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Abstract

We are engaged in a major effort to design decentralized controllers for modern
networks, that is fundamentally based on 1) applying feedback of multiple derivatives of
local observations and 2) implementing these derivative feedbacks using multiple-delay
controllers. Here, we fully motivate and introduce the design paradigm in the context of
a canonical sensing-network model, namely a network of saturating double integrators
with general sensing topology that is subject to measurement delays. In this context,
we illustrate that our design paradigm yields practical high-performance (in particular,
group pole-placement) decentralized controllers that exploit the network topology while
distributing the complexity and actuation requirements among the agents.

1 Introduction

Decentralized feedback systems have long been of interest to the controls community [1–
3]. In recent years, research in decentralized control has been re-invigorated by interest in
such applications as cooperative control of autonomous vehicle teams, data fusion in sensor
networks, and virus-spreading control, among others, (see the overviews [4–7], see also, e.g.,
[8–10]). In particular, the novel characteristics of these sensing-agent networks (networks of
highly-limited autonomous agents with distributed communication/sensing capabilities [6])
has brought about a focus on understanding the role played by a network’s topology in
permitting stabilization and high-performance control. This focus has again made clear that
very little is known about designing high-performance controllers for decentralized systems—
even for the very specially structured sensing-agent networks—and hence new tools for design
are badly needed.

We are engaged in a major effort to design stabilizing and high-performance yet practical
controllers for decentralized systems, that is fundamentally based on 1) locally using feedback
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of multiple derivatives of the observation and 2) using multiple-delay control schemes to
implement these multiple-derivative controllers. We show that this new methodology is
capable of addressing many of the complexities that are common to modern decentralized
systems (such as sensing-agent networks), including very general observation topologies,
saturation nonlinearities, and inherent network delays. We shall describe aspects of this
systematic methodology for design in several installments [11, 17]. In this paper, we fully
motivate and introduce the design methodology using a canonical but very widely applicable
sensing-agent network model, namely a network of double-integrator agents with general
sensing/communicating topology (e.g. [8,12]). The complementary installments demonstrate
application to uniform rank and more general decentralized plant models (including for
modern infrastructure networks) [11], and flesh out the implementation of multiple-derivative
feedback using multiple-delay controllers.

Given the long history of decentralized control, the reader may well wonder why new
techniques are needed for decentralized controller design. In fact, the study of sensing-
agent networks, as well as certain infrastructure networks such as air traffic management
systems [13] and electric power systems [14], has made it clear that a single agent cannot
possibly provide the actuation or complexity required to control the whole network, and fur-
ther the controllers must exploit the network topology to cooperatively achieve performance
requirements. Unfortunately, the bulk of the traditional decentralized control theory views
the network as a disturbance that must be dominated by the local dynamics [3], and hence
does not permit design of controllers that exploit the network topology.

The seminal work of Wang and Davison [1] does make the role played by the network
explicit, in that it gives necessary and sufficient conditions for stabilization of decentralized
systems based on fixed modes (see also, e.g., [2, 15, 16]). Their methodology is very much
applicable to modern networks, and we have used it to address the foundational problem of
determining whether a sensing-agent network can be stabilized [8]. Unfortunately, Wang and
Davison’s perturbation-based approach does not permit constructive design of practical high-
performance or even stabilizing controllers. While several works have extended [1] toward
allowing eigenvalue placement (and hence high performance) in addition to stabilization,
these approaches essentially concentrate the complexity and extent of actuation/observation
at a single agent, and hence also are unsuitable for our applications [3]. For these reasons,
new tools for decentralized controller design are critically needed.

In this document, we develop a multiple-derivative and multiple-delay paradigm for con-
trolling decentralized systems. Fundamentally, the derivatives of local observations provide
the local controllers with information about the entire network’s state, and so permit control.
To develop practical implementations of these multiple-derivative controllers for modern (e.g.
sensing-agent) networks, we pursue multiple-delay approximations for the multiple-derivative
controllers (i.e., feedback controls where the actuation signals are combinations of multiple
delayed observations), see [17] for further development of multiple-delay controllers. This use
of delayed observations may at first seem surprising since delays often serve to destabilize
feedback control systems [18], but it is also well known that properly-selected delays can
be used effectively in control [19, 20]. This derivative/delay paradigm is a very natural one
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for decentralized systems, for which centralized notions of state estimation fail, and hence
delays/derivatives provide the only known approach to finding the global state from local ob-
servations. What is surprising is that we can achieve not only stabilization but effective pole
placement, while using only one more delayed observation (or one higher derivative) than is
needed for centralized control. We thus are able to construct fully decentralized controllers
with quite low complexity and distributed actuation effort. In this paper, we conceptualize
and illustrate the delay-based decentralized control paradigm, using as a canonical example
the double-integrator-network model.

