. The main research question is
what is in a metamodel. By answering this we will be able to identify commonalities
and variabilities in metamodels. A metalanguage should be capable of expressing the
solution space for metamodels and to relate its constructs to a domain of concepts
with clear semantics. For our study this domain is the philosophical discipline of
Ontology. We give our motivation further in the paper.

We propose a metalanguage whose constructs are derived from the ontological
theory of universals and individuals. The language allows expressing different views
about the structure of the world, a concept that we refer to as ontological commit-
ment. Models are constrained by the adopted ontological commitment. Therefore,
metamodeling activity is concerned with defining various commitments. A metalan-
guage provides the vehicle to express them.

This paper is organized as follows. Section 2 presents our view on metamodeling
and its relation to Ontology. Section 3 discusses the philosophical background and
gives domain analysis for concepts that a metalanguage should provide. Section 4
describes the major constructs of a metalanguage called OGML (Ontology Grounded
Metalanguage). Section 5 discusses key topics in this research. Section 6 concludes
the paper.

2 What is in a Metamodel?

We assume that a metamodel is a model of the conceptual foundation of a modeling
language [10, 12, 16]. Figure 1 shows the well known metamodeling stack. In the
bottom level we have the real world that is represented in several models (Model 1,
Model 2, Model 3).

Fig. 1 Metamodeling stack

Models represent different phenomenon from the real world. Some phenomenon
may be non-overalaping (e.g. the ones represented by Model 1 and 2) and some may
be overlapping (e.g. the ones represented by Model 2 and 3). We have two modeling
languages modeled by Metamodel 1 and Metamodel 2. Models are instances of their
metamodels. The features of the real world capturable by a model are determined by
the metamodel. A metamodel represents a view on the world. It is an ontological
commitment that specifies the things that an observer may see in the world. The exist-
ing work in modeling languages, linguistics, formal ontology, and knowledge repre-
sentation shows that ontological commitments may vary rather broadly. For example,
a possible view is that the world consists of objects that must be direct instances of
exactly one class. An object cannot be created without a class. In this case the basic
ontological commitment is class-centric and can be traced back to the Plato and his
world of ideas. Another possible view is that the world consists of objects and some
intelligent agents (e.g. human beings) are capable of building conceptualizations upon
the objects by grouping them into sets with common features. In this view, object
existence is independent of classes and classes are provided posteriori. To continue
with the examples we may include the notion of time and space as fundamental parts
of the reality and to explicitly represent them in a metamodel.

Regardless the differences among the ontological commitments their reference
point is the same: the real world. Only the parts that are perceivable in this world
vary. Therefore, a metametamodel (or a metalanguage) should allow expressing onto-

logical commitments by choosing them from a certain solution space. Currently,
metametamodels rely on the object-oriented paradigm which is just one possible
conceptualization of the world. More precisely, they are class-based and assume the
precedence of classes over the objects. Furthermore, their choice is not motivated by
an analysis what is possible to be expressed in a model but is a rather pragmatically
motivated choice.

But how do we identify a solution space for ontological commitments, that is,
metamodels? What is the domain from which the concepts and their variations come
from? As we said, the most important invariant in Figure 1 is the real world. What-
ever the view upon the world is, it cannot violate and contradict the fundamental
structure of the world and its most basic underpinning concepts. The philosophical
discipline that studies the nature of being (existence) is the Ontology. Therefore, we
analyze the domain of Ontology1 and choose a set of concepts that will be the build-
ing blocks of our metamodeling language.

3 Philosophical Background

In this paper we use an ontology called Four-category ontology that can be traced
back to Aristotle and is also used in several contemporary works on Formal Ontology
[9, 7]. In this ontology, the basic distinction is between individuals and universals as
the most fundamental entities of being. The ontological study that claims the exis-
tence of universals is known as metaphysical realism [1, 13]. Figure 2 depicts the
concepts in this ontology.

