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Abstract 
 

We present an algorithm which eliminates 
constraints from a feature model whose feature 
diagram is a tree and whose constraints are "requires" 
or "excludes" constraints. The algorithm constructs a 
feature tree which has the same semantics as the 
original feature model. The computational complexity 
of the algorithm is exponential in the number of 
constraints, but linear in the number of features. The 
algorithm allows to efficiently compute properties of 
product lines whose feature model consists of a feature 
tree and a small number of  "requires" and "excludes" 
constraints. An executable specification of the 
algorithm is given in the functional programming 
language Miranda. 
 

1. Introduction 
 

Feature models are used to specify the variability of 

software product lines [1,2]. A feature model consists 

of a feature diagram and a (possibly empty) set of 

constraints. The feature diagram is either a tree or a 

rooted directed acyclic graph (RDAG). To compute 

properties of the specified software product line is easy 

in case the feature diagram is a tree and there are no 

constraints; one simply writes recursive functions on 

trees. In case the feature diagram is a RDAG or there 

are constraints, computing properties of the described 

software product line is much more difficult. In a 

number of approaches in the literature, feature models 

are mapped to other data structures: Benavides et al. 

[3] use Constraint Satisfaction Problems, Batory [4] 

uses Logic Truth Maintenance Systems and Czarnecki 

and Kim [5] use Binary Decision Diagrams. 

In this paper we present an approach which uses 

feature trees as the basic data structure, thereby staying 

as close as possible to the problem statement. We 

consider the case where the feature diagram is a tree, 

and there are the usual "requires" and "excludes" 

constraints. We present an algorithm which eliminates 

the constraints, and delivers a feature tree which is 

equivalent to the former feature tree with constraints. 

Properties of the software product line can then be 

computed by recursive functions on feature trees.  

In the next section we provide some preliminary 

definitions. In section 3 we provide some auxiliary 

algorithms. In section 4 we present the algorithm to 

eliminate constraints. In section 5 we discuss the 

computational complexity of our algorithm, and show 

that its complexity is exponential in the number of 

constraints, but linear in the number of features. In an 

appendix we give a complete executable specification 

of our algorithms in the functional programming 

language Miranda. 

 

2. Preliminaries 
 

The feature models in this paper consist of a feature 

tree and a set of constraints. A feature tree is a tree 

whose nodes are called features. There are three types 

of nodes: MandOpt features, Or features and Xor 

features. 

A MandOpt feature has two lists of subfeatures, 

called mandatory and optional subfeatures 

respectively. Or features and Xor features have 2 or 

more subfeatures. A leaf of the tree is a MandOpt 

feature without subfeatures. 

A constraint has either the form "F1 requires F2" or 

"F1 excludes F2" 



The semantics of such a feature model is a set of 

products, where each product is a set of features which 

occur in the tree [6]. A product belongs to the 

semantics of the feature model if and only if  it 

satisfies the constraints from the tree as well as the 

explicit constraints. 

A product satisfies the constraints from the tree if: 

• It contains the root of the tree. 

• For each feature except the root in the product, 

the product also contains its parent feature. 

• For each MandOpt feature in the product, the 

product also contains all its mandatory 

subfeatures. 

• For each Or feature in the product, the product 

also contains one or more of its subfeatures. 

• For each Xor feature in the product, the product 

also contains exactly one of its subfeatures. 

A product satisfies a constraint "F1 requires F2" 

when, if it contains F1 it also contains F2. A product 

satisfies a constraint "F1 excludes F2" when it does not 

both contain F1 and F2  

Just for the ease of writing concise algorithms, we 

assume the existence of a special feature tree NIL, 

which cannot occur as subtree of other trees, and 

which has no products. 

 

3. Auxiliary algorithms 

 
In this section we present  two auxiliary algorithms, 

which deal with commitment to a feature and deletion 

of a feature, respectively. 