Decentralized systems, and in particular sensing-agent networks, are strongly impacted
both by constraints on the agents and network limitations and variations. An essential ad-
vantage of our delay-based control methodology is its effectiveness even in the presence of
these harsh constraints/limitations. Specifically, actuator saturation nonlinearities are
ubiquitous in sensing-agent network applications [8, 9]. While controller design under sat-
uration has been extensively studied for centralized systems [21], design under saturation
for decentralized systems is wholely unknown (see [22] for partial existence conditions). In
fact, our multiple-derivative/delay control scheme provides a natural avenue for design under
actuation saturation. Further using low-gain ideas, we can naturally design multiple-delay
controllers that stabilize networks with actuator saturation. Also, network communica-
tions/sensing are always subject to delays, and so controlling networks with inherent delays
is critically important. Since our control strategy systematically uses delayed observations,
it is eminently suited for networks with inherent delays. In particular, we show that net-
works with arbitrary and inhomogeneous delays can be stabilized with a low-gain controller.
These results for networks with saturation and delay indicate the wide applicability of our
methodology for practical controller design.

We stress here that the delay-based control methodology is applicable to general linear
time-invariant decentralized control systems, and so the reader may wonder why we have
chosen to introduce the methodology using only a canonical example. In fact, focusing on
the double-integrator network permits a clearer and simpler presentation for two reasons: 1)
it permits a full characterization of the derivative-based and hence delay-based controller’s
performance and implementation from first principles (Sections 2 and 3), without requiring
the complicated special coordinate basis (see [23] and also [11]) , and 2) the time-scaling
properties of the double-integrator network permits simple design of low-gain multiple-delay
controllers (Section 4). We feel strongly that presenting results in this simpler context allows
us to expose the conceptual underpinnings of derivative/delay-based decentralized control,
and to clearly develop the (rather intricate) tools for analyzing multiple-delay controllers.
We also note that sensing-agent networks, and in particular double-integrator networks, are
of wide current interest [6, 8] and so deserve an explicit treatment.

2 Controlling the Double-Integrator Network

In this section, we illustrate our methodology of using multiple derivative feedbacks to achieve
stabilization and high-performance control, in the context of a decentralized double inte-
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grator network (see [8]). In this simple network model, each agent has a double-integrator
internal dynamics, and observes only a linear combination of the states of some agents. Al-
though simple, this network model is widely applicable, including for various autonomous-
vehicle control and sensor-networking tasks [7, 8, 12]. We present our controller design for
this simple but very widely-applicable decentralized network, to highlight the conceptual
foundation for the methodology. Specifically, we show that, using linear feedback of deriva-
tives of observations up to order 2 for each agent, we can stabilize the double integrator
network. Moreover, we can place groups of poles at arbitrary locations or in desirable ranges
using high gain control. The fundamental concept underlying this design is that feedback
of derivatives of the output up to the relative degree of the local plant (2 in our case) gives
each agent enough information about the global state to permit high-performance control
through, essentially, plant inversion; we notice that one more derivative is needed then for
centralized control of the plant, see the literature on asymptotic time-scale and eigenstruc-
ture assignment (ATEA design) and our recent application of it to multiple-delay control of
centralized plants [20,24]. In this section, we first present the controller design (Section 2.1),
and then give a conceptual discussion of the design method and its characteristics (Section
2.2).

2.1 Multiple-Derivative Controller Design

Formally, consider a linear time-invariant (LTI) system consisting of n double-integrator
agents, i.e. described by

ẍ(t) = u(t) (1)

y(t) = Gx(t),

where x(t) ∈ Rn represents the positions of the n agents, u ∈ Rn and y ∈ Rn are the
inputs and observations respectively, and matrix G = {Gij}n×n. Note that each agent i has
only one input ui and makes only one observation yi, which is a linear combination of the
positions of other agents, i.e., yi = [Gi1, ..., Gin]x. Further, each agent i has its own local
feedback control law, which constructs its input ui from its local observation yi. We refer to
this system as a double-integrator network (see [8]).

The condition to stabilize such a network using a linear time-invariant controller is that
G has full rank (from [8], based on Wang and Davison’s classical existence result [1]). Un-
fortunately, the existence condition seemingly does not translate to a simple controller de-
sign: the system can not always be stabilized with a static decentralized feedback controller
u(t) = Ky(t) (K diagonal), nor can it always be stabilized with position and velocity feed-
back (i.e. using a control law of the form u(t) = K1Gx(t)+K2Gẋ(t), K1 and K2 diagonal) [8].
However, by introducing one more derivative to the feedback control—specifically by using
the control law u(t) = k1k3y(t)+k2k3ẏ(t)+k3ÿ(t), where k1, k2, k3 are some properly chosen
scalars — it turns out that we suddenly gain the ability to achieve stabilization and high
performance (in particular, a “group” pole placement, where groups of n poles are placed at
desirable locations). It is valuable to note that all agents have the same gains k1, k2 and k3:
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one does not even need to employ agent-specific gains for stabilization and high-performance
control.