Fig. 2 Four-category ontology

Individuals are classified as Substantial and Moment individuals. Substantial indi-
vidual or just substance is something that can exist by itself without depending on the
existence of other individuals. This existential independence is the core feature of
substances and gives the major distinction from moment individuals. Examples of
substantial individuals are cars, people, books, etc. In the programming languages and
modeling languages substantial individuals are usually represented as objects (e.g.
Java object and UML object).

Moments are individuals that exist in other individuals. Moments cannot exist
standalone, they are existentially dependent on at least one individual (called bearer).
Example of a moment is the red color property of a car. In that case the red color
moment exists in the substance car. The relation between a moment and its bearer(s)

1 Ontology with capital O should be distinguished from the word ontology with low o. The first

one refers to the philosophical discipline and the second one refers to a specification of con-
ceptualization [8] in the context of computer science.

is called Inherence relation. Moments may inhere in more than one individual, i.e.
their existence depends on more than one individual. For example, the fact that Harry
and Sally are married creates a relation between two people. This relation corre-
sponds to a moment that relies on the existence of two individuals: the people being
married.

It is philosophically debatable if moments can inhere in other moments. In this pa-
per we assume that moments inhere in individuals. This assumption allows a moment
to inhere in another moment.

In programming and modeling languages moments are called in various ways: slot
and link in UML, field in Java, etc.

Universals are entities that can be instantiated in individuals. According to Aris-
totle, universals can only exist via their individuals and not independently from them.
The individuals that exemplify a universal have something in common. For example,
things that consist of matter have mass. The actual value of the mass varies but the
mass is shared among the individuals. In this case mass is a universal.

As we mentioned earlier we employ an ontological view that accepts the existence
of universals. It is beyond the scope of this paper to give the philosophical discussion
about the theory of universals and their existence (for example, Nominalism objects
the existence of universals). There are practical reasons to accept such a view. Some
kinds of universals are expressed by classes in programming and modeling languages.
The concept of class should be expressible in the various ontological commitments.

Universals are classified into substantial universals and moment universals. As the
names suggest, substantial universals are exemplified (i.e. exist through) by substan-
tial individuals and moment universals are exemplified by moment individuals. In-
stantiation relation is the relation between an individual and a universal that exists in
this individual.

Similarly to the concepts presented before, universals have their representatives in
the existing computer languages. UML classes correspond to substantial universals.
UML attributes and associations roughly correspond to moment universals.

The presented basic ontology is very simple and does not accommodate significant
part of the available ontological knowledge. The ontology does not consider three
fundamental concepts: time, space, and part-whole relation. For the latter one, there
exists well developed theory called mereology. It is difficult to decide which con-
cepts to be taken into account when an engineering solution needs to be crafted. We
opt for these four basic categories and the relations among them as the first step in
our experiment in applying ontological categories in defining metamodels. Missing
concepts should be defined per metamodel if needed.

Now we can refine Fig. 1 armed with the knowledge derived from the domain of
Ontology and can give answers about the content of the boxes in the diagram. The
result is presented in Fig. 3.

The real world level consists of individuals and universals.
Models level represents abstractions of individuals and universals following a

given notation (textual or visual).
Metamodels level builds ontological theories about individuals and universals.

Since a modeling language is usually a compromise between various factors we do
not require a faithful repetition of the concepts just explained. If we want a full com-

mitment to the achievements of the modern formal ontology we will end up with a
single modeling language that will be useful for conceptual modeling only! Further-
more, we would like to accommodate existing languages that often violate the “ideal”
ontological commitment. For example, an object-based language like Self recognizes
only object as a fundamental modeling concept. In a hypothetical metamodel of Self,
the part concerning universals will correspond to the concept of prototypical object.
Java assumes that no object can exist without a class. However, one view about the
universals claims the opposite: no universal can exist without at least one individual.
To continue with the violations we can consider a language that has only binary rela-
tions and therefore cannot express the concept of moment that exists in exactly one
individual (such moments are known as qualities).

