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ABSTRACT 
 
 
This paper discusses the influence of the reconstruction and anti-aliasing filters on the 

performance of a digital implementation of a Wiener filter for active noise control. The 
overall impact will be studied in combination with a multi-rate system approach. A 
reconstruction and anti-aliasing filter will be selected and its parameters will be varied to 
optimize the system level performance of the Wiener filter for a feedback controller based on 
an internal model control principle. It will be shown that the selection of the reconstruction 
and anti-aliasing filter is an important decision that can largely influence the overall system 
performance. This method can be used in combination with standard optimization algorithms 
to automatically find the optimal filters that will give the largest reduction for the overall 
system. 
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1 INTRODUCTION  
In this paper the influence of the anti-aliasing and reconstruction filer will be studied. In 

most books like for instance [1] simple rules will be used. These rules are based on empirical 
data but do not seem to be directly applicable to active noise control. The optimal Wiener 
filter can be calculated if the transfer function between actuator and sensor is known. This 
transfer function will also include the influence from the anti-aliasing and reconstruction 
filters. A consequence from this is that the optimal Wiener filter needs to be recalculated 
when the anti-aliasing or reconstruction filter changes. The model formulated will be based 
on a system with a white Gaussian-noise input signal. This will result in a formulation in 
which only the impulse responses of the different parts are needed to quickly estimate the 
overall system performance. In this report a feedback control structure will be studied, for 
which group-delay is critical. 

The method proposed is for a multi-rate system. The advantage of using a multi-rate 
system has already been shown in [2]. The impact of tuning the reconstruction and anti-
aliasing filters will be shown. The assumption is that the analogue filters are already in place 
and only the digital interpolation and decimation filters are still tuneable.  

Several criteria can be used to design the interpolation and decimation filters. In this report 
only the cut-off frequency, the transition width and the order of the filter will be tuneable.  

Finally the usefulness will be shown by means of a number of simulations. It will be 
shown that the algorithm is simple and able to find a good compromise between the cut-off 
frequency, order and overall system performance. 

2 THEORY 

2.1 The Wiener filter 
The Wiener filter will be derived as a FIR filter that minimizes the mean-square error (see 

also [1]). The system studied is a simple single-input single-output system. The block diagram 
for a Wiener filter system can be found in Figure 1. 
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Figure 1Wiener filter Model. 

The systems studied in this paper are linear and time invariant. Therefore it is allowed to 
interchange the Wiener filter and the plant. The noise x(n) is now filtered by the transfer 
function of the plant (left). The Wiener filter minimizes the error signal e(n), which can be 
written as: 

,)()()()()( wrrw nndnndne TT +=+=  (1)
where 

[ ]TIwww 110 −=w , (2)
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The idea is to find the values for the filter coefficients w that minimize the quadratic cost 
criterion 

[ ],)(2 neEJ =  (4)
in which E is the expectation operation. Taking the derivative of this and setting it equal to 
zero results in the following equation: 

[ ] 02 =−=
∂
∂ bAw
w
J . (5)

The solution for w = wopt is obtained from : 
bAw 1−=opt , (6)

with 
[ ])()( nnE TrrA = , (7)
[ ])()( ndnE rb = . (8)

Equation (6) is valid when r(n) is persistently exciting, resulting in a non singular A. 
Finding the inverse of the A matrix is not easy due to its size. However the A matrix is in the 
Toeplitz-form and can be solved efficiently by exploiting the symmetry of it. 

2.2 The controller 
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Figure 2 The feedback controller with IMC. 
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Figure 3 Multi-rate feedforward controller (feedback+IMC). 

The derivation of the feedback controller starts with the normal feedforward controller. In 
a feedforward controller the following paths can be distinguished: the primary path, being the 
path from the source or reference to the error sensor and the secondary path, being the path 
from the actuator to the error sensor. In most feedback controllers there is also a path from the 
actuator to the source or reference sensor. In this article perfect cancellation from the actuator 
to the reference sensor is assumed by means of internal model control. The influences of this 
path are then subtracted from the input of the controller. In [1] it has been shown that the 
design methods for a feedforward controller can be used for a feedback controller under 
certain assumptions. The method proposed in this book is based on so-called internal model 
control for feedback controllers. The feedback controller with IMC can be found in Figure 2. 
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Figure 4 Plant, primary path (left) and secondary path (right). 