We can design this multiple-derivative-based control law using a simple algorithm. We
first describe the algorithm, and then formally show that the two tasks (stabilization and
high-performance control) can be completed using the multiple-derivative-based controller.

Algorithm The following is the algorithm for designing the multiple-delay-based con-
troller:

1) Choose two constants, say k1 and k2, such that the roots of λ2 + k1λ + k2 are at
desirable locations.

2) Choose k3 sufficiently large, and apply the control law

u = k1k3y + k2k3ẏ + k3ÿ (2)

We will show that the algorithm yields not only stabilizing controllers, but ones with
closed-loop poles near to the roots of λ2 + k1λ + k2. The above algorithm for designing the
derivative-based controller, and the justification that it achieves stabilization/performance
goals, is essentially based on using the second derivative of the observation in feedback with
high gain (k3 large) to effectively permit local control of agents’ states.

In Theorem 1, we state the main result concerning stabilization of the double integrator
network using the multiple-derivative-based controller (Equation 2).

Theorem 1 Consider the double-integrator network described in (1), where G is non-
singular. The network can be stabilized using the multiple-derivative control law (Equa-

tion 2) with k1, k2 and k3 satisfying: ai1 > 0, ai1ai2−ai3

ai1
> 0,

a2
i1ai4+ai3(ai3−ai1ai2)

ai3−ai1ai2
> 0

and ai4 > 0 for all i, where ai1 = −2Re( k2k3λi

1−k3λi
), ai2 = −2Re( k1k3λi

1−k3λi
) +

∣∣∣ k2k3λi

1−k3λi

∣∣∣2, ai3 =

2Re( k1k3λi

1−k3λi
)Re( k2k3λi

1−k3λi
) + 2Img( k1k3λi

1−k3λi
)Img( k2k3λi

1−k3λi
), ai4 =

∣∣∣ k1k3λi

1−k3λi

∣∣∣2, and λi is the ith eigen-

value of G. As a special case, if G has real eigenvalues, the network can be stabilized with
k1, k2 and k3 satisfying: k1 > 0, k2 > 0 and k3 > 1

min(λ(G)>0)
(where min(λ(G) > 0) denotes

the minimum positive eigenvalue of G) .
Proof: We study the closed-loop poles of the system using the control law (Equation

2). The state-space of the closed loop system thus is Ẋ = AcX, where X =

[
ẋ
x

]
and

Ac =

[
(I − k3G)−1k2k3G (I − k3G)−1k1k3G

I 0

]
. Denote

[
x1

x2

]
as the right eigenvector of

Ac, we have Ac

[
x1

x2

]
= λ

[
x1

x2

]
, which implies that x1 = λx2, and λ(I − k3G)−1k2k3Gx2 +

(I − k3G)−1k1k3Gx2 = λx1. The latter yields: λk2k3Gx2 + k1k3Gx2 = λ2(I − k3G)x2, or
(λk2k3 + k1k3 + λ2k3)Gx2 = λ2x2. This means that x2 must be an eigenvector of G with a
eigenvalue, say λi. Hence, we have (λk2k3 +k1k3 +λ2k3)λi = λ2, or λ2− k2k3λi

1−k3λi
λ− k1k3λi

1−k3λi
= 0.

The closed-loop poles are the roots of the characteristic equations λ2 − k2k3λi

1−k3λi
λ− k1k3λi

1−k3λi
= 0,

for all i. Placing the roots of λ2 − k2λi

1−k3λi
λ− k1λi

1−k3λi
= 0 in the Open Left Half Plane (OLHP)
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is equivalent to placing the zeros of (λ2 − k2k3λi

1−k3λi
λ − k1k3λi

1−k3λ∗
i
)(λ2 − k2k3λ∗

i

1−k3λ∗
i
λ − k1k3λ∗

i

1−k3λ∗
i
) = 0 into

the OLHP, since the latter has two conjugate complex root pairs, each pair specifying a root
of the original equation. As a special case, when λi is real, the latter has two repeated roots
corresponding to each root in the original equation. The Routh Criterion naturally leads to
the conditions for stabilization. �

It is easy to check that the conditions on the gains in Theorem 1 can always be satisfied by
choosing k1 and k2 positive and k3 sufficiently large. Theorem 1 states that by introducing the
derivatives of observations y(t), ẏ(t) and ẏ(t) into the control law as in (2), the decentralized
system can be stabilized whenever G has full rank. This result is significant in that it gives
an explicit controller design for stabilization of a double integrator network, rather than
only giving conditions for the existence of such a controller. We will see that this design far
outperforms single-channel-based designs (Section 2.2).

Using derivatives in the control law also allows performance design, e.g., placing groups
of closed-loop poles at pre-defined positions or within ranges.