The first auxiliary algorithm computes, given a 

feature tree T and a feature F, the feature tree T(+F), 

whose products are precisely those products of T 

which contain F. The algorithm transforms T into 

T(+F) by means of the following steps: 

 
1. If T does not contain F, the result is  
   NIL. 
2. If F is the root of T, the result is  
   T. 
3. Let the parent feature of F be P. 

• If P is a MandOpt feature and F is 
an optional subfeature, make F a 
mandatory subfeature of P. 

• If P is an Xor feature, make P a 
MandOpt feature which has F as single 
mandatory subfeature and has no 
optional subfeatures. All other 
subfeatures of P are removed from the 
tree. 

• If P is an Or feature, make P a 
MandOpt feature which has F as single 
mandatory subfeature. and has all 
other subfeatures of P as optional 
subfeatures. 

4. GOTO step 2 with P instead of F. 

 

The second auxiliary algorithm computes, given a 

feature tree T and a feature F, the feature tree T(-F) 

whose products are precisely those products of T 

which do not contain F. The algorithm transforms T 

into T(-F) by means of the following steps: 
 
1. If T does not contain F, the result is 
   T. 
2. If F is the root of T, the result is  
   NIL. 
3. Let the parent feature of F be P. 

• If P is a MandOpt feature and F is 
a mandatory subfeature of P, GOTO 
step 2 with P instead of F. 

• If P is a MandOpt feature and F is 
an optional subfeature of P, delete 
F. 

• If P is an Xor feature or an Or 
feature, delete F; if P has only one 
remaining subfeature, make P a 
MandOpt feature and its subfeature a 
mandatory subfeature. 

 

4. Elimination of constraints 

 
Let a feature model be given by a feature tree T and 

a constraint "A requires B". We want to construct a 

feature tree whose products are those products of T 

which contain B when they contain A. This set of 

products is the union of the product sets of T(+B) and 

T(-A-B). Here T(-A-B) is a shorthand for (T(-A))(-B). 

The product sets of T(+B) and T(-A-B) are disjoint. So 

the required feature tree can be obtained by taking a 

new Xor feature as root which has T(+B) and T(-A-B) 

as subfeatures. The algorithm to eliminate "A requires 

B" from T is: 

 
Construct T(+B) and T(-A-B). 
If both trees are not equal to NIL, then 
the result consists of  a new root, which 
is an Xor feature, with subfeatures T(+B) 
and T(-A-B). If T(-A-B) is equal to NIL, 
then the result is T(+B). If T(+B) is 
equal to NIL, then the result is T(-A-B). 
 

Now let a feature model be given by a feature tree 

T and a constraint "A excludes B". We want to 

construct a feature tree whose products are those 

products of T which do not contain both A and B. This 

set of products is the union of the product sets of T(-B) 

and T(-A+B). Moreover, the product sets of T(-B) and 

T(-A+B) are disjoint. So the required feature tree can 

be obtained by taking a new Xor feature as root which 

has T(-B) and T(-A+B) as subfeatures. The algorithm 

to eliminate "A excludes B" from T is: 



Construct T(-B) and T(-A+B). 
If both trees are not equal to NIL, then 
the result consists of  a new root, which 
is an Xor feature with subtrees T(-B) and 
T(-A+B). If T(-B) is equal to NIL, then 
the result is T(-A+B). If T(-A+B) is 

equal to NIL, then the result is T(-B). 

 

Note that the feature trees obtained by these 

algorithms have the property that features may occur 

more than once. However, multiple occurrences are in 

different subtrees of an Xor feature, so products do not 

have multiple occurrences of features. 

When there is more than one constraint, these 

constraints may be eliminated in sequel. The auxiliary 

algorithms of section 3 then should be modified by 

adding a repetition over multiple occurrences of 

features in a tree. 

The efficiency of the algorithms presented above 

may be improved in two ways: 

• Instead of eliminating a constraint from the whole 

tree, eliminate the constraint from the smallest 

subtree which contains A and B. 

• Perform dynamic programming: keep track of 

identical subtrees, and perform identical operations 

on identical subtrees only once, using memoization. 

