
Elimination of Constraints from Feature Trees

Pim van den Broek

Department of Computer
Science,

University of Twente
P.O. Box 217,

7500 AE Enschede,
The Netherlands

pimvdb@ewi.utwente.nl

Ismênia Galvão

Department of Computer
Science,

University of Twente
P.O. Box 217,

7500 AE Enschede,
The Netherlands

i.galvao@ewi.utwente.nl

Joost Noppen

Département Informatique,
École des Mines,

4, rue Alfred Kastler,
F - 44307 Nantes cedex 3,

Nantes,
France

johannes.noppen@emn.fr

Abstract

We present an algorithm which eliminates
constraints from a feature model whose feature
diagram is a tree and whose constraints are "requires"
or "excludes" constraints. The algorithm constructs a
feature tree which has the same semantics as the
original feature model. The computational complexity
of the algorithm is exponential in the number of
constraints, but linear in the number of features. The
algorithm allows to efficiently compute properties of
product lines whose feature model consists of a feature
tree and a small number of "requires" and "excludes"
constraints. An executable specification of the
algorithm is given in the functional programming
language Miranda.

1. Introduction

Feature models are used to specify the variability of

software product lines [1,2]. A feature model consists

of a feature diagram and a (possibly empty) set of

constraints. The feature diagram is either a tree or a

rooted directed acyclic graph (RDAG). To compute

properties of the specified software product line is easy

in case the feature diagram is a tree and there are no

constraints; one simply writes recursive functions on

trees. In case the feature diagram is a RDAG or there

are constraints, computing properties of the described

software product line is much more difficult. In a

number of approaches in the literature, feature models

are mapped to other data structures: Benavides et al.

[3] use Constraint Satisfaction Problems, Batory [4]

uses Logic Truth Maintenance Systems and Czarnecki

and Kim [5] use Binary Decision Diagrams.

In this paper we present an approach which uses

feature trees as the basic data structure, thereby staying

as close as possible to the problem statement. We

consider the case where the feature diagram is a tree,

and there are the usual "requires" and "excludes"

constraints. We present an algorithm which eliminates

the constraints, and delivers a feature tree which is

equivalent to the former feature tree with constraints.

Properties of the software product line can then be

computed by recursive functions on feature trees.

In the next section we provide some preliminary

definitions. In section 3 we provide some auxiliary

algorithms. In section 4 we present the algorithm to

eliminate constraints. In section 5 we discuss the

computational complexity of our algorithm, and show

that its complexity is exponential in the number of

constraints, but linear in the number of features. In an

appendix we give a complete executable specification

of our algorithms in the functional programming

language Miranda.

2. Preliminaries

The feature models in this paper consist of a feature

tree and a set of constraints. A feature tree is a tree

whose nodes are called features. There are three types

of nodes: MandOpt features, Or features and Xor

features.

A MandOpt feature has two lists of subfeatures,

called mandatory and optional subfeatures

respectively. Or features and Xor features have 2 or

more subfeatures. A leaf of the tree is a MandOpt

feature without subfeatures.

A constraint has either the form "F1 requires F2" or

"F1 excludes F2"

The semantics of such a feature model is a set of

products, where each product is a set of features which

occur in the tree [6]. A product belongs to the

semantics of the feature model if and only if it

satisfies the constraints from the tree as well as the

explicit constraints.

A product satisfies the constraints from the tree if:

• It contains the root of the tree.

• For each feature except the root in the product,

the product also contains its parent feature.

• For each MandOpt feature in the product, the

product also contains all its mandatory

subfeatures.

• For each Or feature in the product, the product

also contains one or more of its subfeatures.

• For each Xor feature in the product, the product

also contains exactly one of its subfeatures.

A product satisfies a constraint "F1 requires F2"

when, if it contains F1 it also contains F2. A product

satisfies a constraint "F1 excludes F2" when it does not

both contain F1 and F2

Just for the ease of writing concise algorithms, we

assume the existence of a special feature tree NIL,

which cannot occur as subtree of other trees, and

which has no products.

3. Auxiliary algorithms

In this section we present two auxiliary algorithms,

which deal with commitment to a feature and deletion

of a feature, respectively.

The first auxiliary algorithm computes, given a

feature tree T and a feature F, the feature tree T(+F),

whose products are precisely those products of T

which contain F. The algorithm transforms T into

T(+F) by means of the following steps:

1. If T does not contain F, the result is
 NIL.
2. If F is the root of T, the result is
 T.
3. Let the parent feature of F be P.

• If P is a MandOpt feature and F is
an optional subfeature, make F a
mandatory subfeature of P.

• If P is an Xor feature, make P a
MandOpt feature which has F as single
mandatory subfeature and has no
optional subfeatures. All other
subfeatures of P are removed from the
tree.