Theorem 2 Consider the double-integrator network described in (1), where G is non-
singular. The closed-loop poles of the network can be placed arbitrarily near to any two
pre-defined locations xA and xB (on the real axis or as a conjugate pair) using the multiple-
derivative controller (Equation 2), by setting k3 sufficiently large and choosing k1 and k2

such that k2 = −(xA + xB) and k1 = xAxB.
Proof: From the proof of Theorem 1, we know that the closed-loop roots are the zeros of

the characteristic equations λ2− k2k3λi

1−k3λi
λ− k1k3λi

1−k3λi
= 0, for all i. Hence, when k3 is sufficiently

large, the coefficients of the characteristic equation approach the coefficients of the quadratic
equation λ2 + k2λ + k1 = 0. From the continuous dependence of roots on parameters, the
closed-loop poles thus approach the roots of this characteristic equation. The result follows
with just a little algebra. �

This theorem states that, by using sufficiently high gains, we can place all the closed-
loop poles arbitrarily close to any two predefined locations, with n poles at each location.
Moreover, one can see through the root locus that when we decrease k3 from a high value, the
poles that are originally close to each pre-defined location separate, with speeds dependent
on k1, k2, k3, and λi. Thus, by choosing proper k1, k2 and k3, we can place the poles in
specified ranges.�

Motivated by Theorem 2, we define group pole placement as the task of placing a group
of poles of a decentralized system near (or within a range of) some pre-defined positions in
the complex plane. Note that group pole placement is different from exact pole placement in
that we only place sets of poles within a range or near a location, rather than design the exact
location of each pole. However, group pole placement is a much stronger achievement than
stabilization. Group pole placement design allows us to set such performance statistics as
the dominant eigenvalue and dominant eigenvalue ratio [10], and further through an inverse-
optimality argument the design can be shown to achieve phase-margin requirements [25]. The
derivative-based controller permits us to achieve group pole placement, with the locations of
the groups of poles and the closeness of the poles within each group depending on the values
of the gains that we have chosen.
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2.2 Discussion: Concepts and Comparisons

It is worthwhile to further discuss our multiple derivative controller, so as to better interpret
how it works (Section 2.2.1) and compare it to existing approaches for decentralized control
(Section 2.2.2).

2.2.1 A Structural Interpretation

Our design methodology is based on using multiple-derivative-control—and specifically using
one higher derivative than is needed for centralized pole placement (see the work on ATEA
design [24])—to achieve high-performance decentralized control. The use of derivative-based
control for decentralized systems is sensible (broadly speaking), in that derivatives of linear-
system outputs identify the global state and so should facilitate control at each channel of a
decentralized system. What is surprising is that precisely as many derivatives as the relative
degree of the local plant, or one more than is needed for centralized control, is sufficient
to provide each agent with enough state information to permit stabilization and group pole
placement. Here, we give some further conceptual discussion of this special characteristic of
the multiple-derivative control.

Specifically, let us argue that our controller, which uses an ”extra derivative”, implicitly
and distributedly provides each agent with the local state information and so permits simple
control of n sets of ”local” dynamics. To see why this is the case, notice that the positions
can be found from the observations as x = G−1y, and similarly the velocities can be found
as ẋ = G−1ẏ. Thus, if each agent can be given the statistics hT

i y and hT
i ẏ, where hT

i is the
ith row of the matrix G−1, then it has available the local position and velocity. However,
the use of the extra derivative in the decentralized controller implicitly does exactly this.
In particular, note that upon application of the multiple-derivative control, the closed-loop
dynamics are ẍ = (I−k3G)−1k1k3y+(I−k3G)−1k2k3ẏ, where we have written the right-hand
side in terms of the observation y rather than the state. Thus, ẍ = k1(

1
k3
−G)−1y + k2(

1
k3
−

G)−1ẏ. For k3 sufficiently large, ẍi ≈ k1h
T
i y + k2h

T
i ẏ = k1xi + k2ẋi. That is, each agent is

approximately feeding back its local state and derivative, i.e. locally using a proportional-
derivative controller, to achieve performance requirements. Such local control of identical
double-integrators is of course straightforward, and so we automatically infer the possibility
for group pole placement. We notice that this approach is a fundamentally distributed one,
in the sense that actions at each channel are together permitting computation of the local
state and control using it.