 

5. Example 
 

In this section we provide a simple example to 

illustrate the result of the algorithms in the previous 

sections. Consider the feature tree T in figure 1. 

 

 
 

Figure 1. Example feature tree  

 

Here the numbers indicate for each feature the 

number of products which correspond to its subtree. 

These numbers are calculated with the following 

straightforward recursive algorithm: 

 
• For a MandOpt feature, the number of 

products is the product of the numbers 
of products for mandatory subfeatures, 
and the numbers of products 

incremented by 1 for optional 
subfeatures. 

• For an Or feature, the number of 
products is 1 less then the product of 
the numbers of products of its 
subfeatures incremented by 1. 

• For an Xor feature, the number of 
products is the sum of the numbers of 
products of its subfeatures. 

 

Note that the number of products of an Or feature 

equals the number of features of a MandOpt feature   

with optional nodes only, minus one. A more formal, 

less verbose, definition of this algorithm is given in the 

appendix. 

Now suppose there is an additional constraint: "D 

requires F". The algorithm of section 4 which 

eliminates this constraint from T gives the feature tree 

of figure 2: 

 

 
 

Figure 2. Example feature tree,  

constraint "D requires F" eliminated 

 

The root of this feature tree is a new Xor feature; 

its left subtree is T(+F) and its right subtree is T(-D-F). 

Again, the number of products, calculated with the 

algorithm above, are shown for each feature. 

Now suppose there is an additional constraint : "D 

excludes F". The algorithm of section 4 which 

eliminates this constraint from T gives the feature tree 

of figure 3: 

 

 
 

Figure 3. Example feature tree,  

constraint "D excludes F" eliminated 

 



The root of this feature tree is a new Xor feature; 

its left subtree is T(-F) and its right subtree is T(-D+F). 

Again, the number of products, calculated with the 

algorithm above, are shown for each feature. 

 

6. Computational complexity 
 

The algorithms given in section 4 clearly have 

linear time complexity. However, elimination of a 

constraint in the worst case doubles the size of the tree. 

Therefore, in the worst case, the size of the resulting 

tree will be exponential in the number of constraints. 

Algorithms which compute properties of a product line 

by first eliminating constraints from a feature tree will 

therefore always have exponential worst case time 

complexity. However, exponential computational 

complexity is inevitable, since, as we will show below, 

the decision problem whether or not a feature tree with 

constraints has at least one product, is NP-complete. 

So, there is no hope for an algorithm with polynomial 

computational complexity. Transformation of the 

feature model to a Binary Decision Diagram does not 

help, since this transformation itself has exponential 

computational complexity. An advantage of our 

approach is that, when the number of constraints is 

small, the algorithms will certainly be feasible. For 

instance, the algorithm which computes the number of 

products, given in the previous section, belongs to the 

complexity class O(N*2M), where N is the number of 

features in the feature tree and M is the number of 

constraints. 

Now we will prove that the problem whether or not 

a feature model which is given by a feature tree and a 

set of constraints has at least one product is NP-

complete. We do this by showing that the satisfiability 

problem SAT, which is NP-complete, can be reduced 

to our problem in polynomial time. This approach is 

similar to the approach by Schobbens et al. [6], who 

show that the corresponding problem with RDAGs 

instead of trees is NP-complete. SAT is the problem 

whether or not a Boolean expression which only 

contains Boolean variables and their negations, and 

which is in conjunctive normal form, can be satisfied 

by assigning Boolean values to the variables. An 

example expression is (X∨Y)∧(¬X∨¬Y) ∧(X∨¬Y). 

For this expression, we construct the feature tree in 

figure 4. For each clause in the expression the root 

feature has a mandatory subfeature. Each of these 

subfeatures is a Or feature, having each of its literals as 

subfeature.  