Model 1 Model 2 Model 3

Metamodel 1 Metamodel 2

Metametamodel

RepresentedIn RepresentedIn RepresentedIn

InstanceOfInstanceOf InstanceOf

InstanceOf InstanceOf

Real World: Individuals and Universals

Models: representations
of individuals and
universals constarined
by a metamodel

Metamodels: specify an
ontological view on the world.
Commit to a particular theory
of individuals and universals

Metametamodel: provides
vocabulary for building
ontological commitments that
are aligned with the basic
Four-category ontology

Fig. 3 Metamodeling stack and the Four-category ontology

Regardless the violations, however, a metamodel should be expressed in terms of
the four basic concepts eventually restricting them. Thus, the purpose of the metame-
tamodel should be to provide a vocabulary for expressing theories about universals,
individuals, and the relations among them. The philosophical theory presented in this
section gives us a stable and well-founded set of concepts to start with building our
metalanguage.

4 Ontology Grounded Metalanguage

Ontology Grounded Metalanguage (OGML) is an experimental language for studying
the definition of modeling languages based on ontological principles. It derives its
constructs from the analysis presented in the previous section. The language is self-
reflective like many of the current metalanguages (M3 level languages in the termi-
nology of OMG MOF).

4.1 Basic Taxonomy: Definitions, Individuals, and Universals

For each category in the ontology we provide a construct that allows creating defini-
tions of that category. The core hierarchy is shown in Fig. 4. Definition is the root of
the hierarchy. It is specialized into definitions for individuals and universals (con-
structs IndividualDefinition and UniversalDefinition respectively). IndividualDefini-
tion is specialized into ObjectDefinition and PropertyDefinition. We changed the
terminology established so far by replacing the term substantial individual with the
more common term object and moment with property. Similarly, UniversalDefinition
is specialized into SubstantialDefinition and MomentDefinition.

Fig. 4 The basic taxonomy in OGML

The leaves of the taxonomy are universals whose instances are other universals,
that is, they are higher-order universals. The instances of the leaves are definitions of
the corresponding concepts from the Four-category ontology. Thus, we have the
means to express various versions of the basic ontology adapted to the problem at
hand.

The following example shows a limited part of the definition of the UML meta-
model expressed in OGML:

Language UML {

 SubstantialDefinition Class {}

 MomentDefinition Attribute{}

 MomentDefinition Association{}

 ObjectDefinition Object {}

 PropertyDefinition Slot {}

 PropertyDefinition Link {}

}

This example is refined further in this section when more OGML constructs are in-
troduced. The UML metamodel recognizes three kinds of universals: Class, Attribute,
and Association. The last two are moment universals. Their counterparts in the set of
individual definitions are Object, Slot, and Link respectively.

4.2 Moment Definitions in OGML

Moment is an individual that exists in other individuals. Moment universal is a classi-
fier for moments (in OGML we call them properties). In order to define moment
universals in a modeling language, we need to specify the existential dependency
relation. Therefore, the definition of MomentDefinition in Fig. 4 is not complete. The
construct used to define existential dependency relation is called DependencyRela-
tion. It is shown in Fig. 5.

The rationale behind it is that when defining a moment universal we have to enu-
merate the universal definitions on which it depends and to specify the properties of
the dependencies. DependencyRelation construct by itself is a moment definition. It
has three attributes: multiplicity, momentDefinitionRole, and universalDefinitionRole.

Fig. 5 Attribute and DependencyRelation moment definitions

Instances of the DependencyRelation are concrete moment universals that classify
the instances of PropertyDefinition. An instance of DependencyRelation relates an
instance of UniversalDefinition and an instance of MomentDefinition. The role attrib-
utes give names of the roles these two parties play in such a relation. The multiplicity
attribute indicates how many moment definitions may depend on a given universal
definition. For example, in Fig.5 the relations between UniversalDefinition and De-
pendencyRelation and between MomentDefinition and DependencyRelation (denoted
as UML associations) are instances of DependencyRelation. The direction of the
associations goes from the dependent concept to the concept it depends upon. The
dependency between DependencyRelation and UniversalDefinition states that at least
one moment definition is depending on a given universal definition. There is a fun-
damental ontological principle behind that: there is no entity without properties. Fur-
thermore, the fact that DependencyRelation depends on UniversalDefinition and not
on SubstantialDefinition allows us to define moment universals that depend on other
moment universals. Ultimately this allows properties to have properties.