The above discussion clarifies that, fundamentally, the derivative-based controller achieves
high performance by distributedly providing each agent with local state information from
the network observation. Several further points regarding this viewpoint are worthwhile:

a) We note the great difference of this approach to the traditional approach taken in
decentralized control, where knowledge of local state is assumed and is used to dominate the
network interactions rather than being meshed with them [3].

b) The above discussion clarifies that decentralized control is greatly simplified whenever
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the agents are provided with the statistics hT
i y and hT

i ẏ, whether by derivative-based control
or through another means. For instance, direct communication of appropriate observations
so as to permit computation is an alternative.

c) This viewpoint motivates us to seek better characterizations of the matrix G−1, in
terms of the network topology codified in G. The relationship between the structure of the
topology matrix G and that of its inverse is generally complicated. Even when the matrix G
is sparse, G−1 may be dense, and hence we see that conceptually the statistics needed by each
agent require observations from throughout the network (which are rather slickly provided
to the agent through use of one higher derivative). These statistics are much simplified, or
amenable to interesting interpretations, for special classes of topology matrices such as those
with a slow-coherent structure. We leave it to future work to make precise the structure of
G−1 for these special classes

2.2.2 Comparison with the Dominant Channel Approach

We have argued that our design is fundamentally different from the existing approaches for
decentralized pole placement [2], in that it distributes the complexity and actuation among
the channels (agents) rather than concentrating them at one channel. Here, we make explicit
the advantage in complexity and actuation provided by our approach. Precisely, we show
through an example that high complexity and large actuation may be needed in a single
channel when the existing methods are used, as compared to when the multiple derivative
controller is used. We recall that in the existing approaches, the entire network dynamics are
made controllable and observable from a single channel through static feedback, and then a
linear dynamic controller is implemented at this channel for pole placement (using standard
method for centralized systems); it is this dominant channel approach that we will compare
to our multiple-delay-based design.

First, let us compare the controller complexities for dominant channel-based approach
and the multiple-derivative design, in the context of the double integrator network. For
the multiple-derivative design, each agent requires precisely three signals (yi, ẏi, and ÿi),
which are linearly combined to generate the actuation signal, regardless of the network
topology; these signals can be approximated arbitrarily well using either 3 variously-delayed
observations or a lead compensator with two poles, see the implementation section (Section
3) for further details. On the other hand, as we shall show below, the dominant channel
approach necessitates use of a dynamic controller of order 2n at a single agent for certain
network topologies. The comparison is formalized in the following theorem:

Theorem 3 Consider a double-integrator network with full graph matrix G =

⎡
⎢⎢⎢⎣

1
. . .

1
1

⎤
⎥⎥⎥⎦.

If the dominant channel approach for decentralized pole placement is used, then one agent
requires a controller that has dynamic order 2n. In contrast, the multiple derivative design
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requires a linear feedback of the observation and its first two derivatives, which can be im-
plemented using three delayed observations or else a dynamic controller of order 2 at each
channel for group pole placement.

Proof: The result is automatic for the multiple-derivative design.
In the dominant channel approach, a static linear feedback is applied to each agent, and

then this closed-loop system is controlled from any single channel (which we can choose
WLOG to be the channel n, from symmetry). Specifically, let us consider applying the
controls ui = piyi for channels 1, . . . , n − 1 and the control un = pnyn + wn, and then
consider designing a further feedback in channel n (from yn to wn). With a little algebra, we
find that the (SISO) transfer function from wn to yn for the example full graph matrix G is

1
s2n+P

, where P = p1p2 . . . pn. We claim that feedback control of this plant for the purpose
of pole placement requires a dynamic controller of order 2n. To see why, consider applying a
strictly proper linear dynamic controller r(s)

q(s)
to the plant. Then notice that the characteristic

polynomial of the closed-loop system is γ(s) = s2nq(s) + Pq(s) + r(s). If the degree of q(s)
is m, notice that the only non-zero coefficients in the characteristic polynomial are those for
the terms s2n, . . . , s2n+m, and 1, . . . , sm. Then we require m ≥ 2n − 1 to achieve stability,
let alone pole placement. In fact, even a controller of order m = 2n − 1 is not sufficient for
pole placement since the ratio between the coefficients of s4n−1 and s2n−1 is fixed. Thus, a
controller of order 2n is needed for pole placement. �

Let us also, through an example, compare the actuation needed by the agents for the
multiple-derivative design and the dominant-single-channel approach. In particular, we con-
sider a double-integrator network with n = 5 agents, and the cyclic graph G from Theorem
3. In this example, we assume that the agents are initially at position 1 and have velocity 0.

For the multiple-derivative design, we use parameter k1 = 1, k2 = 2, and k3 = 25. We
notice that this design aims to place all the eigenvalues at s = −1. It turns out that the gain
k3 has been chosen large enough that, in fact, the eigenvalues are to the left of s = −0.8.
We note that the actuation signal for each agent is identical in this example. This common
actuation signal is shown in Figure 1.