• If P is an Or feature, make P a
MandOpt feature which has F as single
mandatory subfeature. and has all
other subfeatures of P as optional
subfeatures.

4. GOTO step 2 with P instead of F.

The second auxiliary algorithm computes, given a

feature tree T and a feature F, the feature tree T(-F)

whose products are precisely those products of T

which do not contain F. The algorithm transforms T

into T(-F) by means of the following steps:

1. If T does not contain F, the result is
 T.
2. If F is the root of T, the result is
 NIL.
3. Let the parent feature of F be P.

• If P is a MandOpt feature and F is
a mandatory subfeature of P, GOTO
step 2 with P instead of F.

• If P is a MandOpt feature and F is
an optional subfeature of P, delete
F.

• If P is an Xor feature or an Or
feature, delete F; if P has only one
remaining subfeature, make P a
MandOpt feature and its subfeature a
mandatory subfeature.

4. Elimination of constraints

Let a feature model be given by a feature tree T and

a constraint "A requires B". We want to construct a

feature tree whose products are those products of T

which contain B when they contain A. This set of

products is the union of the product sets of T(+B) and

T(-A-B). Here T(-A-B) is a shorthand for (T(-A))(-B).

The product sets of T(+B) and T(-A-B) are disjoint. So

the required feature tree can be obtained by taking a

new Xor feature as root which has T(+B) and T(-A-B)

as subfeatures. The algorithm to eliminate "A requires

B" from T is:

Construct T(+B) and T(-A-B).
If both trees are not equal to NIL, then
the result consists of a new root, which
is an Xor feature, with subfeatures T(+B)
and T(-A-B). If T(-A-B) is equal to NIL,
then the result is T(+B). If T(+B) is
equal to NIL, then the result is T(-A-B).

Now let a feature model be given by a feature tree

T and a constraint "A excludes B". We want to

construct a feature tree whose products are those

products of T which do not contain both A and B. This

set of products is the union of the product sets of T(-B)

and T(-A+B). Moreover, the product sets of T(-B) and

T(-A+B) are disjoint. So the required feature tree can

be obtained by taking a new Xor feature as root which

has T(-B) and T(-A+B) as subfeatures. The algorithm

to eliminate "A excludes B" from T is:

Construct T(-B) and T(-A+B).
If both trees are not equal to NIL, then
the result consists of a new root, which
is an Xor feature with subtrees T(-B) and
T(-A+B). If T(-B) is equal to NIL, then
the result is T(-A+B). If T(-A+B) is

equal to NIL, then the result is T(-B).

Note that the feature trees obtained by these

algorithms have the property that features may occur

more than once. However, multiple occurrences are in

different subtrees of an Xor feature, so products do not

have multiple occurrences of features.

When there is more than one constraint, these

constraints may be eliminated in sequel. The auxiliary

algorithms of section 3 then should be modified by

adding a repetition over multiple occurrences of

features in a tree.

The efficiency of the algorithms presented above

may be improved in two ways:

• Instead of eliminating a constraint from the whole

tree, eliminate the constraint from the smallest

subtree which contains A and B.

• Perform dynamic programming: keep track of

identical subtrees, and perform identical operations

on identical subtrees only once, using memoization.

5. Example

In this section we provide a simple example to

illustrate the result of the algorithms in the previous

sections. Consider the feature tree T in figure 1.

Figure 1. Example feature tree

Here the numbers indicate for each feature the

number of products which correspond to its subtree.

These numbers are calculated with the following

straightforward recursive algorithm:

• For a MandOpt feature, the number of

products is the product of the numbers
of products for mandatory subfeatures,
and the numbers of products

incremented by 1 for optional
subfeatures.

• For an Or feature, the number of
products is 1 less then the product of
the numbers of products of its
subfeatures incremented by 1.

• For an Xor feature, the number of
products is the sum of the numbers of
products of its subfeatures.

Note that the number of products of an Or feature

equals the number of features of a MandOpt feature

with optional nodes only, minus one. A more formal,

less verbose, definition of this algorithm is given in the

appendix.

Now suppose there is an additional constraint: "D

requires F". The algorithm of section 4 which

eliminates this constraint from T gives the feature tree

of figure 2:

Figure 2. Example feature tree,

constraint "D requires F" eliminated

The root of this feature tree is a new Xor feature;

its left subtree is T(+F) and its right subtree is T(-D-F).

Again, the number of products, calculated with the

algorithm above, are shown for each feature.

Now suppose there is an additional constraint : "D

excludes F". The algorithm of section 4 which

eliminates this constraint from T gives the feature tree

of figure 3:

Figure 3. Example feature tree,

constraint "D excludes F" eliminated

The root of this feature tree is a new Xor feature;

its left subtree is T(-F) and its right subtree is T(-D+F).