OGML defines another moment definition: Attribute. Every definition may have
attributes. Attributes depend on only one definition. Below we illustrate the self-

reflective nature of OGML by giving the instanceOf relations among the constructs in
Fig. 5.

Definition : SubstantialDefinition
UniversalDefinition : SubstantialDefinition
MomentDefinition : SubstantialDefinition
SubstantialDefinition : SubstantialDefinition
DependencyRelation : MomentDefinition
Attribute : MomentDefinition

All the concrete attributes are instances of Attribute and the dependency relations

(shown as UML associations) are instances of DependencyRelation.
The example of defining a simplified UML may be now refined by defining the

moment definitions Attribute and Association. The dependency relations are repre-
sented by the dependsOn keyword:

MomentDefinition Attribute{
 attribute name : String;
 attribute type : Class;

dependsOn Class universalDefinitionRole="owner"
 momentDefinitionRole=”attributes”
 multiplicity = "*";

}

MomentDefinition Association{
 attribute name : String;
 dependsOn Class universalDefinitionRole="source"
 momentDefinitionRole=”outgoing”
 multiplicity = "*";
 dependsOn Class universalDefinitionRole="target"
 momentDefinitionRole=”incoming”
 multiplicity = "*";
}

4.3 Generalization and Instantiation in OGML

Generalization and Instantiation are fundamental notions in conceptual modeling.
From ontological perspective they have a clear meaning. However, different lan-
guages used in the practice show variations of the meaning. For example, in Java we
have two different generalization relations (known as extension): one for classes and
one for interfaces. InstanceOf relations expose slight differences likewise. Therefore,
in OGML we provide constructs that allow language modelers to define their own
generalization and instantiation mechanisms. These constructs are shown in Fig. 6.

Fig. 6 Generalization and Instantiation relations

GeneralizationRelation is a moment definition. It has attributes parentMultiplicity
and childMultiplicity that allow constraining a particular generalization relation re-
garding the allowed number of general and specialized concepts. OGML by itself has
a concrete generalization relation that allows a definition to inherit from not more
than one other definition (single inheritance). It is labeled OGMLGeneralizationRela-
tion.

InstanceOfRelation construct relates definitions and universal definitions. In this
way we can define higher-order universals. InstanceOfRelation has attribute univer-
salMultiplicity that indicates the number of universals an object may be instantiated
from. In contrary to most of the object-oriented languages that allow only one class to
be used for the creation of an object, there are languages that allow more than one
class to be used (e.g. RDF Schema [3] and OWL [17]). Furthermore, we should allow
languages that recognize only individuals in the world. Such languages will not use
universals and therefore instantiation relation is not usable in that case.

Below we indicate how these constructs are instantiated from the constructs in
OGML:

MomentDefinition GeneralizationRelation {
 attribute parentMultiplicity : String;
 attribute childMultiplicity : String;
 dependsOn Definition universalDefinitionRole = "parentDefinition"
 momentDefinitionRole = "extensions"
 multiplicity = "*";
 dependsOn Definition universalDefinitionRole = "childDefinition"
 momentDefinitionRole = "parents"
 multiplicity = "*";
}

GeneralizationRelation OGMLGeneralization {
 parentDefinition = Definition;

 childDefinition = Definition;
 parentMultiplicity = "0..1";
 childMultiplicity = "*";
}