For the dominant single-channel approach, we initially apply unity static gains at each
agent. We then place all the poles at −0.8 using dynamic feedback at (WLOG) agent 5,
where we have conservatively chosen to place the poles at −0.8 to ensure that the comparison
of the two controllers is fair. The actuation signal for agent 5 for this controller is shown
in Figure 1. We notice that the magnitude of the required actuation signal is very large
compared to that for the multiple-delay-based design (roughly, by a factor of 104 over a
single agent’s actuation in the multiple-delay design). Very similar results are obtained for
other initial conditions, and for designs where randomly-chosen static gains are used rather
than uniform ones. This need for large actuation is not surprising: in particular, a large
effort is needed to move Agent 1 using the controller at Agent 5 (and in fact this also cause
large swings in the location of Agent 1 in part of the transient).
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3 Implementation Issues: Overview

So far, using the double-integrator network as a canonical example, we have introduced a phi-
losophy for decentralized control based on each channel (agent) using multiple derivatives of
its local measurements. Here, we shall discuss the realistic implementation of such multiple-
derivative controllers, with a particular focus on multiple-delay control (see e.g. [17, 19, 20]
for background). In the interest of space, our development here is only an overview, with
a focus on providing the user with working controllers for typical network topologies, dis-
cussing briefly the implementation for general topologies, and explaining to the reader the
richness of this multiple-derivative-control task. Further details can be found in our related
works [17, 20].

Fundamentally, our control scheme for the double integrator requires that each agent ob-
tain and feed back the first two derivatives of its observations, or in other words the deriva-
tives up to the relative degree of the local plant. Traditionally, derivatives of observations are
obtained through either 1) explicit measurement (e.g., measurement of vehicle velocities) or
2) approximation of the derivative with a proper transfer function, e.g. through use of lead
compensation or, less commonly, multiple-delay approximations [17, 19, 20]. Approximation
of derivatives up to one less than the relative degree of a plant can be done systematically,
so that a feedback system using these approximations has performance arbitrarily close to
one actually using the derivatives. That is, the finite closed-loop poles upon use of the ap-
proximating controller can be made to approach the ones for the derivative-based control
system, while all other poles1 are driven to −∞.

On the other hand, approximations of derivatives of order equal to the relative degree
of the plant in the feedback can, if improperly used, produce highly unstable spurious dy-
namics (while in many other cases harmlessly replicating the derivative-based control). This
possibility for instability essentially results from the effective delay that is imposed by any
implementable approximation combined with the possible non-continuity of this derivative,
at least at an initial time, see e.g. [26] for a treatment of the phenomenon. Luckily, for the
double-integrator-network, even the most basic multiple-delay-based or lead-compensation-
based control implementations are successful for many typical network topologies. In the
cases where these basic schemes are not successful, a variety of alternatives are available,
including 1) clever selection of the approximation used by each agent, 2) adaptation to elimi-
nate potential unstable dynamics, and 3) explicit use of the relationship between the highest
derivative and the lower derivatives and input through communication of a few observa-
tions/inputs between agents. We have shown that the first of these alternatives is sufficient
for addressing approximation for arbitrary network topologies [17], but each alternative may
have certain advantages/disadvantages in implementation and deserves further study. It is
this wealth of alternative approaches that yields a rich problem space in the arena of ap-
proximating multiple-derivative-based control. Here, let us describe the basic approximation
scheme and delineate the network topologies to which it applies (without proof in the interest

1Notice that the multiple-delay-controlled system is infinite-dimensional and has an infinite number of
such poles.
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of space), and then ruminate on the alternatives.
As noted above, either lead compensation or multiple-delay-based designs can be used.

Since networks are very often subject to intrinsic delays, designs using multiple delayed
observations are naturally applicable to network tasks, and so we shall focus on multiple-
delay-based controls. A basic approach to implement the multiple-derivative controller is
to approximate derivatives with identical delays, e.g., the first derivative ẏ(t) can be ap-

proximated as y(t)−y(t−τ)
τ

, where τ is a small delay. Higher derivatives can similarly be
approximated by interpolating the observation with a polynomial [19,20]. Here, we consider
using the decentralized control law u(t) = α1y(t − τ1) + α2y(t − τ2) + α3y(t − τ3), where
0 ≤ τ1 < τ2 < τ3, α1, α2, and α3 are some properly chosen scalars, to stabilize the dou-
ble integer network. The controller parameters can be selected using the following simple
algorithm.

1) Choose two constants, say k1 and k2, such that the roots of λ2 + k1λ + k2 are at
desirable locations.

2) Choose a set of times 0 ≤ τ̄1 ≤ τ̄2 ≤ τ̄3, which will specify the relative spacing in time
between the delayed measurements used by the controller, see Equation 3 below. The delays
τ̄1, τ̄2, and τ̄3 need to be properly chosen so that a large k3 does not introduce closed-loop
poles in the ORHP (see [17] for the details).

3) Apply the control law:

u =
k3

Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄ 2

2 τ̄3

) − k2
τ̄ 2
2 − τ̄ 2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t − ετ̄1) + (3)

k3

Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄ 2

3 τ̄1

) − k2
τ̄ 2
3 − τ̄ 2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ετ̄2) +

k3

Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄ 2
1 − τ̄ 2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ετ̄3),

where Δ =

∣∣∣∣∣∣
1 τ̄1 τ̄ 2

1

1 τ̄2 τ̄ 2
2

1 τ̄3 τ̄ 2
3

∣∣∣∣∣∣, k3 is chosen sufficiently large, and ε is a sufficiently small number.