If Gs=Ĝs then the model in Figure 2 is equivalent to a feedforward controller. The next 
extension is to add a multi-rate signal approach, in which the controller works on a lower 
sample rate than the actual system.  

The multi-rate signal approach can be found in Figure 3. In this case the signals x(n) and 
d(n) are equal and the Wiener filter can be designed by observing both signals. The 
assumption is that both low-pass filters are digital filters. In this paper they will be simple FIR 
filters designed with the Matlab filter-design toolbox. These filters are based on the minmax 
filter design method. The filters are minimum-phase filters. The pass-band is set to 1, the 
stop-band to zero and the transition width and order are still tuneable. 
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Figure 5 Performance of the overall system as function of the cut-off frequency. 

3 SIMULATION RESULTS 
The question is whether modifying the cut-off frequency of the interpolator and decimator 

filter is a good optimization criterion.  The plant model used for this simulation is based on a 

 4



Euronoise 2006, Tampere, Finland Johan M. Wesselink, Arthur Berkhoff
 

so called smart-panel. This panel consists of a sandwich panel, a piezoelectric patch actuator, 
and an error sensor measuring the local velocity of the panel. The model used is a state-space 
representation of the models described in [3]. The primary and secondary path of the plant 
can be found in Figure 4. The setup consists of a discrete model of the primary and secondary 
path of the smart-panel running at 10 kHz.  The sample rate is brought down to 2 kHz by 
performing a decimation and interpolation operation with a factor of 5. The performance is 
evaluated at 2 kHz and 10 kHz. The reduction is plotted as function of the cut-off frequency 
and can be found in Figure 5. In this plot, the transition width is set to a normalized frequency 
of 0.1 in which normalization carried out with respect to the sampling frequency. Two 
scenarios have been plotted. The first scenario only the reduction of the system in the low-
sample rate domain (2 kHz) is plotted, using a controller-internal estimate of the error signal. 
In the second scenario the same system is evaluated in the high sample rate domain (10 kHz), 
i.e. the overall system. From this figure it can be concluded that the cut-off frequency 
influences the overall performance. There exists an optimal value for which the reduction is 
maximal. However there is also a value for the cut-off frequency for which the system 
performance degrades substantially.  
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Figure 6 Influence of transition width on overall performance (left) and the  cut-off frequency belonging 
to a certain transition width (right). 

The next question that arises is if the transition width of the FIR filter will influence the 
overall performance of the system. In an optimization loop the optimal cut-off frequency will 
be found for each transition width of the decimation and interpolation filters. The results are 
plotted in two figures. In the first figure the reduction is plotted as a function of the transition 
width. In the second plot the transition width is plotted as function of the cut-off frequency. 
Both plots are necessary to estimate the optimal cut-off and transition width figures. The 
results can be found in Figure 6. 

In the last simulation the impact of the order of the filter was studied. The idea is to change 
the order of the filter and to calculate the optimal cut-off frequency. The transition width is set 
to 0.1 (normalized). The result from this experiment can be found in Figure 7. It seems that if 
the order is too high then it will decrease the overall performance again. On the other hand, if 
the filter is too short it will also degrade the performance again. 
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Figure 7 Impact of the filter order on the reduction (left) and on the cut-off frequency (right). 

4 CONCLUSIONS 
In this paper a method has been proposed in which the cut-off frequency, the transition 

width and the order of a decimation and interpolation filter can be optimized. The proposed 
method implements a multi-dimensional optimization procedure by tuning only one parameter 
at a time, thereby simplifying the optimization process considerably. If the cut-off frequency 
is too high then reconstruction and anti-aliasing errors will degrade the performance. 
However if the cut-off frequency is too low then the group-delay will degrade the 
performance.  
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