MomentDefinition InstanceOfRelation {
 attribute universalMultiplicity : String;
 dependsOn Definition universalDefinitionRole = "conformingDefinition"
 momentDefinitionRole = "definition"
 multiplicity = "0..1";
 dependsOn UniversalDefinition universalDefinitionRole = "definition"
 momentDefinitionRole = "instanceOfDefinition"
 multiplicity = "0..1";
}

We do not show the definition of Inherence relation due to its similarity to De-

pendencyRelation. Inherence relates IndividualDefinition and PropertyDefinition.
We presented OGML language in an informal manner without giving a formal se-

mantics in a mathematical notation. Currently, a prototype of the language is imple-
mented on top of the AMMA platform [12]. The KM3 definition of OGML defines
its abstract syntax. A TCS specification [11] defines its concrete syntax used in the
examples shown in this paper. We defined the self-reflective description of OGML in
the OGML syntax. These may be obtained from [14].

5 Discussion

An important benefit of the approach taken in OGML is that a modeling language
definition has a better semantical description of some of its constructs compared to
the descriptions provided by MOF, ECore and similar languages. Consider a meta-
model expressed in MOF. The modeler may define the instanceOf relation and the
generalization relation but they will be typically expressed as associations not seman-
tically distinguishable from other associations in the metamodel. In OGML, instantia-
tion and generalization are instances of first class constructs that capture the corre-
sponding meaning.

OGML narrows the gap between the domain of metamodeling and the notion of
real world semantics. In general, semantics requires a relation from the subject being
defined to a domain of concepts with clear meaning. Such a domain is usually a ma-
thematical structure as observed in the existing approaches for defining language
semantics. However, it may be a set of real world entities. The concepts of individu-
als and universals refer to entities found in the real world and thus give the name of
this type of semantics. At every model level we may identify the relation between a
language construct and its counterpart: individual, universal, universal definition, etc.

The real world semantics is not intended to replace the semantics of a language in
the traditional sense. For a given metamodel (modeling language) we still need to
specify its semantics in a formal way. The two types of semantics are complimentary
and may exist together.

An important issue in the design of OGML was which ontological concepts to be
included in and left aside. The notions of time and space, for example, are not in-

cluded. Building OGML on a full ontological theory will result in a heavy language
with meaning defined by philosophy thus putting a question about its usability in
practice. OGML is created for experimental purposes. We decided to choose a simple
set of ontological concepts that are found in the existing computer languages. In Sec-
tion 3, we mentioned constructs equivalent to the elements of the Four-category on-
tology found in the well established languages. We believe that this improves the
understandability of the language. In case somebody needs more advanced ontologi-
cal concepts, e.g. part-whole taxonomy, he/she should define it in the concrete model-
ing language being specified.

It should be mentioned that the presented language constructs only form a vocabu-
lary for defining metamodels. OGML has also a part that defines its own view on
universals and individuals, that is, OGML defines a full ontological commitment.
This part is not included in the paper for the sake of brevity. We will report on it in a
future paper. The interested reader may consult [14] for the full definition of OGML.

6 Conclusions and Future Work

We presented a metamodeling language based on an analysis of the nature of meta-
models. In our view, metamodels are ontological commitments that specify what can
be observed in real world phenomenon. The possibilities to construct such commit-
ments are derived from the philosophical study of Ontology. We based the proposed
OGML language on the Four-category ontology that is based on the notions of indi-
viduals and universals. Current metamodeling languages employed in MDE are based
on the heritage of object-orientation and are not derived from a systematic analysis of
the problem domain of metamodeling.

From that point of view, the existing metamodeling languages are more or less ad-
hoc solutions. The same is valid for approaches that base metamodeling on the graph
theory, grammars, and other formalisms. We do not want to put a question on their
merits. We would like to stress the importance of a systematic analysis of the meta-
modeling from philosophical point of view.

Often, a requirement for simplicity is imposed on a metamodeling language. In our
opinion this requirement is vague and is difficult to judge when is achieved. What is
simplicity in the context of metamodeling? Is it the number of the constructs in the
metamodeling language? If so, then Lisp is the perfect metamodeling language be-
cause it defines only the concepts of list and atom for building structures. However,
Lisp is not used for metamodeling!