Again, the number of products, calculated with the

algorithm above, are shown for each feature.

6. Computational complexity

The algorithms given in section 4 clearly have

linear time complexity. However, elimination of a

constraint in the worst case doubles the size of the tree.

Therefore, in the worst case, the size of the resulting

tree will be exponential in the number of constraints.

Algorithms which compute properties of a product line

by first eliminating constraints from a feature tree will

therefore always have exponential worst case time

complexity. However, exponential computational

complexity is inevitable, since, as we will show below,

the decision problem whether or not a feature tree with

constraints has at least one product, is NP-complete.

So, there is no hope for an algorithm with polynomial

computational complexity. Transformation of the

feature model to a Binary Decision Diagram does not

help, since this transformation itself has exponential

computational complexity. An advantage of our

approach is that, when the number of constraints is

small, the algorithms will certainly be feasible. For

instance, the algorithm which computes the number of

products, given in the previous section, belongs to the

complexity class O(N*2M), where N is the number of

features in the feature tree and M is the number of

constraints.

Now we will prove that the problem whether or not

a feature model which is given by a feature tree and a

set of constraints has at least one product is NP-

complete. We do this by showing that the satisfiability

problem SAT, which is NP-complete, can be reduced

to our problem in polynomial time. This approach is

similar to the approach by Schobbens et al. [6], who

show that the corresponding problem with RDAGs

instead of trees is NP-complete. SAT is the problem

whether or not a Boolean expression which only

contains Boolean variables and their negations, and

which is in conjunctive normal form, can be satisfied

by assigning Boolean values to the variables. An

example expression is (X∨Y)∧(¬X∨¬Y) ∧(X∨¬Y).

For this expression, we construct the feature tree in

figure 4. For each clause in the expression the root

feature has a mandatory subfeature. Each of these

subfeatures is a Or feature, having each of its literals as

subfeature.

The expression is satisfiable if and only if the

feature tree has a product without contradictions. Here

contradiction in a product means that for some variable

Figure 4

V, the product contains both V and ¬V. Products with

contradictions can be excluded by introducing

constraints. For each occurrence in the tree of features

V and ¬V for some variable V we add the constraint

that these features be mutually exclusive. In the

example of figure 4, there are 4 such constraints. Since

this construction of the feature model only requires

polynomial time, this proves that our problem is NP-

complete.

Here it is interesting to note that it is not the

presence of the constraints which makes the problem

NP-complete. If feature trees would only contain

MandOpt features, the problem has polynomial

computational complexity. This can be shown by

reducing it to 2SAT, the satisfiability problem where

each conjunction contains only 2 literals, which has

polynomial computational complexity.

7. Conclusion

We have presented algorithms to eliminate

"requires" and "excludes" constraints from a feature

model whose feature diagram is a tree, by constructing

a feature tree which has the same semantics as the

original feature tree with constraints. These algorithms

allow to efficiently compute properties of product lines

whose feature model consists of a feature tree and a

small number of "requires" and "excludes" constraints.

8. Acknowledgments

This work is supported by the European

Commission grant IST-33710 - Aspect-Oriented,

Model-Driven Product Line Engineering (AMPLE).

9. References

[1] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak and A.S.

Peterson, "Feature-Oriented Domain Analysis (FODA)

Feasibility Study", Technical Report CMU/SEI-90-TR-21,

Software Engineering Institute, Carnegie Mellon University

(1990).

[2] K. Czarnecki, U. Eisenecker, Generative Programming:
Methods Tools and Applications, Addison-Wesley (2000).

 [3] D. Benavides, P. Trinidad and A. Ruiz-Cortés,

"Automated Reasoning on Feature Models", in: O. Pastor

and J. Falcão e Cunha (Eds.): CAiSE 2005, Lecture Notes in

Computer Science 3520, Springer-Verlag Berlin Heidelberg,

2005, pp. 491-503.

[4] D. Batory, "Feature Models, Grammars, and

Propositional Formulas", in: H. Obbink and K. Pohl (eds.):

Software Product Lines Conference 2005, Lecture Notes in

Computer Science 3714, Springer-Verlag Berlin Heidelberg,

pp. 7-20, 2005.

[5] K. Czarnecki and P. Kim, Cardinality-based Feature

Modeling and Constraints: A Progress Report, in:

Proceedings of the International Workshop on Software

Factories, OOPSLA 2005, 2005.

http://softwarefactories.com/workshops/OOPSLA-2005/

Papers/Czarnecki.pdf.

[6] P.-Y. Schobbens, P. Heymans, J.-Chr. Trigaux and Y.