This multiple-delay controller is based on the approximation of the multiple-derivative
controller u = k1k3y + k2k3ẏ + k3ÿ, i.e. the multiple-derivative controller that we showed in
Section 2 to achieve group pole placement. From the results in [17], and using the fact that
G can always be pre-scaled by a diagonal gain matrix in decentralized control, we recover
that the delay-based controller (Equation 3) with y = KGx is equivalent in a pole-placement
sense to the multiple-derivative control2 whenever the eigenvalues of KG are in the OLHP.
Matrices G whose eigenvalues can be placed in the OLHP by a diagonal scaling include all
those that have a sequence of n nested principal minors with full rank (e.g., [8]). Positive
definite matrices such as grounded Laplacian matrices and diagonally-dominant matrices,
which are common in many applications such as autonomous vehicle control and sensor
network management ones, of course fall in this class (and require only pre-scaling by −I).

2Notice that we have excluded this pre-scaling up to this point for the sake of simplicity of presentation.
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Let us complete the discussion with a claim. We expect that derivative-based controllers
can be implemented for arbitrary topologies simply by using inhomogeneous multiple-delay
controllers.

We also note that multi-lead-compensator architecture can achieve stabilization and pole
placement of a double integrator network with arbitrary topology [27].

4 Stabilization Under Constraint and Delay

Limitations, e.g., measurement delays and input saturation, are common in decentralized
systems. These limitations pose further difficulty for stabilization. In the centralized set-
ting, low-gain techniques have been long used for designing stabilizing controllers under
saturation constraints and intrinsic delays [28, 29]. In the decentralized setting, Stoorvogel
and coworkers recently obtained a check for the existence of a stabilizing control under ac-
tuator saturation [22], for plants without defective jw-axis eigenvalues. However, no effort
has been devoted to designing stabilizing controllers for decentralized systems with these
limitations. In this section, we will explore how to stabilize a double integrator network with
measurement delay and/or input saturation using a multiple-delay controller. The scaling
property associated with pure integrators facilitates the analysis, and so allows us to high-
light the concepts underlying low-gain delay for decentralized systems with little technical
complexity; we shall address the low-gain design more generally in future work.

It is worth stressing that the low-gain (scaling) arguments that we use here could have
alternatively been used to design multiple-derivative controllers that operate in the presence
of saturation and delay. However, it is critical that our implementation of the controllers—
which may involve using certain high-gains, e.g. in approximating derivatives as delay
differences—operate in the presence of derivatives and delays, and hence we find it more
instructive to work directly with the multiple-delay controllers. For ease of presentation, we
will show how the basic multiple-delay controller introduced in Section 3 can be modified to
permit control under delay and actuator saturation, although similarly other multiple-delay-
based or lead-compensation implementations can be adapted.

4.1 Design for Networks with Measurement Delay

Intrinsic delays in measurement pose one of the primary challenges in achieving control of
network dynamics. It is well known that measurement delay can cause poor performance and
even instability in linear control systems. However, as delays are inherent to our controller
implementation, it is possible for us to account for this measurement delay,

Specifically, consider an LTI system consisting of n double integrators with measurement
delay, i.e. described by

ẍ(t) = u(t) (4)

yi(t) = Gix(t − τi),
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where x(t) represents the positions of the n agents and u(t) the inputs, yi(t) is the obser-
vation made by agent i, Gi =

[
Gi1 . . . Gin

]
, and τi ≥ 0 is the (known) time delay in

the measurement made by agent i. Since the delays are assumed known, we can further
delay the observations in appropriate channels for the purpose of feedback, so WLOG let us
henceforth assume a common delay τ which is the maximum of τ1, . . . , τn in each channel.

In order to stabilize (4), let us use a modification of the delay-based decentralized con-
troller given in Equation 3:

u(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄ 2

2 τ̄3

) − k2
τ̄ 2
2 − τ̄ 2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t) + (5)

k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄ 2

3 τ̄1

) − k2
τ̄ 2
3 − τ̄ 2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ρετ̄2 + τ) +

k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄ 2
1 − τ̄ 2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ρετ̄3 + τ),

where we choose ε, τ̄i > 0 and ki , i = 1, 2, 3 in the same way as for the basic multiple-delay
controller, and then choose ρ such that ρ = τ

ετ̄1
. We formalize the design of the control law

for a double integrator network with measurement delay in Theorem 4:
Theorem 4 Consider the double-integrator network with measurement delay described in

(4), where G is nonsingular, and assume that the corresponding undelayed double-integrator
can be stabilized using the basic multiple-delay controller (3). The network can be stabilized
using the delay-based control law (Equation 5) by choosing sufficiently small ε, ρ = τ

ετ̄1
, and

k1, k2 and k3 satisfying the conditions given in Theorem 1.
Proof: It is easy to check that the closed-loop system is

ẍ(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄ 2

2 τ̄3

) − k2
τ̄ 2
2 − τ̄ 2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
Gx(t − ρετ̄1) (6)

+
k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄ 2

3 τ̄1

) − k2
τ̄ 2
3 − τ̄ 2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
Gx(t − ρετ̄2)

+
k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄ 2
1 − τ̄ 2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
Gx(t − ρετ̄3).