Instead of simplicity we prefer the principle of parsimony. It states that if we have
several theories for describing a solution we should opt for the one with the smallest
number of concepts. Since current metamodeling languages do not provide a real
problem analysis of the metamodeling activity we cannot apply the principle of par-
simony to them. The lack of clear problem prevents evaluating the adequacy of these
languages.

This paper outlines an approach that needs a further elaboration in many direc-
tions. We plan to extend OGML by providing a formal semantics to it. A formal defi-
nition of the term ontological commitment is also required. Furthermore, performing

case studies of expressing real modeling languages in terms of OGML is a must. We
plan to experiment with expressing the OWL language [17] as an OGML metamodel.

The views on metamodels as definitions of structures or ontological commitments
are not mutually exclusive. Clearly, the latter implies the former. The main statement
of this paper is that a metamodeling language should not define arbitrary structures.
The structures should be systematically derived based on a sound knowledge about
metamodeling.

7 Acknowledgments

I would like to thank Klaas van den Berg for the useful feedback that helped me to
improve the paper. Many of the ideas were conceived as a result of my discussions
with Jean Bézivin and Frédéric Jouault on the nature of metamodeling.

References

1. Armstrong, D.M. Universals: an Opinionated Introduction. Westview Press, 1989
2. Atkinson, C., Kühne, T. Model-driven development: a metamodeling foundation. IEEE

Software, 20(5), pp. 36-41, 2003
3. Beckett, D. RDF/XML syntax specification. W3C Document, 2003
4. Bézivin, J., Lemesle, R. Ontology-based layered semantics for precise OA&D modeling, In

ECOOP'97 Workshop Reader, Finland, 1997
5. Bowers, S., Delcambre, L. On modeling conformance for flexible transformation over data

models. In Proceedings of the Workshop on Knowledge Transformation for the Semantic
Web at the 15th European Conference on Artificial Intelligence (KTSW-2002), Lyon,
France, 2002

6. Eclipse Modeling Framework http://www.eclipse.org/emf
7. Guizzardi, G. Ontological Foundations for Structural Conceptual Models. PhD thesis.

University of Twente, 2005. ISBN 90-75176-81-3
8. Gruber, T. R. Toward Principles for the Design of Ontologies Used for Knowledge Shar-

ing. International Journal of Human and Computer Studies, 43(5/6): 907-928, 1995
9. Heller, B., Herre, H. Ontological Categories in GOL. Axiomathes 14: 71-90, Kluwer Aca-

demic Publishers, 2004
10. Jouault, F., Bézivin, J. KM3: a DSL for Metamodel Specification. FMOODS 2006, Bolo-

gna, Italy, 14-16 June 2006
11. Jouault, F., Bezivin, J, Kurtev, I. TCS: a DSL for the Specification of Textual Concrete

Syntaxes in Model Engineering. GPCE2006, Portland, Oregon, USA. October 2006
12. Kurtev, I., Bezivin, J., Jouault, F., Valduriez, P. Model-based DSL Frameworks. OOPSLA

2006 Companion Proceedings. 2006
13. Loux, M.J. The problem of universals. In Metaphysics: contemporary readings. M.J. Loux

(ed.). Routledge, 2001
14. OGML definitions web site. http://wwwhome.cs.utwente.nl/~kurtev/OGML/
15. OMG/MOF Meta Object Facility (MOF) Specification. OMG Document AD/97-08-14,

September 1997. Available from www.omg.org
16. Seidewitz, E. What Models Mean. IEEE Software, 20(5), 2003
17. W3C. OWL Web Ontology Language Overview. 2004

	4.1 Basic Taxonomy: Definitions, Individuals, and Universals
	4.2 Moment Definitions in OGML
	4.3 Generalization and Instantiation in OGML