Bontemps, "Generic Semantics of Feature Diagrams",

Computer Networks 51, 2007, pp. 456–479.

[7] D. Turner, Miranda: a non-strict functional language with

polymorphic types, in: Functional Programming Languages

and Computer Architecture, Lecture Notes in Computer

Science Vol 201, J.-P. Jouannaud (ed.), Springer-Verlag,

Berlin, Heidelberg, 1985, pp. 1-16.

Appendix

In this appendix we provide a complete executable

specification of our algorithms in the functional

programming language Miranda [7].

First we give some type definitions. Here MandOpt

nm ms os stands for a MandOpt feature with name

nm, ms is the list of its mandatory features and or is the

list of its optional features.

name == [char]
tree ::= MandOpt name [tree] [tree] |
 Or name [tree] |
 Xor name [tree] |
 NIL
constraint ::= Requires name name |
 Excludes name name
feature_model == (tree,[constraint])

The expression delete nm ft is a feature tree

whose products are the products of the feature tree ft

which contain the feature with name nm.

delete :: name -> tree -> tree
delete nm NIL = NIL
delete nm (MandOpt n ms os)

 = NIL, if n=nm \/ member ms2 NIL
 = MandOpt n ms2 (filter (~= NIL) os2),
 otherwise
 where
 ms2 = [delete nm m|m<-ms]
 os2 = [delete nm o|o<-os]
delete nm (Xor n fts)
 = NIL, if n=nm
 = MandOpt n fts2 [], if #fts2 < 2
 = Xor n fts2, otherwise
 where
 fts2 = filter (~= NIL)
 [delete nm ft|ft<-fts]
delete nm (Or n fts)
 = NIL, if n=nm
 = MandOpt n fts2 [], if #fts2 < 2
 = Or n fts2, otherwise
 where
 fts2 = filter (~= NIL)
 [delete nm ft|ft<-fts]

The expression commit nm ft is the feature tree

whose products are the products of the feature tree ft

which contain the feature with name nm.

commit :: name -> tree -> tree
commit nm NIL = NIL
commit nm ft = ft2, if b
 = NIL, otherwise
 where
 (ft2,b) = commit2 nm ft

commit2 :: name -> tree -> (tree,bool)
commit2 nm NIL = (NIL,False)
commit2 nm (MandOpt n ms os)
 = (MandOpt n ms os, True), if n=nm
 = (MandOpt n ms3 os, True),
 if or (map snd ms2)
 = (MandOpt n (ms++os4) os3, True),
 if os4 ~= []
 = (MandOpt n ms os, False), otherwise
 where
 ms2 = [commit2 nm m|m<-ms]
 os2 = [commit2 nm o|o<-os]
 ms3 = [m|(m,b)<-ms2]
 os3 = [ft|(ft,b)<-os2; ~b]
 os4 = [ft|(ft,b)<-os2; b]
commit2 nm (Xor n fts)
 = (Xor n fts, True), if n=nm
 = (MandOpt n ms [], True), if #ms = 1
 = (Xor n ms, True), if #ms>=1
 = (Xor n fts, False), otherwise
 where
 fts2 = [commit2 nm ft|ft<-fts]
 ms = [ft|(ft,b)<-fts2; b]
commit2 nm (Or n fts)
 = (Or n fts, True), if n=nm
 = (MandOpt n ms os, True), if ms ~= []
 = (Or n fts, False), otherwise
 where
 fts2 = [commit2 nm ft|ft<-fts]
 os = [ft|(ft,b)<-fts2; ~b]
 ms = [ft|(ft,b)<-fts2; b]

The expression ElimConstr takes a feature model as

argument, and returns a feature tree with the same

semantics

elimConstr :: feature_model -> tree
elimConstr (ft, Requires a b : cs)
 = elimConstr (Xor "" fts, cs),if #fts>1
 = elimConstr (MandOpt "" fts [], cs),
 if #fts=1
 = NIL, otherwise
 where
 fts = filter (~=NIL) [delete a
 (delete b ft), commit b ft]
elimConstr (ft, Excludes a b : cs)
 = elimConstr (Xor "" fts, cs),if #fts>1
 = elimConstr (MandOpt "" fts [], cs),
 if #fts=1
 = NIL, otherwise
 where
 fts = filter (~=NIL) [delete b ft,
 delete a (commit b ft)]
elimConstr (ft,[]) = ft

The function nrProds computes the number of

products of a feature tree

nrProds :: feature_tree -> num
nrProds NIL = 0
nrProds (MandOpt nm ms os)
 = product (map nrProds ms) *
 product (map (+1) (map nrProds os))
nrProds (Xor nm fts)
 = sum (map nrProds fts)
nrProds (Or nm fts)
 = product (map(+1) (map nrProds fts))-1