The expression is satisfiable if and only if the 

feature tree has a product without contradictions. Here 

contradiction in a product means that for some variable 

 
 

Figure 4 

 

V, the product contains both V and ¬V. Products with 

contradictions can be excluded by introducing 

constraints. For each occurrence in the tree of features 

V and ¬V for some variable V we add the constraint 

that these features be mutually exclusive. In the 

example of figure 4, there are 4 such constraints. Since 

this construction of the feature model only requires 

polynomial time, this proves that our problem is NP-

complete. 

Here it is interesting to note that it is not the 

presence of the constraints which makes the problem 

NP-complete. If feature trees would only contain 

MandOpt features, the problem has polynomial 

computational complexity. This can be shown by 

reducing it to 2SAT, the satisfiability problem where 

each conjunction contains only 2 literals, which has 

polynomial computational complexity. 

 

7. Conclusion 

 
We have presented algorithms to eliminate 

"requires" and "excludes" constraints from a feature 

model whose feature diagram is a tree, by constructing 

a feature tree which has the same semantics as the 

original feature tree with constraints. These algorithms 

allow to efficiently compute properties of product lines 

whose feature model consists of a feature tree and a 

small number of "requires" and "excludes" constraints. 

 

8. Acknowledgments 
 

This work is supported by the European 

Commission grant IST-33710 - Aspect-Oriented, 

Model-Driven Product Line Engineering (AMPLE). 

 

9. References 

 
[1] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak and A.S. 

Peterson, "Feature-Oriented Domain Analysis (FODA) 

Feasibility Study", Technical Report CMU/SEI-90-TR-21, 

Software Engineering Institute, Carnegie Mellon University 

(1990). 

 



[2] K. Czarnecki, U. Eisenecker, Generative Programming: 
Methods Tools and Applications, Addison-Wesley (2000). 

 

 [3] D. Benavides, P. Trinidad and A. Ruiz-Cortés, 

"Automated Reasoning on Feature Models", in: O. Pastor 

and J. Falcão e Cunha (Eds.): CAiSE 2005, Lecture Notes in 

Computer Science 3520, Springer-Verlag Berlin Heidelberg, 

2005, pp. 491-503. 

 

[4] D. Batory, "Feature Models, Grammars, and 

Propositional Formulas", in: H. Obbink and K. Pohl (eds.): 

Software Product Lines Conference 2005, Lecture Notes in 

Computer Science 3714, Springer-Verlag Berlin Heidelberg, 

pp. 7-20, 2005. 

 

[5] K. Czarnecki and P. Kim, Cardinality-based Feature 

Modeling and Constraints: A Progress Report, in: 

Proceedings of the International Workshop on Software 

Factories, OOPSLA 2005, 2005. 

http://softwarefactories.com/workshops/OOPSLA-2005/ 

Papers/Czarnecki.pdf. 

 

[6] P.-Y. Schobbens, P. Heymans, J.-Chr. Trigaux and Y. 

Bontemps, "Generic Semantics of Feature Diagrams", 

Computer Networks 51, 2007,  pp. 456–479. 

 

[7] D. Turner, Miranda: a non-strict functional language with 

polymorphic types, in: Functional Programming Languages 

and Computer Architecture, Lecture Notes in Computer 

Science Vol 201, J.-P. Jouannaud (ed.), Springer-Verlag, 

Berlin, Heidelberg, 1985, pp. 1-16. 

 

Appendix 
 

In this appendix we provide a complete executable 

specification of our algorithms in the functional 

programming language Miranda [7]. 

 

First we give some type definitions. Here MandOpt 

nm ms os stands for a MandOpt feature with name 

nm, ms is the list of its mandatory features and or is the 

list of its optional features. 

 
name == [char] 
tree ::= MandOpt name [tree] [tree] | 
         Or name [tree] | 
         Xor name [tree] |  
         NIL 
constraint ::= Requires name name | 
               Excludes name name 
feature_model == (tree,[constraint]) 
 

The expression delete nm ft is a feature tree 

whose products are the products of the feature tree ft 

which contain the feature with name nm. 
 
delete :: name -> tree -> tree 
delete nm NIL = NIL 
delete nm (MandOpt n ms os)  