According to the scaling property presented in [19], a scaling of each delay term in the con-
trol law by a factor of ρ together with a scaling of 1

ρ
in each corresponding gain does not

change the stability of the system. Hence the closed-loop system (6) is stable if and only if
the system (1) using control law (3) is stable. Thus, we can design ε, 0 < τ̄1 < τ̄2 < τ̄3 and ki,
i = 1, 2, 3 according to Theorem 1, and choose ρ = τ

ετ̄1
to achieve stabilization under delay. �

This theorem allows us to design the control law to stabilize a decentralized network
with measurement delay. Essentially, by using the low-gain technique [19] and choosing the
scaling factor ρ to match ρετ̄1 with the measurement delay τ , we can absorb the measurement

14



delay into the delay in the control law, and hence transform the closed-loop dynamics of the
system with measurement delay into exactly the same form discussed in Section 2. A design
that achieves stability can thus be implemented. The performance of the controller can be
optimized by choosing τ̄i and ki, i = 1, 2, 3 such that ρ is minimized.

Remark: The above result applies to systems with known measurement delay. However,
the design can straightforwardly be adapted to plants with unknown but upper-bounded
delays, which are also of common interest [18]. In particular, noting that the multiple-
derivative controller achieves stability for all sufficiently large k3, we see that the plant can
be stabilized using the controller (5) with ρ ≥ τmax

ετ1
, where τmax is the upper bound on the

delay. We notice that this generalization requires that the open-loop jω-axis eigenvalues of
the plant are in fact at the origin.

4.2 Controller Design for Networks with Input Saturation

In general, low gain techniques can help to resolve instability caused by input saturation [19].
In our setting, as we discussed in Section 4.1, we can simultaneously decrease the input
gain and introduce more delay to the decentralized control law. With such scaling, we can
guarantee that actuators do not saturate while leaving the closed-loop (linear) system’s poles
in the OLHP, and hence ensure stability. For the following decentralized system with input
saturation:

ẍ(t) = σ(u(t)) (7)

y(t) = Gx(t),

we use the following control law:

u(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄ 2

2 τ̄3

) − k2
τ̄ 2
2 − τ̄ 2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t − ρετ̄1)

+
k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄ 2

3 τ̄1

) − k2
τ̄ 2
3 − τ̄ 2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ρετ̄2) (8)

+
k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄ 2
1 − τ̄ 2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ρετ̄3),

where we choose ε, τ̄i and ki , i = 1, 2, 3 in the same way as for the basic multiple-delay
controller (i.e., assuming no saturation), and then choose ρ so that the actuator does not
saturate. We formalize the design of the control law for a double integrator network with
input saturation in Theorem 5:

Theorem 5 Consider the double-integrator network with input saturation described in
(7), where G is nonsingular. Assume that the corresponding (unsaturated) double-integrator
network can be stabilized using the basic multiple-delay controller (3). The network can be
semiglobally3 stabilized using the multiple-delay control law (Equation 8). Specifically, for
any bounded set of initial conditions W and for fixed k1, k2 and k3 satisfying the conditions

3See [30] for a full introduction to semiglobal stabilization.
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in Theorem 1 and sufficiently small ε, we can choose ρ sufficiently large such that W is in
the domain of attraction.

Proof: According to the scaling property presented in [19], as long as the actuators
never saturate, the response x(t) for the scaled system is exactly a time-scaled version of the
response to the unscaled system (Equation 3). We shall use this fact to prove stability. First,
from stability of the original unscaled system, we obtain that, for the given compact set of
initial conditions, there is a bound on the absolute value of all state variables x(t) over all

t ≥ 0. Thus, there is also a bound, say Γ, on the inputs over all t ≥ 0. By choosing ρ <
√

1
Γ
,

invoking the time-scaling of the state, and noting that thus the input is scaled by a factor
of Γ, we obtain that the inputs do not saturate. We thus automatically recover semi-global
stability. �

The low gain technique used in Theorem 5 achieves stabilization under saturation, at a
cost of scaling the closed-loop poles a factor of 1

ρ
. We note that the delay-based design in

principle allows us to tune ρ so that the state exactly reaches the saturation boundary but
does not exceed it, given the set of possible initial conditions. Thus, we can indeed achieve
a good low-gain design with the methodology.
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