  = NIL, if n=nm \/ member ms2 NIL 
  = MandOpt n ms2 (filter (~= NIL) os2), 
                               otherwise 
    where 
    ms2 = [delete nm m|m<-ms] 
    os2 = [delete nm o|o<-os] 
delete nm (Xor n fts) 
  = NIL, if n=nm 
  = MandOpt n fts2 [], if #fts2 < 2  
  = Xor n fts2, otherwise 
    where 
    fts2 = filter (~= NIL)  
                   [delete nm ft|ft<-fts] 
delete nm (Or n fts) 
  = NIL, if n=nm 
  = MandOpt n fts2 [], if #fts2 < 2 
  = Or n fts2, otherwise 
    where 
    fts2 = filter (~= NIL)  
                   [delete nm ft|ft<-fts] 
 

The expression commit nm ft is the feature tree 

whose products are the products of the feature tree ft 

which contain the feature with name nm. 
 
commit :: name -> tree -> tree 
commit nm NIL = NIL 
commit nm ft = ft2, if b 
             = NIL, otherwise 
               where 
               (ft2,b) = commit2 nm ft 
 
commit2 :: name -> tree -> (tree,bool) 
commit2 nm NIL = (NIL,False) 
commit2 nm (MandOpt n ms os)  
  = (MandOpt n ms os, True), if n=nm 
  = (MandOpt n ms3 os, True),  
                      if or (map snd ms2) 
  = (MandOpt n (ms++os4) os3, True),  
                           if os4 ~= [] 
  = (MandOpt n ms os, False),  otherwise 
    where 
    ms2 = [commit2 nm m|m<-ms] 
    os2 = [commit2 nm o|o<-os] 
    ms3 = [m|(m,b)<-ms2] 
    os3 = [ft|(ft,b)<-os2; ~b] 
    os4 = [ft|(ft,b)<-os2; b] 
commit2 nm (Xor n fts) 
  = (Xor n fts, True), if n=nm 
  = (MandOpt n ms [], True), if #ms = 1 
  = (Xor n ms, True), if #ms>=1 
  = (Xor n fts, False), otherwise 
    where 
    fts2 = [commit2 nm ft|ft<-fts] 
    ms = [ft|(ft,b)<-fts2; b] 
commit2 nm (Or n fts) 
  = (Or n fts, True), if n=nm 
  = (MandOpt n ms os, True), if ms ~= [] 
  = (Or n fts, False), otherwise 
    where 
    fts2 = [commit2 nm ft|ft<-fts] 
    os = [ft|(ft,b)<-fts2; ~b] 
    ms = [ft|(ft,b)<-fts2; b] 
 



The expression ElimConstr takes a feature model as 

argument, and returns a feature tree with the same 

semantics 
 
elimConstr :: feature_model -> tree 
elimConstr (ft, Requires a b : cs) 
  = elimConstr (Xor "" fts, cs),if #fts>1 
  = elimConstr (MandOpt "" fts [], cs), 
                                if #fts=1 
  = NIL, otherwise 
    where 
    fts = filter (~=NIL) [delete a  
              (delete b ft), commit b ft] 
elimConstr (ft, Excludes a b : cs)  
  = elimConstr (Xor "" fts, cs),if #fts>1 
  = elimConstr (MandOpt "" fts [], cs), 
                                if #fts=1 
  = NIL, otherwise 
    where 
    fts = filter (~=NIL) [delete b ft, 
                  delete a (commit b ft)] 
elimConstr (ft,[]) = ft 

 

The function nrProds computes the number of 

products of a feature tree 

 
nrProds :: feature_tree -> num 
nrProds NIL = 0 
nrProds (MandOpt nm ms os)  
  = product (map nrProds ms) *  
    product (map (+1) (map nrProds os)) 
nrProds (Xor nm fts)  
  = sum (map nrProds fts) 
nrProds (Or nm fts)  
  = product (map(+1) (map nrProds fts))-1 


